/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common/embedding-feature-extractor.h" #include <stddef.h> #include <vector> #include "common/feature-extractor.h" #include "common/feature-types.h" #include "common/task-context.h" #include "util/base/integral_types.h" #include "util/base/logging.h" #include "util/strings/numbers.h" #include "util/strings/split.h" namespace libtextclassifier { namespace nlp_core { bool GenericEmbeddingFeatureExtractor::Init(TaskContext *context) { // Don't use version to determine how to get feature FML. const std::string features = context->Get(GetParamName("features"), ""); TC_LOG(INFO) << "Features: " << features; const std::string embedding_names = context->Get(GetParamName("embedding_names"), ""); TC_LOG(INFO) << "Embedding names: " << embedding_names; const std::string embedding_dims = context->Get(GetParamName("embedding_dims"), ""); TC_LOG(INFO) << "Embedding dims: " << embedding_dims; embedding_fml_ = strings::Split(features, ';'); embedding_names_ = strings::Split(embedding_names, ';'); for (const std::string &dim : strings::Split(embedding_dims, ';')) { int32 parsed_dim = 0; if (!ParseInt32(dim.c_str(), &parsed_dim)) { TC_LOG(ERROR) << "Unable to parse dim " << dim; return false; } embedding_dims_.push_back(parsed_dim); } if ((embedding_fml_.size() != embedding_names_.size()) || (embedding_fml_.size() != embedding_dims_.size())) { TC_LOG(ERROR) << "Mismatch: #fml specs = " << embedding_fml_.size() << "; #names = " << embedding_names_.size() << "; #dims = " << embedding_dims_.size(); return false; } return true; } } // namespace nlp_core } // namespace libtextclassifier