/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBmpStandardCodec.h" #include "SkCodecPriv.h" #include "SkColorPriv.h" #include "SkStream.h" /* * Creates an instance of the decoder * Called only by NewFromStream */ SkBmpStandardCodec::SkBmpStandardCodec(int width, int height, const SkEncodedInfo& info, SkStream* stream, uint16_t bitsPerPixel, uint32_t numColors, uint32_t bytesPerColor, uint32_t offset, SkCodec::SkScanlineOrder rowOrder, bool isOpaque, bool inIco) : INHERITED(width, height, info, stream, bitsPerPixel, rowOrder) , fColorTable(nullptr) , fNumColors(numColors) , fBytesPerColor(bytesPerColor) , fOffset(offset) , fSwizzler(nullptr) , fSrcBuffer(new uint8_t[this->srcRowBytes()]) , fIsOpaque(isOpaque) , fInIco(inIco) , fAndMaskRowBytes(fInIco ? SkAlign4(compute_row_bytes(this->getInfo().width(), 1)) : 0) , fXformOnDecode(false) {} /* * Initiates the bitmap decode */ SkCodec::Result SkBmpStandardCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& opts, SkPMColor* inputColorPtr, int* inputColorCount, int* rowsDecoded) { if (opts.fSubset) { // Subsets are not supported. return kUnimplemented; } if (dstInfo.dimensions() != this->getInfo().dimensions()) { SkCodecPrintf("Error: scaling not supported.\n"); return kInvalidScale; } Result result = this->prepareToDecode(dstInfo, opts, inputColorPtr, inputColorCount); if (kSuccess != result) { return result; } int rows = this->decodeRows(dstInfo, dst, dstRowBytes, opts); if (rows != dstInfo.height()) { *rowsDecoded = rows; return kIncompleteInput; } return kSuccess; } /* * Process the color table for the bmp input */ bool SkBmpStandardCodec::createColorTable(SkColorType dstColorType, SkAlphaType dstAlphaType, int* numColors) { // Allocate memory for color table uint32_t colorBytes = 0; SkPMColor colorTable[256]; if (this->bitsPerPixel() <= 8) { // Inform the caller of the number of colors uint32_t maxColors = 1 << this->bitsPerPixel(); if (nullptr != numColors) { // We set the number of colors to maxColors in order to ensure // safe memory accesses. Otherwise, an invalid pixel could // access memory outside of our color table array. *numColors = maxColors; } // Don't bother reading more than maxColors. const uint32_t numColorsToRead = fNumColors == 0 ? maxColors : SkTMin(fNumColors, maxColors); // Read the color table from the stream colorBytes = numColorsToRead * fBytesPerColor; std::unique_ptr<uint8_t[]> cBuffer(new uint8_t[colorBytes]); if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { SkCodecPrintf("Error: unable to read color table.\n"); return false; } SkColorType packColorType = dstColorType; SkAlphaType packAlphaType = dstAlphaType; if (this->colorXform()) { packColorType = kBGRA_8888_SkColorType; packAlphaType = kUnpremul_SkAlphaType; } // Choose the proper packing function bool isPremul = (kPremul_SkAlphaType == packAlphaType) && !fIsOpaque; PackColorProc packARGB = choose_pack_color_proc(isPremul, packColorType); // Fill in the color table uint32_t i = 0; for (; i < numColorsToRead; i++) { uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); uint8_t alpha; if (fIsOpaque) { alpha = 0xFF; } else { alpha = get_byte(cBuffer.get(), i*fBytesPerColor + 3); } colorTable[i] = packARGB(alpha, red, green, blue); } // To avoid segmentation faults on bad pixel data, fill the end of the // color table with black. This is the same the behavior as the // chromium decoder. for (; i < maxColors; i++) { colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); } if (this->colorXform() && !fXformOnDecode) { SkColorSpaceXform::ColorFormat dstFormat = select_xform_format_ct(dstColorType); SkColorSpaceXform::ColorFormat srcFormat = SkColorSpaceXform::kBGRA_8888_ColorFormat; SkAlphaType xformAlphaType = select_xform_alpha(dstAlphaType, this->getInfo().alphaType()); SkAssertResult(this->colorXform()->apply(dstFormat, colorTable, srcFormat, colorTable, maxColors, xformAlphaType)); } // Set the color table fColorTable.reset(new SkColorTable(colorTable, maxColors)); } // Bmp-in-Ico files do not use an offset to indicate where the pixel data // begins. Pixel data always begins immediately after the color table. if (!fInIco) { // Check that we have not read past the pixel array offset if(fOffset < colorBytes) { // This may occur on OS 2.1 and other old versions where the color // table defaults to max size, and the bmp tries to use a smaller // color table. This is invalid, and our decision is to indicate // an error, rather than try to guess the intended size of the // color table. SkCodecPrintf("Error: pixel data offset less than color table size.\n"); return false; } // After reading the color table, skip to the start of the pixel array if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { SkCodecPrintf("Error: unable to skip to image data.\n"); return false; } } // Return true on success return true; } void SkBmpStandardCodec::initializeSwizzler(const SkImageInfo& dstInfo, const Options& opts) { // In the case of bmp-in-icos, we will report BGRA to the client, // since we may be required to apply an alpha mask after the decode. // However, the swizzler needs to know the actual format of the bmp. SkEncodedInfo encodedInfo = this->getEncodedInfo(); if (fInIco) { if (this->bitsPerPixel() <= 8) { encodedInfo = SkEncodedInfo::Make(SkEncodedInfo::kPalette_Color, encodedInfo.alpha(), this->bitsPerPixel()); } else if (this->bitsPerPixel() == 24) { encodedInfo = SkEncodedInfo::Make(SkEncodedInfo::kBGR_Color, SkEncodedInfo::kOpaque_Alpha, 8); } } // Get a pointer to the color table if it exists const SkPMColor* colorPtr = get_color_ptr(fColorTable.get()); SkImageInfo swizzlerInfo = dstInfo; SkCodec::Options swizzlerOptions = opts; if (this->colorXform()) { swizzlerInfo = swizzlerInfo.makeColorType(kXformSrcColorType); if (kPremul_SkAlphaType == dstInfo.alphaType()) { swizzlerInfo = swizzlerInfo.makeAlphaType(kUnpremul_SkAlphaType); } swizzlerOptions.fZeroInitialized = kNo_ZeroInitialized; } fSwizzler.reset(SkSwizzler::CreateSwizzler(encodedInfo, colorPtr, swizzlerInfo, swizzlerOptions)); SkASSERT(fSwizzler); } SkCodec::Result SkBmpStandardCodec::onPrepareToDecode(const SkImageInfo& dstInfo, const SkCodec::Options& options, SkPMColor inputColorPtr[], int* inputColorCount) { fXformOnDecode = false; if (this->colorXform()) { fXformOnDecode = apply_xform_on_decode(dstInfo.colorType(), this->getEncodedInfo().color()); if (fXformOnDecode) { this->resetXformBuffer(dstInfo.width()); } } // Create the color table if necessary and prepare the stream for decode // Note that if it is non-NULL, inputColorCount will be modified if (!this->createColorTable(dstInfo.colorType(), dstInfo.alphaType(), inputColorCount)) { SkCodecPrintf("Error: could not create color table.\n"); return SkCodec::kInvalidInput; } // Copy the color table to the client if necessary copy_color_table(dstInfo, fColorTable.get(), inputColorPtr, inputColorCount); // Initialize a swizzler this->initializeSwizzler(dstInfo, options); return SkCodec::kSuccess; } /* * Performs the bitmap decoding for standard input format */ int SkBmpStandardCodec::decodeRows(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& opts) { // Iterate over rows of the image const int height = dstInfo.height(); for (int y = 0; y < height; y++) { // Read a row of the input if (this->stream()->read(fSrcBuffer.get(), this->srcRowBytes()) != this->srcRowBytes()) { SkCodecPrintf("Warning: incomplete input stream.\n"); return y; } // Decode the row in destination format uint32_t row = this->getDstRow(y, dstInfo.height()); void* dstRow = SkTAddOffset<void>(dst, row * dstRowBytes); if (fXformOnDecode) { SkASSERT(this->colorXform()); SkImageInfo xformInfo = dstInfo.makeWH(fSwizzler->swizzleWidth(), dstInfo.height()); fSwizzler->swizzle(this->xformBuffer(), fSrcBuffer.get()); this->applyColorXform(xformInfo, dstRow, this->xformBuffer()); } else { fSwizzler->swizzle(dstRow, fSrcBuffer.get()); } } if (fInIco && fIsOpaque) { const int startScanline = this->currScanline(); if (startScanline < 0) { // We are not performing a scanline decode. // Just decode the entire ICO mask and return. decodeIcoMask(this->stream(), dstInfo, dst, dstRowBytes); return height; } // In order to perform a scanline ICO decode, we must be able // to skip ahead in the stream in order to apply the AND mask // to the requested scanlines. // We will do this by taking advantage of the fact that // SkIcoCodec always uses a SkMemoryStream as its underlying // representation of the stream. const void* memoryBase = this->stream()->getMemoryBase(); SkASSERT(nullptr != memoryBase); SkASSERT(this->stream()->hasLength()); SkASSERT(this->stream()->hasPosition()); const size_t length = this->stream()->getLength(); const size_t currPosition = this->stream()->getPosition(); // Calculate how many bytes we must skip to reach the AND mask. const int remainingScanlines = this->getInfo().height() - startScanline - height; const size_t bytesToSkip = remainingScanlines * this->srcRowBytes() + startScanline * fAndMaskRowBytes; const size_t subStreamStartPosition = currPosition + bytesToSkip; if (subStreamStartPosition >= length) { // FIXME: How can we indicate that this decode was actually incomplete? return height; } // Create a subStream to pass to decodeIcoMask(). It is useful to encapsulate // the memory base into a stream in order to safely handle incomplete images // without reading out of bounds memory. const void* subStreamMemoryBase = SkTAddOffset<const void>(memoryBase, subStreamStartPosition); const size_t subStreamLength = length - subStreamStartPosition; // This call does not transfer ownership of the subStreamMemoryBase. SkMemoryStream subStream(subStreamMemoryBase, subStreamLength, false); // FIXME: If decodeIcoMask does not succeed, is there a way that we can // indicate the decode was incomplete? decodeIcoMask(&subStream, dstInfo, dst, dstRowBytes); } return height; } void SkBmpStandardCodec::decodeIcoMask(SkStream* stream, const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes) { // BMP in ICO have transparency, so this cannot be 565, and this mask // prevents us from using kIndex8. The below code depends on the output // being an SkPMColor. SkASSERT(kRGBA_8888_SkColorType == dstInfo.colorType() || kBGRA_8888_SkColorType == dstInfo.colorType() || kRGBA_F16_SkColorType == dstInfo.colorType()); // If we are sampling, make sure that we only mask the sampled pixels. // We do not need to worry about sampling in the y-dimension because that // should be handled by SkSampledCodec. const int sampleX = fSwizzler->sampleX(); const int sampledWidth = get_scaled_dimension(this->getInfo().width(), sampleX); const int srcStartX = get_start_coord(sampleX); SkPMColor* dstPtr = (SkPMColor*) dst; for (int y = 0; y < dstInfo.height(); y++) { // The srcBuffer will at least be large enough if (stream->read(fSrcBuffer.get(), fAndMaskRowBytes) != fAndMaskRowBytes) { SkCodecPrintf("Warning: incomplete AND mask for bmp-in-ico.\n"); return; } auto applyMask = [dstInfo](void* dstRow, int x, uint64_t bit) { if (kRGBA_F16_SkColorType == dstInfo.colorType()) { uint64_t* dst64 = (uint64_t*) dstRow; dst64[x] &= bit - 1; } else { uint32_t* dst32 = (uint32_t*) dstRow; dst32[x] &= bit - 1; } }; int row = this->getDstRow(y, dstInfo.height()); void* dstRow = SkTAddOffset<SkPMColor>(dstPtr, row * dstRowBytes); int srcX = srcStartX; for (int dstX = 0; dstX < sampledWidth; dstX++) { int quotient; int modulus; SkTDivMod(srcX, 8, "ient, &modulus); uint32_t shift = 7 - modulus; uint64_t alphaBit = (fSrcBuffer.get()[quotient] >> shift) & 0x1; applyMask(dstRow, dstX, alphaBit); srcX += sampleX; } } } uint64_t SkBmpStandardCodec::onGetFillValue(const SkImageInfo& dstInfo) const { const SkPMColor* colorPtr = get_color_ptr(fColorTable.get()); if (colorPtr) { return get_color_table_fill_value(dstInfo.colorType(), dstInfo.alphaType(), colorPtr, 0, this->colorXform(), false); } return INHERITED::onGetFillValue(dstInfo); }