// Copyright 2016 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/metrics/persistent_histogram_allocator.h" #include <memory> #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/files/important_file_writer.h" #include "base/files/memory_mapped_file.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/memory/ptr_util.h" #include "base/metrics/histogram.h" #include "base/metrics/histogram_base.h" #include "base/metrics/histogram_samples.h" #include "base/metrics/persistent_sample_map.h" #include "base/metrics/sparse_histogram.h" #include "base/metrics/statistics_recorder.h" #include "base/pickle.h" #include "base/synchronization/lock.h" namespace base { namespace { // Name of histogram for storing results of local operations. const char kResultHistogram[] = "UMA.CreatePersistentHistogram.Result"; // Type identifiers used when storing in persistent memory so they can be // identified during extraction; the first 4 bytes of the SHA1 of the name // is used as a unique integer. A "version number" is added to the base // so that, if the structure of that object changes, stored older versions // will be safely ignored. enum : uint32_t { kTypeIdHistogram = 0xF1645910 + 2, // SHA1(Histogram) v2 kTypeIdRangesArray = 0xBCEA225A + 1, // SHA1(RangesArray) v1 kTypeIdCountsArray = 0x53215530 + 1, // SHA1(CountsArray) v1 }; // The current globally-active persistent allocator for all new histograms. // The object held here will obviously not be destructed at process exit // but that's best since PersistentMemoryAllocator objects (that underlie // GlobalHistogramAllocator objects) are explicitly forbidden from doing // anything essential at exit anyway due to the fact that they depend on data // managed elsewhere and which could be destructed first. GlobalHistogramAllocator* g_allocator = nullptr; // Take an array of range boundaries and create a proper BucketRanges object // which is returned to the caller. A return of nullptr indicates that the // passed boundaries are invalid. std::unique_ptr<BucketRanges> CreateRangesFromData( HistogramBase::Sample* ranges_data, uint32_t ranges_checksum, size_t count) { // To avoid racy destruction at shutdown, the following may be leaked. std::unique_ptr<BucketRanges> ranges(new BucketRanges(count)); DCHECK_EQ(count, ranges->size()); for (size_t i = 0; i < count; ++i) { if (i > 0 && ranges_data[i] <= ranges_data[i - 1]) return nullptr; ranges->set_range(i, ranges_data[i]); } ranges->ResetChecksum(); if (ranges->checksum() != ranges_checksum) return nullptr; return ranges; } // Calculate the number of bytes required to store all of a histogram's // "counts". This will return zero (0) if |bucket_count| is not valid. size_t CalculateRequiredCountsBytes(size_t bucket_count) { // 2 because each "sample count" also requires a backup "logged count" // used for calculating the delta during snapshot operations. const size_t kBytesPerBucket = 2 * sizeof(HistogramBase::AtomicCount); // If the |bucket_count| is such that it would overflow the return type, // perhaps as the result of a malicious actor, then return zero to // indicate the problem to the caller. if (bucket_count > std::numeric_limits<size_t>::max() / kBytesPerBucket) return 0; return bucket_count * kBytesPerBucket; } } // namespace const Feature kPersistentHistogramsFeature{ "PersistentHistograms", FEATURE_DISABLED_BY_DEFAULT }; PersistentSparseHistogramDataManager::PersistentSparseHistogramDataManager( PersistentMemoryAllocator* allocator) : allocator_(allocator), record_iterator_(allocator) {} PersistentSparseHistogramDataManager::~PersistentSparseHistogramDataManager() {} PersistentSampleMapRecords* PersistentSparseHistogramDataManager::UseSampleMapRecords(uint64_t id, const void* user) { base::AutoLock auto_lock(lock_); return GetSampleMapRecordsWhileLocked(id)->Acquire(user); } PersistentSampleMapRecords* PersistentSparseHistogramDataManager::GetSampleMapRecordsWhileLocked( uint64_t id) { lock_.AssertAcquired(); auto found = sample_records_.find(id); if (found != sample_records_.end()) return found->second.get(); std::unique_ptr<PersistentSampleMapRecords>& samples = sample_records_[id]; samples = WrapUnique(new PersistentSampleMapRecords(this, id)); return samples.get(); } bool PersistentSparseHistogramDataManager::LoadRecords( PersistentSampleMapRecords* sample_map_records) { // DataManager must be locked in order to access the found_ field of any // PersistentSampleMapRecords object. base::AutoLock auto_lock(lock_); bool found = false; // If there are already "found" entries for the passed object, move them. if (!sample_map_records->found_.empty()) { sample_map_records->records_.reserve(sample_map_records->records_.size() + sample_map_records->found_.size()); sample_map_records->records_.insert(sample_map_records->records_.end(), sample_map_records->found_.begin(), sample_map_records->found_.end()); sample_map_records->found_.clear(); found = true; } // Acquiring a lock is a semi-expensive operation so load some records with // each call. More than this number may be loaded if it takes longer to // find at least one matching record for the passed object. const int kMinimumNumberToLoad = 10; const uint64_t match_id = sample_map_records->sample_map_id_; // Loop while no enty is found OR we haven't yet loaded the minimum number. // This will continue reading even after a match is found. for (int count = 0; !found || count < kMinimumNumberToLoad; ++count) { // Get the next sample-record. The iterator will always resume from where // it left off even if it previously had nothing further to return. uint64_t found_id; PersistentMemoryAllocator::Reference ref = PersistentSampleMap::GetNextPersistentRecord(record_iterator_, &found_id); // Stop immediately if there are none. if (!ref) break; // The sample-record could be for any sparse histogram. Add the reference // to the appropriate collection for later use. if (found_id == match_id) { sample_map_records->records_.push_back(ref); found = true; } else { PersistentSampleMapRecords* samples = GetSampleMapRecordsWhileLocked(found_id); DCHECK(samples); samples->found_.push_back(ref); } } return found; } PersistentSampleMapRecords::PersistentSampleMapRecords( PersistentSparseHistogramDataManager* data_manager, uint64_t sample_map_id) : data_manager_(data_manager), sample_map_id_(sample_map_id) {} PersistentSampleMapRecords::~PersistentSampleMapRecords() {} PersistentSampleMapRecords* PersistentSampleMapRecords::Acquire( const void* user) { DCHECK(!user_); user_ = user; seen_ = 0; return this; } void PersistentSampleMapRecords::Release(const void* user) { DCHECK_EQ(user_, user); user_ = nullptr; } PersistentMemoryAllocator::Reference PersistentSampleMapRecords::GetNext() { DCHECK(user_); // If there are no unseen records, lock and swap in all the found ones. if (records_.size() == seen_) { if (!data_manager_->LoadRecords(this)) return false; } // Return the next record. Records *must* be returned in the same order // they are found in the persistent memory in order to ensure that all // objects using this data always have the same state. Race conditions // can cause duplicate records so using the "first found" is the only // guarantee that all objects always access the same one. DCHECK_LT(seen_, records_.size()); return records_[seen_++]; } PersistentMemoryAllocator::Reference PersistentSampleMapRecords::CreateNew( HistogramBase::Sample value) { return PersistentSampleMap::CreatePersistentRecord(data_manager_->allocator_, sample_map_id_, value); } // This data will be held in persistent memory in order for processes to // locate and use histograms created elsewhere. struct PersistentHistogramAllocator::PersistentHistogramData { int32_t histogram_type; int32_t flags; int32_t minimum; int32_t maximum; uint32_t bucket_count; PersistentMemoryAllocator::Reference ranges_ref; uint32_t ranges_checksum; PersistentMemoryAllocator::Reference counts_ref; HistogramSamples::Metadata samples_metadata; HistogramSamples::Metadata logged_metadata; // Space for the histogram name will be added during the actual allocation // request. This must be the last field of the structure. A zero-size array // or a "flexible" array would be preferred but is not (yet) valid C++. char name[1]; }; PersistentHistogramAllocator::Iterator::Iterator( PersistentHistogramAllocator* allocator) : allocator_(allocator), memory_iter_(allocator->memory_allocator()) {} std::unique_ptr<HistogramBase> PersistentHistogramAllocator::Iterator::GetNextWithIgnore(Reference ignore) { PersistentMemoryAllocator::Reference ref; while ((ref = memory_iter_.GetNextOfType(kTypeIdHistogram)) != 0) { if (ref != ignore) return allocator_->GetHistogram(ref); } return nullptr; } PersistentHistogramAllocator::PersistentHistogramAllocator( std::unique_ptr<PersistentMemoryAllocator> memory) : memory_allocator_(std::move(memory)), sparse_histogram_data_manager_(memory_allocator_.get()) {} PersistentHistogramAllocator::~PersistentHistogramAllocator() {} std::unique_ptr<HistogramBase> PersistentHistogramAllocator::GetHistogram( Reference ref) { // Unfortunately, the histogram "pickle" methods cannot be used as part of // the persistance because the deserialization methods always create local // count data (while these must reference the persistent counts) and always // add it to the local list of known histograms (while these may be simple // references to histograms in other processes). PersistentHistogramData* histogram_data = memory_allocator_->GetAsObject<PersistentHistogramData>( ref, kTypeIdHistogram); size_t length = memory_allocator_->GetAllocSize(ref); if (!histogram_data || reinterpret_cast<char*>(histogram_data)[length - 1] != '\0') { RecordCreateHistogramResult(CREATE_HISTOGRAM_INVALID_METADATA); NOTREACHED(); return nullptr; } return CreateHistogram(histogram_data); } std::unique_ptr<HistogramBase> PersistentHistogramAllocator::AllocateHistogram( HistogramType histogram_type, const std::string& name, int minimum, int maximum, const BucketRanges* bucket_ranges, int32_t flags, Reference* ref_ptr) { // If the allocator is corrupt, don't waste time trying anything else. // This also allows differentiating on the dashboard between allocations // failed due to a corrupt allocator and the number of process instances // with one, the latter being idicated by "newly corrupt", below. if (memory_allocator_->IsCorrupt()) { RecordCreateHistogramResult(CREATE_HISTOGRAM_ALLOCATOR_CORRUPT); return nullptr; } // Create the metadata necessary for a persistent sparse histogram. This // is done first because it is a small subset of what is required for // other histograms. PersistentMemoryAllocator::Reference histogram_ref = memory_allocator_->Allocate( offsetof(PersistentHistogramData, name) + name.length() + 1, kTypeIdHistogram); PersistentHistogramData* histogram_data = memory_allocator_->GetAsObject<PersistentHistogramData>(histogram_ref, kTypeIdHistogram); if (histogram_data) { memcpy(histogram_data->name, name.c_str(), name.size() + 1); histogram_data->histogram_type = histogram_type; histogram_data->flags = flags | HistogramBase::kIsPersistent; } // Create the remaining metadata necessary for regular histograms. if (histogram_type != SPARSE_HISTOGRAM) { size_t bucket_count = bucket_ranges->bucket_count(); size_t counts_bytes = CalculateRequiredCountsBytes(bucket_count); if (counts_bytes == 0) { // |bucket_count| was out-of-range. NOTREACHED(); return nullptr; } size_t ranges_bytes = (bucket_count + 1) * sizeof(HistogramBase::Sample); PersistentMemoryAllocator::Reference counts_ref = memory_allocator_->Allocate(counts_bytes, kTypeIdCountsArray); PersistentMemoryAllocator::Reference ranges_ref = memory_allocator_->Allocate(ranges_bytes, kTypeIdRangesArray); HistogramBase::Sample* ranges_data = memory_allocator_->GetAsObject<HistogramBase::Sample>( ranges_ref, kTypeIdRangesArray); // Only continue here if all allocations were successful. If they weren't, // there is no way to free the space but that's not really a problem since // the allocations only fail because the space is full or corrupt and so // any future attempts will also fail. if (counts_ref && ranges_data && histogram_data) { for (size_t i = 0; i < bucket_ranges->size(); ++i) ranges_data[i] = bucket_ranges->range(i); histogram_data->minimum = minimum; histogram_data->maximum = maximum; // |bucket_count| must fit within 32-bits or the allocation of the counts // array would have failed for being too large; the allocator supports // less than 4GB total size. histogram_data->bucket_count = static_cast<uint32_t>(bucket_count); histogram_data->ranges_ref = ranges_ref; histogram_data->ranges_checksum = bucket_ranges->checksum(); histogram_data->counts_ref = counts_ref; } else { histogram_data = nullptr; // Clear this for proper handling below. } } if (histogram_data) { // Create the histogram using resources in persistent memory. This ends up // resolving the "ref" values stored in histogram_data instad of just // using what is already known above but avoids duplicating the switch // statement here and serves as a double-check that everything is // correct before commiting the new histogram to persistent space. std::unique_ptr<HistogramBase> histogram = CreateHistogram(histogram_data); DCHECK(histogram); if (ref_ptr != nullptr) *ref_ptr = histogram_ref; // By storing the reference within the allocator to this histogram, the // next import (which will happen before the next histogram creation) // will know to skip it. // See also the comment in ImportHistogramsToStatisticsRecorder(). subtle::NoBarrier_Store(&last_created_, histogram_ref); return histogram; } CreateHistogramResultType result; if (memory_allocator_->IsCorrupt()) { RecordCreateHistogramResult(CREATE_HISTOGRAM_ALLOCATOR_NEWLY_CORRUPT); result = CREATE_HISTOGRAM_ALLOCATOR_CORRUPT; } else if (memory_allocator_->IsFull()) { result = CREATE_HISTOGRAM_ALLOCATOR_FULL; } else { result = CREATE_HISTOGRAM_ALLOCATOR_ERROR; } RecordCreateHistogramResult(result); NOTREACHED() << "error=" << result; return nullptr; } void PersistentHistogramAllocator::FinalizeHistogram(Reference ref, bool registered) { // If the created persistent histogram was registered then it needs to // be marked as "iterable" in order to be found by other processes. if (registered) memory_allocator_->MakeIterable(ref); // If it wasn't registered then a race condition must have caused // two to be created. The allocator does not support releasing the // acquired memory so just change the type to be empty. else memory_allocator_->ChangeType(ref, 0, kTypeIdHistogram); } void PersistentHistogramAllocator::MergeHistogramDeltaToStatisticsRecorder( HistogramBase* histogram) { DCHECK(histogram); HistogramBase* existing = GetOrCreateStatisticsRecorderHistogram(histogram); if (!existing) { // The above should never fail but if it does, no real harm is done. // The data won't be merged but it also won't be recorded as merged // so a future try, if successful, will get what was missed. If it // continues to fail, some metric data will be lost but that is better // than crashing. NOTREACHED(); return; } // Merge the delta from the passed object to the one in the SR. existing->AddSamples(*histogram->SnapshotDelta()); } void PersistentHistogramAllocator::MergeHistogramFinalDeltaToStatisticsRecorder( const HistogramBase* histogram) { DCHECK(histogram); HistogramBase* existing = GetOrCreateStatisticsRecorderHistogram(histogram); if (!existing) { // The above should never fail but if it does, no real harm is done. // Some metric data will be lost but that is better than crashing. NOTREACHED(); return; } // Merge the delta from the passed object to the one in the SR. existing->AddSamples(*histogram->SnapshotFinalDelta()); } PersistentSampleMapRecords* PersistentHistogramAllocator::UseSampleMapRecords( uint64_t id, const void* user) { return sparse_histogram_data_manager_.UseSampleMapRecords(id, user); } void PersistentHistogramAllocator::CreateTrackingHistograms(StringPiece name) { memory_allocator_->CreateTrackingHistograms(name); } void PersistentHistogramAllocator::UpdateTrackingHistograms() { memory_allocator_->UpdateTrackingHistograms(); } void PersistentHistogramAllocator::ClearLastCreatedReferenceForTesting() { subtle::NoBarrier_Store(&last_created_, 0); } // static HistogramBase* PersistentHistogramAllocator::GetCreateHistogramResultHistogram() { // Get the histogram in which create-results are stored. This is copied // almost exactly from the STATIC_HISTOGRAM_POINTER_BLOCK macro but with // added code to prevent recursion (a likely occurance because the creation // of a new a histogram can end up calling this.) static base::subtle::AtomicWord atomic_histogram_pointer = 0; HistogramBase* histogram_pointer = reinterpret_cast<HistogramBase*>( base::subtle::Acquire_Load(&atomic_histogram_pointer)); if (!histogram_pointer) { // It's possible for multiple threads to make it here in parallel but // they'll always return the same result as there is a mutex in the Get. // The purpose of the "initialized" variable is just to ensure that // the same thread doesn't recurse which is also why it doesn't have // to be atomic. static bool initialized = false; if (!initialized) { initialized = true; if (g_allocator) { // Don't log in release-with-asserts builds, otherwise the test_installer step // fails because this code writes to a log file before the installer code had a // chance to set the log file's location. #if !defined(DCHECK_ALWAYS_ON) DLOG(WARNING) << "Creating the results-histogram inside persistent" << " memory can cause future allocations to crash if" << " that memory is ever released (for testing)."; #endif } histogram_pointer = LinearHistogram::FactoryGet( kResultHistogram, 1, CREATE_HISTOGRAM_MAX, CREATE_HISTOGRAM_MAX + 1, HistogramBase::kUmaTargetedHistogramFlag); base::subtle::Release_Store( &atomic_histogram_pointer, reinterpret_cast<base::subtle::AtomicWord>(histogram_pointer)); } } return histogram_pointer; } std::unique_ptr<HistogramBase> PersistentHistogramAllocator::CreateHistogram( PersistentHistogramData* histogram_data_ptr) { if (!histogram_data_ptr) { RecordCreateHistogramResult(CREATE_HISTOGRAM_INVALID_METADATA_POINTER); NOTREACHED(); return nullptr; } // Sparse histograms are quite different so handle them as a special case. if (histogram_data_ptr->histogram_type == SPARSE_HISTOGRAM) { std::unique_ptr<HistogramBase> histogram = SparseHistogram::PersistentCreate(this, histogram_data_ptr->name, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); histogram->SetFlags(histogram_data_ptr->flags); RecordCreateHistogramResult(CREATE_HISTOGRAM_SUCCESS); return histogram; } // Copy the histogram_data to local storage because anything in persistent // memory cannot be trusted as it could be changed at any moment by a // malicious actor that shares access. The contents of histogram_data are // validated below; the local copy is to ensure that the contents cannot // be externally changed between validation and use. PersistentHistogramData histogram_data = *histogram_data_ptr; HistogramBase::Sample* ranges_data = memory_allocator_->GetAsObject<HistogramBase::Sample>( histogram_data.ranges_ref, kTypeIdRangesArray); const uint32_t max_buckets = std::numeric_limits<uint32_t>::max() / sizeof(HistogramBase::Sample); size_t required_bytes = (histogram_data.bucket_count + 1) * sizeof(HistogramBase::Sample); size_t allocated_bytes = memory_allocator_->GetAllocSize(histogram_data.ranges_ref); if (!ranges_data || histogram_data.bucket_count < 2 || histogram_data.bucket_count >= max_buckets || allocated_bytes < required_bytes) { RecordCreateHistogramResult(CREATE_HISTOGRAM_INVALID_RANGES_ARRAY); NOTREACHED(); return nullptr; } std::unique_ptr<const BucketRanges> created_ranges = CreateRangesFromData(ranges_data, histogram_data.ranges_checksum, histogram_data.bucket_count + 1); if (!created_ranges) { RecordCreateHistogramResult(CREATE_HISTOGRAM_INVALID_RANGES_ARRAY); NOTREACHED(); return nullptr; } const BucketRanges* ranges = StatisticsRecorder::RegisterOrDeleteDuplicateRanges( created_ranges.release()); HistogramBase::AtomicCount* counts_data = memory_allocator_->GetAsObject<HistogramBase::AtomicCount>( histogram_data.counts_ref, kTypeIdCountsArray); size_t counts_bytes = CalculateRequiredCountsBytes(histogram_data.bucket_count); if (!counts_data || counts_bytes == 0 || memory_allocator_->GetAllocSize(histogram_data.counts_ref) < counts_bytes) { RecordCreateHistogramResult(CREATE_HISTOGRAM_INVALID_COUNTS_ARRAY); NOTREACHED(); return nullptr; } // After the main "counts" array is a second array using for storing what // was previously logged. This is used to calculate the "delta" during // snapshot operations. HistogramBase::AtomicCount* logged_data = counts_data + histogram_data.bucket_count; std::string name(histogram_data_ptr->name); std::unique_ptr<HistogramBase> histogram; switch (histogram_data.histogram_type) { case HISTOGRAM: histogram = Histogram::PersistentCreate( name, histogram_data.minimum, histogram_data.maximum, ranges, counts_data, logged_data, histogram_data.bucket_count, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); break; case LINEAR_HISTOGRAM: histogram = LinearHistogram::PersistentCreate( name, histogram_data.minimum, histogram_data.maximum, ranges, counts_data, logged_data, histogram_data.bucket_count, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); break; case BOOLEAN_HISTOGRAM: histogram = BooleanHistogram::PersistentCreate( name, ranges, counts_data, logged_data, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); break; case CUSTOM_HISTOGRAM: histogram = CustomHistogram::PersistentCreate( name, ranges, counts_data, logged_data, histogram_data.bucket_count, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); break; default: NOTREACHED(); } if (histogram) { DCHECK_EQ(histogram_data.histogram_type, histogram->GetHistogramType()); histogram->SetFlags(histogram_data.flags); RecordCreateHistogramResult(CREATE_HISTOGRAM_SUCCESS); } else { RecordCreateHistogramResult(CREATE_HISTOGRAM_UNKNOWN_TYPE); } return histogram; } HistogramBase* PersistentHistogramAllocator::GetOrCreateStatisticsRecorderHistogram( const HistogramBase* histogram) { // This should never be called on the global histogram allocator as objects // created there are already within the global statistics recorder. DCHECK_NE(g_allocator, this); DCHECK(histogram); HistogramBase* existing = StatisticsRecorder::FindHistogram(histogram->histogram_name()); if (existing) return existing; // Adding the passed histogram to the SR would cause a problem if the // allocator that holds it eventually goes away. Instead, create a new // one from a serialized version. base::Pickle pickle; if (!histogram->SerializeInfo(&pickle)) return nullptr; PickleIterator iter(pickle); existing = DeserializeHistogramInfo(&iter); if (!existing) return nullptr; // Make sure there is no "serialization" flag set. DCHECK_EQ(0, existing->flags() & HistogramBase::kIPCSerializationSourceFlag); // Record the newly created histogram in the SR. return StatisticsRecorder::RegisterOrDeleteDuplicate(existing); } // static void PersistentHistogramAllocator::RecordCreateHistogramResult( CreateHistogramResultType result) { HistogramBase* result_histogram = GetCreateHistogramResultHistogram(); if (result_histogram) result_histogram->Add(result); } GlobalHistogramAllocator::~GlobalHistogramAllocator() {} // static void GlobalHistogramAllocator::CreateWithPersistentMemory( void* base, size_t size, size_t page_size, uint64_t id, StringPiece name) { Set(WrapUnique(new GlobalHistogramAllocator( WrapUnique(new PersistentMemoryAllocator( base, size, page_size, id, name, false))))); } // static void GlobalHistogramAllocator::CreateWithLocalMemory( size_t size, uint64_t id, StringPiece name) { Set(WrapUnique(new GlobalHistogramAllocator( WrapUnique(new LocalPersistentMemoryAllocator(size, id, name))))); } #if !defined(OS_NACL) // static void GlobalHistogramAllocator::CreateWithFile( const FilePath& file_path, size_t size, uint64_t id, StringPiece name) { bool exists = PathExists(file_path); File file( file_path, File::FLAG_OPEN_ALWAYS | File::FLAG_SHARE_DELETE | File::FLAG_READ | File::FLAG_WRITE); std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile()); if (exists) { mmfile->Initialize(std::move(file), MemoryMappedFile::READ_WRITE); } else { mmfile->Initialize(std::move(file), {0, static_cast<int64_t>(size)}, MemoryMappedFile::READ_WRITE_EXTEND); } if (!mmfile->IsValid() || !FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, true)) { NOTREACHED(); return; } Set(WrapUnique(new GlobalHistogramAllocator( WrapUnique(new FilePersistentMemoryAllocator( std::move(mmfile), size, id, name, false))))); } #endif // static void GlobalHistogramAllocator::CreateWithSharedMemory( std::unique_ptr<SharedMemory> memory, size_t size, uint64_t /*id*/, StringPiece /*name*/) { if ((!memory->memory() && !memory->Map(size)) || !SharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(*memory)) { NOTREACHED(); return; } DCHECK_LE(memory->mapped_size(), size); Set(WrapUnique(new GlobalHistogramAllocator( WrapUnique(new SharedPersistentMemoryAllocator( std::move(memory), 0, StringPiece(), /*readonly=*/false))))); } // static void GlobalHistogramAllocator::CreateWithSharedMemoryHandle( const SharedMemoryHandle& handle, size_t size) { std::unique_ptr<SharedMemory> shm( new SharedMemory(handle, /*readonly=*/false)); if (!shm->Map(size) || !SharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(*shm)) { NOTREACHED(); return; } Set(WrapUnique(new GlobalHistogramAllocator( WrapUnique(new SharedPersistentMemoryAllocator( std::move(shm), 0, StringPiece(), /*readonly=*/false))))); } // static void GlobalHistogramAllocator::Set( std::unique_ptr<GlobalHistogramAllocator> allocator) { // Releasing or changing an allocator is extremely dangerous because it // likely has histograms stored within it. If the backing memory is also // also released, future accesses to those histograms will seg-fault. CHECK(!g_allocator); g_allocator = allocator.release(); size_t existing = StatisticsRecorder::GetHistogramCount(); DVLOG_IF(1, existing) << existing << " histograms were created before persistence was enabled."; } // static GlobalHistogramAllocator* GlobalHistogramAllocator::Get() { return g_allocator; } // static std::unique_ptr<GlobalHistogramAllocator> GlobalHistogramAllocator::ReleaseForTesting() { GlobalHistogramAllocator* histogram_allocator = g_allocator; if (!histogram_allocator) return nullptr; PersistentMemoryAllocator* memory_allocator = histogram_allocator->memory_allocator(); // Before releasing the memory, it's necessary to have the Statistics- // Recorder forget about the histograms contained therein; otherwise, // some operations will try to access them and the released memory. PersistentMemoryAllocator::Iterator iter(memory_allocator); PersistentMemoryAllocator::Reference ref; while ((ref = iter.GetNextOfType(kTypeIdHistogram)) != 0) { PersistentHistogramData* histogram_data = memory_allocator->GetAsObject<PersistentHistogramData>( ref, kTypeIdHistogram); DCHECK(histogram_data); StatisticsRecorder::ForgetHistogramForTesting(histogram_data->name); // If a test breaks here then a memory region containing a histogram // actively used by this code is being released back to the test. // If that memory segment were to be deleted, future calls to create // persistent histograms would crash. To avoid this, have the test call // the method GetCreateHistogramResultHistogram() *before* setting // the (temporary) memory allocator via SetGlobalAllocator() so that // histogram is instead allocated from the process heap. DCHECK_NE(kResultHistogram, histogram_data->name); } g_allocator = nullptr; return WrapUnique(histogram_allocator); }; void GlobalHistogramAllocator::SetPersistentLocation(const FilePath& location) { persistent_location_ = location; } const FilePath& GlobalHistogramAllocator::GetPersistentLocation() const { return persistent_location_; } bool GlobalHistogramAllocator::WriteToPersistentLocation() { #if defined(OS_NACL) // NACL doesn't support file operations, including ImportantFileWriter. NOTREACHED(); return false; #else // Stop if no destination is set. if (persistent_location_.empty()) { NOTREACHED() << "Could not write \"" << Name() << "\" persistent histograms" << " to file because no location was set."; return false; } StringPiece contents(static_cast<const char*>(data()), used()); if (!ImportantFileWriter::WriteFileAtomically(persistent_location_, contents)) { LOG(ERROR) << "Could not write \"" << Name() << "\" persistent histograms" << " to file: " << persistent_location_.value(); return false; } return true; #endif } GlobalHistogramAllocator::GlobalHistogramAllocator( std::unique_ptr<PersistentMemoryAllocator> memory) : PersistentHistogramAllocator(std::move(memory)), import_iterator_(this) {} void GlobalHistogramAllocator::ImportHistogramsToStatisticsRecorder() { // Skip the import if it's the histogram that was last created. Should a // race condition cause the "last created" to be overwritten before it // is recognized here then the histogram will be created and be ignored // when it is detected as a duplicate by the statistics-recorder. This // simple check reduces the time of creating persistent histograms by // about 40%. Reference record_to_ignore = last_created(); // There is no lock on this because the iterator is lock-free while still // guaranteed to only return each entry only once. The StatisticsRecorder // has its own lock so the Register operation is safe. while (true) { std::unique_ptr<HistogramBase> histogram = import_iterator_.GetNextWithIgnore(record_to_ignore); if (!histogram) break; StatisticsRecorder::RegisterOrDeleteDuplicate(histogram.release()); } } } // namespace base