// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/pickle.h" #include <limits.h> #include <stddef.h> #include <stdint.h> #include <memory> #include <string> #include "base/macros.h" #include "base/strings/string16.h" #include "base/strings/utf_string_conversions.h" #include "testing/gtest/include/gtest/gtest.h" namespace base { namespace { const bool testbool1 = false; const bool testbool2 = true; const int testint = 2093847192; const long testlong = 1093847192; const uint16_t testuint16 = 32123; const uint32_t testuint32 = 1593847192; const int64_t testint64 = -0x7E8CA9253104BDFCLL; const uint64_t testuint64 = 0xCE8CA9253104BDF7ULL; const float testfloat = 3.1415926935f; const double testdouble = 2.71828182845904523; const std::string teststring("Hello world"); // note non-aligned string length const std::wstring testwstring(L"Hello, world"); const string16 teststring16(ASCIIToUTF16("Hello, world")); const char testrawstring[] = "Hello new world"; // Test raw string writing // Test raw char16 writing, assumes UTF16 encoding is ANSI for alpha chars. const char16 testrawstring16[] = {'A', 'l', 'o', 'h', 'a', 0}; const char testdata[] = "AAA\0BBB\0"; const int testdatalen = arraysize(testdata) - 1; // checks that the results can be read correctly from the Pickle void VerifyResult(const Pickle& pickle) { PickleIterator iter(pickle); bool outbool; EXPECT_TRUE(iter.ReadBool(&outbool)); EXPECT_FALSE(outbool); EXPECT_TRUE(iter.ReadBool(&outbool)); EXPECT_TRUE(outbool); int outint; EXPECT_TRUE(iter.ReadInt(&outint)); EXPECT_EQ(testint, outint); long outlong; EXPECT_TRUE(iter.ReadLong(&outlong)); EXPECT_EQ(testlong, outlong); uint16_t outuint16; EXPECT_TRUE(iter.ReadUInt16(&outuint16)); EXPECT_EQ(testuint16, outuint16); uint32_t outuint32; EXPECT_TRUE(iter.ReadUInt32(&outuint32)); EXPECT_EQ(testuint32, outuint32); int64_t outint64; EXPECT_TRUE(iter.ReadInt64(&outint64)); EXPECT_EQ(testint64, outint64); uint64_t outuint64; EXPECT_TRUE(iter.ReadUInt64(&outuint64)); EXPECT_EQ(testuint64, outuint64); float outfloat; EXPECT_TRUE(iter.ReadFloat(&outfloat)); EXPECT_EQ(testfloat, outfloat); double outdouble; EXPECT_TRUE(iter.ReadDouble(&outdouble)); EXPECT_EQ(testdouble, outdouble); std::string outstring; EXPECT_TRUE(iter.ReadString(&outstring)); EXPECT_EQ(teststring, outstring); string16 outstring16; EXPECT_TRUE(iter.ReadString16(&outstring16)); EXPECT_EQ(teststring16, outstring16); StringPiece outstringpiece; EXPECT_TRUE(iter.ReadStringPiece(&outstringpiece)); EXPECT_EQ(testrawstring, outstringpiece); StringPiece16 outstringpiece16; EXPECT_TRUE(iter.ReadStringPiece16(&outstringpiece16)); EXPECT_EQ(testrawstring16, outstringpiece16); const char* outdata; int outdatalen; EXPECT_TRUE(iter.ReadData(&outdata, &outdatalen)); EXPECT_EQ(testdatalen, outdatalen); EXPECT_EQ(memcmp(testdata, outdata, outdatalen), 0); // reads past the end should fail EXPECT_FALSE(iter.ReadInt(&outint)); } } // namespace TEST(PickleTest, EncodeDecode) { Pickle pickle; EXPECT_TRUE(pickle.WriteBool(testbool1)); EXPECT_TRUE(pickle.WriteBool(testbool2)); EXPECT_TRUE(pickle.WriteInt(testint)); EXPECT_TRUE(pickle.WriteLong(testlong)); EXPECT_TRUE(pickle.WriteUInt16(testuint16)); EXPECT_TRUE(pickle.WriteUInt32(testuint32)); EXPECT_TRUE(pickle.WriteInt64(testint64)); EXPECT_TRUE(pickle.WriteUInt64(testuint64)); EXPECT_TRUE(pickle.WriteFloat(testfloat)); EXPECT_TRUE(pickle.WriteDouble(testdouble)); EXPECT_TRUE(pickle.WriteString(teststring)); EXPECT_TRUE(pickle.WriteString16(teststring16)); EXPECT_TRUE(pickle.WriteString(testrawstring)); EXPECT_TRUE(pickle.WriteString16(testrawstring16)); EXPECT_TRUE(pickle.WriteData(testdata, testdatalen)); VerifyResult(pickle); // test copy constructor Pickle pickle2(pickle); VerifyResult(pickle2); // test operator= Pickle pickle3; pickle3 = pickle; VerifyResult(pickle3); } // Tests that reading/writing a long works correctly when the source process // is 64-bit. We rely on having both 32- and 64-bit trybots to validate both // arms of the conditional in this test. TEST(PickleTest, LongFrom64Bit) { Pickle pickle; // Under the hood long is always written as a 64-bit value, so simulate a // 64-bit long even on 32-bit architectures by explicitly writing an int64_t. EXPECT_TRUE(pickle.WriteInt64(testint64)); PickleIterator iter(pickle); long outlong; if (sizeof(long) < sizeof(int64_t)) { // ReadLong() should return false when the original written value can't be // represented as a long. #if GTEST_HAS_DEATH_TEST EXPECT_DEATH(ignore_result(iter.ReadLong(&outlong)), ""); #endif } else { EXPECT_TRUE(iter.ReadLong(&outlong)); EXPECT_EQ(testint64, outlong); } } // Tests that we can handle really small buffers. TEST(PickleTest, SmallBuffer) { std::unique_ptr<char[]> buffer(new char[1]); // We should not touch the buffer. Pickle pickle(buffer.get(), 1); PickleIterator iter(pickle); int data; EXPECT_FALSE(iter.ReadInt(&data)); } // Tests that we can handle improper headers. TEST(PickleTest, BigSize) { int buffer[] = { 0x56035200, 25, 40, 50 }; Pickle pickle(reinterpret_cast<char*>(buffer), sizeof(buffer)); PickleIterator iter(pickle); int data; EXPECT_FALSE(iter.ReadInt(&data)); } TEST(PickleTest, UnalignedSize) { int buffer[] = { 10, 25, 40, 50 }; Pickle pickle(reinterpret_cast<char*>(buffer), sizeof(buffer)); PickleIterator iter(pickle); int data; EXPECT_FALSE(iter.ReadInt(&data)); } TEST(PickleTest, ZeroLenStr) { Pickle pickle; EXPECT_TRUE(pickle.WriteString(std::string())); PickleIterator iter(pickle); std::string outstr; EXPECT_TRUE(iter.ReadString(&outstr)); EXPECT_EQ("", outstr); } TEST(PickleTest, ZeroLenStr16) { Pickle pickle; EXPECT_TRUE(pickle.WriteString16(string16())); PickleIterator iter(pickle); std::string outstr; EXPECT_TRUE(iter.ReadString(&outstr)); EXPECT_EQ("", outstr); } TEST(PickleTest, BadLenStr) { Pickle pickle; EXPECT_TRUE(pickle.WriteInt(-2)); PickleIterator iter(pickle); std::string outstr; EXPECT_FALSE(iter.ReadString(&outstr)); } TEST(PickleTest, BadLenStr16) { Pickle pickle; EXPECT_TRUE(pickle.WriteInt(-1)); PickleIterator iter(pickle); string16 outstr; EXPECT_FALSE(iter.ReadString16(&outstr)); } TEST(PickleTest, PeekNext) { struct CustomHeader : base::Pickle::Header { int cookies[10]; }; Pickle pickle(sizeof(CustomHeader)); EXPECT_TRUE(pickle.WriteString("Goooooooooooogle")); const char* pickle_data = static_cast<const char*>(pickle.data()); size_t pickle_size; // Data range doesn't contain header EXPECT_FALSE(Pickle::PeekNext( sizeof(CustomHeader), pickle_data, pickle_data + sizeof(CustomHeader) - 1, &pickle_size)); // Data range contains header EXPECT_TRUE(Pickle::PeekNext( sizeof(CustomHeader), pickle_data, pickle_data + sizeof(CustomHeader), &pickle_size)); EXPECT_EQ(pickle_size, pickle.size()); // Data range contains header and some other data EXPECT_TRUE(Pickle::PeekNext( sizeof(CustomHeader), pickle_data, pickle_data + sizeof(CustomHeader) + 1, &pickle_size)); EXPECT_EQ(pickle_size, pickle.size()); // Data range contains full pickle EXPECT_TRUE(Pickle::PeekNext( sizeof(CustomHeader), pickle_data, pickle_data + pickle.size(), &pickle_size)); EXPECT_EQ(pickle_size, pickle.size()); } TEST(PickleTest, PeekNextOverflow) { struct CustomHeader : base::Pickle::Header { int cookies[10]; }; CustomHeader header; // Check if we can wrap around at all if (sizeof(size_t) > sizeof(header.payload_size)) return; const char* pickle_data = reinterpret_cast<const char*>(&header); size_t pickle_size; // Wrapping around is detected and reported as maximum size_t value header.payload_size = static_cast<uint32_t>( 1 - static_cast<int32_t>(sizeof(CustomHeader))); EXPECT_TRUE(Pickle::PeekNext( sizeof(CustomHeader), pickle_data, pickle_data + sizeof(CustomHeader), &pickle_size)); EXPECT_EQ(pickle_size, std::numeric_limits<size_t>::max()); // Ridiculous pickle sizes are fine (callers are supposed to // verify them) header.payload_size = std::numeric_limits<uint32_t>::max() / 2 - sizeof(CustomHeader); EXPECT_TRUE(Pickle::PeekNext( sizeof(CustomHeader), pickle_data, pickle_data + sizeof(CustomHeader), &pickle_size)); EXPECT_EQ(pickle_size, std::numeric_limits<uint32_t>::max() / 2); } TEST(PickleTest, FindNext) { Pickle pickle; EXPECT_TRUE(pickle.WriteInt(1)); EXPECT_TRUE(pickle.WriteString("Domo")); const char* start = reinterpret_cast<const char*>(pickle.data()); const char* end = start + pickle.size(); EXPECT_TRUE(end == Pickle::FindNext(pickle.header_size_, start, end)); EXPECT_TRUE(NULL == Pickle::FindNext(pickle.header_size_, start, end - 1)); EXPECT_TRUE(end == Pickle::FindNext(pickle.header_size_, start, end + 1)); } TEST(PickleTest, FindNextWithIncompleteHeader) { size_t header_size = sizeof(Pickle::Header); std::unique_ptr<char[]> buffer(new char[header_size - 1]); memset(buffer.get(), 0x1, header_size - 1); const char* start = buffer.get(); const char* end = start + header_size - 1; EXPECT_TRUE(NULL == Pickle::FindNext(header_size, start, end)); } #if defined(COMPILER_MSVC) #pragma warning(push) #pragma warning(disable: 4146) #endif TEST(PickleTest, FindNextOverflow) { size_t header_size = sizeof(Pickle::Header); size_t header_size2 = 2 * header_size; size_t payload_received = 100; std::unique_ptr<char[]> buffer(new char[header_size2 + payload_received]); const char* start = buffer.get(); Pickle::Header* header = reinterpret_cast<Pickle::Header*>(buffer.get()); const char* end = start + header_size2 + payload_received; // It is impossible to construct an overflow test otherwise. if (sizeof(size_t) > sizeof(header->payload_size) || sizeof(uintptr_t) > sizeof(header->payload_size)) return; header->payload_size = -(reinterpret_cast<uintptr_t>(start) + header_size2); EXPECT_TRUE(NULL == Pickle::FindNext(header_size2, start, end)); header->payload_size = -header_size2; EXPECT_TRUE(NULL == Pickle::FindNext(header_size2, start, end)); header->payload_size = 0; end = start + header_size; EXPECT_TRUE(NULL == Pickle::FindNext(header_size2, start, end)); } #if defined(COMPILER_MSVC) #pragma warning(pop) #endif TEST(PickleTest, GetReadPointerAndAdvance) { Pickle pickle; PickleIterator iter(pickle); EXPECT_FALSE(iter.GetReadPointerAndAdvance(1)); EXPECT_TRUE(pickle.WriteInt(1)); EXPECT_TRUE(pickle.WriteInt(2)); int bytes = sizeof(int) * 2; EXPECT_TRUE(PickleIterator(pickle).GetReadPointerAndAdvance(0)); EXPECT_TRUE(PickleIterator(pickle).GetReadPointerAndAdvance(1)); EXPECT_FALSE(PickleIterator(pickle).GetReadPointerAndAdvance(-1)); EXPECT_TRUE(PickleIterator(pickle).GetReadPointerAndAdvance(bytes)); EXPECT_FALSE(PickleIterator(pickle).GetReadPointerAndAdvance(bytes + 1)); EXPECT_FALSE(PickleIterator(pickle).GetReadPointerAndAdvance(INT_MAX)); EXPECT_FALSE(PickleIterator(pickle).GetReadPointerAndAdvance(INT_MIN)); } TEST(PickleTest, Resize) { size_t unit = Pickle::kPayloadUnit; std::unique_ptr<char[]> data(new char[unit]); char* data_ptr = data.get(); for (size_t i = 0; i < unit; i++) data_ptr[i] = 'G'; // construct a message that will be exactly the size of one payload unit, // note that any data will have a 4-byte header indicating the size const size_t payload_size_after_header = unit - sizeof(uint32_t); Pickle pickle; pickle.WriteData( data_ptr, static_cast<int>(payload_size_after_header - sizeof(uint32_t))); size_t cur_payload = payload_size_after_header; // note: we assume 'unit' is a power of 2 EXPECT_EQ(unit, pickle.capacity_after_header()); EXPECT_EQ(pickle.payload_size(), payload_size_after_header); // fill out a full page (noting data header) pickle.WriteData(data_ptr, static_cast<int>(unit - sizeof(uint32_t))); cur_payload += unit; EXPECT_EQ(unit * 2, pickle.capacity_after_header()); EXPECT_EQ(cur_payload, pickle.payload_size()); // one more byte should double the capacity pickle.WriteData(data_ptr, 1); cur_payload += 8; EXPECT_EQ(unit * 4, pickle.capacity_after_header()); EXPECT_EQ(cur_payload, pickle.payload_size()); } namespace { struct CustomHeader : Pickle::Header { int blah; }; } // namespace TEST(PickleTest, HeaderPadding) { const uint32_t kMagic = 0x12345678; Pickle pickle(sizeof(CustomHeader)); pickle.WriteInt(kMagic); // this should not overwrite the 'int' payload pickle.headerT<CustomHeader>()->blah = 10; PickleIterator iter(pickle); int result; ASSERT_TRUE(iter.ReadInt(&result)); EXPECT_EQ(static_cast<uint32_t>(result), kMagic); } TEST(PickleTest, EqualsOperator) { Pickle source; source.WriteInt(1); Pickle copy_refs_source_buffer(static_cast<const char*>(source.data()), source.size()); Pickle copy; copy = copy_refs_source_buffer; ASSERT_EQ(source.size(), copy.size()); } TEST(PickleTest, EvilLengths) { Pickle source; std::string str(100000, 'A'); EXPECT_TRUE(source.WriteData(str.c_str(), 100000)); // ReadString16 used to have its read buffer length calculation wrong leading // to out-of-bounds reading. PickleIterator iter(source); string16 str16; EXPECT_FALSE(iter.ReadString16(&str16)); // And check we didn't break ReadString16. str16 = (wchar_t) 'A'; Pickle str16_pickle; EXPECT_TRUE(str16_pickle.WriteString16(str16)); iter = PickleIterator(str16_pickle); EXPECT_TRUE(iter.ReadString16(&str16)); EXPECT_EQ(1U, str16.length()); // Check we don't fail in a length check with invalid String16 size. // (1<<31) * sizeof(char16) == 0, so this is particularly evil. Pickle bad_len; EXPECT_TRUE(bad_len.WriteInt(1 << 31)); iter = PickleIterator(bad_len); EXPECT_FALSE(iter.ReadString16(&str16)); } // Check we can write zero bytes of data and 'data' can be NULL. TEST(PickleTest, ZeroLength) { Pickle pickle; EXPECT_TRUE(pickle.WriteData(NULL, 0)); PickleIterator iter(pickle); const char* outdata; int outdatalen; EXPECT_TRUE(iter.ReadData(&outdata, &outdatalen)); EXPECT_EQ(0, outdatalen); // We can't assert that outdata is NULL. } // Check that ReadBytes works properly with an iterator initialized to NULL. TEST(PickleTest, ReadBytes) { Pickle pickle; int data = 0x7abcd; EXPECT_TRUE(pickle.WriteBytes(&data, sizeof(data))); PickleIterator iter(pickle); const char* outdata_char = NULL; EXPECT_TRUE(iter.ReadBytes(&outdata_char, sizeof(data))); int outdata; memcpy(&outdata, outdata_char, sizeof(outdata)); EXPECT_EQ(data, outdata); } // Checks that when a pickle is deep-copied, the result is not larger than // needed. TEST(PickleTest, DeepCopyResize) { Pickle pickle; while (pickle.capacity_after_header() != pickle.payload_size()) pickle.WriteBool(true); // Make a deep copy. Pickle pickle2(pickle); // Check that there isn't any extraneous capacity. EXPECT_EQ(pickle.capacity_after_header(), pickle2.capacity_after_header()); } namespace { // Publicly exposes the ClaimBytes interface for testing. class TestingPickle : public Pickle { public: TestingPickle() {} void* ClaimBytes(size_t num_bytes) { return Pickle::ClaimBytes(num_bytes); } }; } // namespace // Checks that claimed bytes are zero-initialized. TEST(PickleTest, ClaimBytesInitialization) { static const int kChunkSize = 64; TestingPickle pickle; const char* bytes = static_cast<const char*>(pickle.ClaimBytes(kChunkSize)); for (size_t i = 0; i < kChunkSize; ++i) { EXPECT_EQ(0, bytes[i]); } } // Checks that ClaimBytes properly advances the write offset. TEST(PickleTest, ClaimBytes) { std::string data("Hello, world!"); TestingPickle pickle; pickle.WriteUInt32(data.size()); void* bytes = pickle.ClaimBytes(data.size()); pickle.WriteInt(42); memcpy(bytes, data.data(), data.size()); PickleIterator iter(pickle); uint32_t out_data_length; EXPECT_TRUE(iter.ReadUInt32(&out_data_length)); EXPECT_EQ(data.size(), out_data_length); const char* out_data = nullptr; EXPECT_TRUE(iter.ReadBytes(&out_data, out_data_length)); EXPECT_EQ(data, std::string(out_data, out_data_length)); int out_value; EXPECT_TRUE(iter.ReadInt(&out_value)); EXPECT_EQ(42, out_value); } // Checks that PickleSizer and Pickle agree on the size of things. TEST(PickleTest, PickleSizer) { { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteBool(true); sizer.AddBool(); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteInt(42); sizer.AddInt(); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteLong(42); sizer.AddLong(); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteUInt16(42); sizer.AddUInt16(); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteUInt32(42); sizer.AddUInt32(); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteInt64(42); sizer.AddInt64(); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteUInt64(42); sizer.AddUInt64(); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteFloat(42.0f); sizer.AddFloat(); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteDouble(42.0); sizer.AddDouble(); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteString(teststring); sizer.AddString(teststring); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteString16(teststring16); sizer.AddString16(teststring16); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteData(testdata, testdatalen); sizer.AddData(testdatalen); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } { TestingPickle pickle; base::PickleSizer sizer; pickle.WriteBytes(testdata, testdatalen); sizer.AddBytes(testdatalen); EXPECT_EQ(sizer.payload_size(), pickle.payload_size()); } } } // namespace base