/* * Copyright 2013 The Android Open Source Project * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Google Inc. nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef CONSTRAINEDCRYPTO_LITE_P256_H_ #define CONSTRAINEDCRYPTO_LITE_P256_H_ // Collection of routines manipulating 256 bit unsigned integers. // Just enough to implement ecdsa-p256 and related algorithms. #include <stdint.h> #ifdef __cplusplus extern "C" { #endif #define P256_BITSPERDIGIT 32 #define P256_NDIGITS 8 #define P256_NBYTES 32 typedef int p256_err; typedef uint32_t p256_digit; typedef int32_t p256_sdigit; typedef uint64_t p256_ddigit; typedef int64_t p256_sddigit; // Defining p256_int as struct to leverage struct assigment. typedef struct { p256_digit a[P256_NDIGITS]; } p256_int; extern const p256_int SECP256r1_n; // Curve order extern const p256_int SECP256r1_p; // Curve prime extern const p256_int SECP256r1_b; // Curve param // Initialize a p256_int to zero. void p256_init(p256_int* a); // Clear a p256_int to zero. void p256_clear(p256_int* a); // Return bit. Index 0 is least significant. int p256_get_bit(const p256_int* a, int index); // b := a % MOD void p256_mod( const p256_int* MOD, const p256_int* a, p256_int* b); // c := a * (top_b | b) % MOD void p256_modmul( const p256_int* MOD, const p256_int* a, const p256_digit top_b, const p256_int* b, p256_int* c); // b := 1 / a % MOD // MOD best be SECP256r1_n void p256_modinv( const p256_int* MOD, const p256_int* a, p256_int* b); // b := 1 / a % MOD // MOD best be SECP256r1_n // Faster than p256_modinv() void p256_modinv_vartime( const p256_int* MOD, const p256_int* a, p256_int* b); // b := a << (n % P256_BITSPERDIGIT) // Returns the bits shifted out of most significant digit. p256_digit p256_shl(const p256_int* a, int n, p256_int* b); // b := a >> (n % P256_BITSPERDIGIT) void p256_shr(const p256_int* a, int n, p256_int* b); int p256_is_zero(const p256_int* a); int p256_is_odd(const p256_int* a); int p256_is_even(const p256_int* a); // Returns -1, 0 or 1. int p256_cmp(const p256_int* a, const p256_int *b); // c: = a - b // Returns -1 on borrow. int p256_sub(const p256_int* a, const p256_int* b, p256_int* c); // c := a + b // Returns 1 on carry. int p256_add(const p256_int* a, const p256_int* b, p256_int* c); // c := a + (single digit)b // Returns carry 1 on carry. int p256_add_d(const p256_int* a, p256_digit b, p256_int* c); // ec routines. // {out_x,out_y} := nG void p256_base_point_mul(const p256_int *n, p256_int *out_x, p256_int *out_y); // {out_x,out_y} := n{in_x,in_y} void p256_point_mul(const p256_int *n, const p256_int *in_x, const p256_int *in_y, p256_int *out_x, p256_int *out_y); // {out_x,out_y} := n1G + n2{in_x,in_y} void p256_points_mul_vartime( const p256_int *n1, const p256_int *n2, const p256_int *in_x, const p256_int *in_y, p256_int *out_x, p256_int *out_y); // Return whether point {x,y} is on curve. int p256_is_valid_point(const p256_int* x, const p256_int* y); // Outputs big-endian binary form. No leading zero skips. void p256_to_bin(const p256_int* src, uint8_t dst[P256_NBYTES]); // Reads from big-endian binary form, // thus pre-pad with leading zeros if short. void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst); #define P256_DIGITS(x) ((x)->a) #define P256_DIGIT(x,y) ((x)->a[y]) #define P256_ZERO {{0}} #define P256_ONE {{1}} #ifdef __cplusplus } #endif #endif // CONSTRAINEDCRYPTO_LITE_P256_H_