/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkCodecPriv.h" #include "SkColorPriv.h" #include "SkHalf.h" #include "SkOpts.h" #include "SkSwizzler.h" #include "SkTemplates.h" static void copy(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); memcpy(dst, src + offset, width * bpp); } static void sample1(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint8_t* dst8 = (uint8_t*) dst; for (int x = 0; x < width; x++) { dst8[x] = *src; src += deltaSrc; } } static void sample2(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint16_t* dst16 = (uint16_t*) dst; for (int x = 0; x < width; x++) { dst16[x] = *((const uint16_t*) src); src += deltaSrc; } } static void sample4(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint32_t* dst32 = (uint32_t*) dst; for (int x = 0; x < width; x++) { dst32[x] = *((const uint32_t*) src); src += deltaSrc; } } static void sample6(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint8_t* dst8 = (uint8_t*) dst; for (int x = 0; x < width; x++) { memcpy(dst8, src, 6); dst8 += 6; src += deltaSrc; } } static void sample8(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint64_t* dst64 = (uint64_t*) dst; for (int x = 0; x < width; x++) { dst64[x] = *((const uint64_t*) src); src += deltaSrc; } } // kBit // These routines exclusively choose between white and black #define GRAYSCALE_BLACK 0 #define GRAYSCALE_WHITE 0xFF // same as swizzle_bit_to_index and swizzle_bit_to_n32 except for value assigned to dst[x] static void swizzle_bit_to_grayscale( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor* /*ctable*/) { uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow; // increment src by byte offset and bitIndex by bit offset src += offset / 8; int bitIndex = offset % 8; uint8_t currByte = *src; dst[0] = ((currByte >> (7-bitIndex)) & 1) ? GRAYSCALE_WHITE : GRAYSCALE_BLACK; for (int x = 1; x < dstWidth; x++) { int bitOffset = bitIndex + deltaSrc; bitIndex = bitOffset % 8; currByte = *(src += bitOffset / 8); dst[x] = ((currByte >> (7-bitIndex)) & 1) ? GRAYSCALE_WHITE : GRAYSCALE_BLACK; } } #undef GRAYSCALE_BLACK #undef GRAYSCALE_WHITE // same as swizzle_bit_to_grayscale and swizzle_bit_to_n32 except for value assigned to dst[x] static void swizzle_bit_to_index( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor* /*ctable*/) { uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow; // increment src by byte offset and bitIndex by bit offset src += offset / 8; int bitIndex = offset % 8; uint8_t currByte = *src; dst[0] = ((currByte >> (7-bitIndex)) & 1); for (int x = 1; x < dstWidth; x++) { int bitOffset = bitIndex + deltaSrc; bitIndex = bitOffset % 8; currByte = *(src += bitOffset / 8); dst[x] = ((currByte >> (7-bitIndex)) & 1); } } // same as swizzle_bit_to_grayscale and swizzle_bit_to_index except for value assigned to dst[x] static void swizzle_bit_to_n32( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor* /*ctable*/) { SkPMColor* SK_RESTRICT dst = (SkPMColor*) dstRow; // increment src by byte offset and bitIndex by bit offset src += offset / 8; int bitIndex = offset % 8; uint8_t currByte = *src; dst[0] = ((currByte >> (7 - bitIndex)) & 1) ? SK_ColorWHITE : SK_ColorBLACK; for (int x = 1; x < dstWidth; x++) { int bitOffset = bitIndex + deltaSrc; bitIndex = bitOffset % 8; currByte = *(src += bitOffset / 8); dst[x] = ((currByte >> (7 - bitIndex)) & 1) ? SK_ColorWHITE : SK_ColorBLACK; } } #define RGB565_BLACK 0 #define RGB565_WHITE 0xFFFF static void swizzle_bit_to_565( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor* /*ctable*/) { uint16_t* SK_RESTRICT dst = (uint16_t*) dstRow; // increment src by byte offset and bitIndex by bit offset src += offset / 8; int bitIndex = offset % 8; uint8_t currByte = *src; dst[0] = ((currByte >> (7 - bitIndex)) & 1) ? RGB565_WHITE : RGB565_BLACK; for (int x = 1; x < dstWidth; x++) { int bitOffset = bitIndex + deltaSrc; bitIndex = bitOffset % 8; currByte = *(src += bitOffset / 8); dst[x] = ((currByte >> (7 - bitIndex)) & 1) ? RGB565_WHITE : RGB565_BLACK; } } #undef RGB565_BLACK #undef RGB565_WHITE static void swizzle_bit_to_f16( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor* /*ctable*/) { static const uint64_t kWhite = (((uint64_t) SK_Half1) << 0) | (((uint64_t) SK_Half1) << 16) | (((uint64_t) SK_Half1) << 32) | (((uint64_t) SK_Half1) << 48); static const uint64_t kBlack = (((uint64_t) 0) << 0) | (((uint64_t) 0) << 16) | (((uint64_t) 0) << 32) | (((uint64_t) SK_Half1) << 48); uint64_t* SK_RESTRICT dst = (uint64_t*) dstRow; // increment src by byte offset and bitIndex by bit offset src += offset / 8; int bitIndex = offset % 8; uint8_t currByte = *src; dst[0] = ((currByte >> (7 - bitIndex)) & 1) ? kWhite : kBlack; for (int x = 1; x < dstWidth; x++) { int bitOffset = bitIndex + deltaSrc; bitIndex = bitOffset % 8; currByte = *(src += bitOffset / 8); dst[x] = ((currByte >> (7 - bitIndex)) & 1) ? kWhite : kBlack; } } // kIndex1, kIndex2, kIndex4 static void swizzle_small_index_to_index( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { uint8_t* dst = (uint8_t*) dstRow; src += offset / 8; int bitIndex = offset % 8; uint8_t currByte = *src; const uint8_t mask = (1 << bpp) - 1; uint8_t index = (currByte >> (8 - bpp - bitIndex)) & mask; dst[0] = index; for (int x = 1; x < dstWidth; x++) { int bitOffset = bitIndex + deltaSrc; bitIndex = bitOffset % 8; currByte = *(src += bitOffset / 8); index = (currByte >> (8 - bpp - bitIndex)) & mask; dst[x] = index; } } static void swizzle_small_index_to_565( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { uint16_t* dst = (uint16_t*) dstRow; src += offset / 8; int bitIndex = offset % 8; uint8_t currByte = *src; const uint8_t mask = (1 << bpp) - 1; uint8_t index = (currByte >> (8 - bpp - bitIndex)) & mask; dst[0] = SkPixel32ToPixel16(ctable[index]); for (int x = 1; x < dstWidth; x++) { int bitOffset = bitIndex + deltaSrc; bitIndex = bitOffset % 8; currByte = *(src += bitOffset / 8); index = (currByte >> (8 - bpp - bitIndex)) & mask; dst[x] = SkPixel32ToPixel16(ctable[index]); } } static void swizzle_small_index_to_n32( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { SkPMColor* dst = (SkPMColor*) dstRow; src += offset / 8; int bitIndex = offset % 8; uint8_t currByte = *src; const uint8_t mask = (1 << bpp) - 1; uint8_t index = (currByte >> (8 - bpp - bitIndex)) & mask; dst[0] = ctable[index]; for (int x = 1; x < dstWidth; x++) { int bitOffset = bitIndex + deltaSrc; bitIndex = bitOffset % 8; currByte = *(src += bitOffset / 8); index = (currByte >> (8 - bpp - bitIndex)) & mask; dst[x] = ctable[index]; } } // kIndex static void swizzle_index_to_n32( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; for (int x = 0; x < dstWidth; x++) { SkPMColor c = ctable[*src]; dst[x] = c; src += deltaSrc; } } static void swizzle_index_to_n32_skipZ( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; for (int x = 0; x < dstWidth; x++) { SkPMColor c = ctable[*src]; if (c != 0) { dst[x] = c; } src += deltaSrc; } } static void swizzle_index_to_565( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bytesPerPixel, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow; for (int x = 0; x < dstWidth; x++) { dst[x] = SkPixel32ToPixel16(ctable[*src]); src += deltaSrc; } } // kGray static void swizzle_gray_to_n32( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; for (int x = 0; x < dstWidth; x++) { dst[x] = SkPackARGB32NoCheck(0xFF, *src, *src, *src); src += deltaSrc; } } static void fast_swizzle_gray_to_n32( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); // Note that there is no need to distinguish between RGB and BGR. // Each color channel will get the same value. SkOpts::gray_to_RGB1((uint32_t*) dst, src + offset, width); } static void swizzle_gray_to_565( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bytesPerPixel, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow; for (int x = 0; x < dstWidth; x++) { dst[x] = SkPack888ToRGB16(src[0], src[0], src[0]); src += deltaSrc; } } // kGrayAlpha static void swizzle_grayalpha_to_n32_unpremul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* dst32 = (SkPMColor*) dst; for (int x = 0; x < width; x++) { dst32[x] = SkPackARGB32NoCheck(src[1], src[0], src[0], src[0]); src += deltaSrc; } } static void fast_swizzle_grayalpha_to_n32_unpremul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); // Note that there is no need to distinguish between RGB and BGR. // Each color channel will get the same value. SkOpts::grayA_to_RGBA((uint32_t*) dst, src + offset, width); } static void swizzle_grayalpha_to_n32_premul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* dst32 = (SkPMColor*) dst; for (int x = 0; x < width; x++) { uint8_t pmgray = SkMulDiv255Round(src[1], src[0]); dst32[x] = SkPackARGB32NoCheck(src[1], pmgray, pmgray, pmgray); src += deltaSrc; } } static void fast_swizzle_grayalpha_to_n32_premul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); // Note that there is no need to distinguish between rgb and bgr. // Each color channel will get the same value. SkOpts::grayA_to_rgbA((uint32_t*) dst, src + offset, width); } // kBGR static void swizzle_bgr_to_565( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow; for (int x = 0; x < dstWidth; x++) { dst[x] = SkPack888ToRGB16(src[2], src[1], src[0]); src += deltaSrc; } } // kRGB static void swizzle_rgb_to_rgba( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; for (int x = 0; x < dstWidth; x++) { dst[x] = SkPackARGB_as_RGBA(0xFF, src[0], src[1], src[2]); src += deltaSrc; } } static void swizzle_rgb_to_bgra( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; for (int x = 0; x < dstWidth; x++) { dst[x] = SkPackARGB_as_BGRA(0xFF, src[0], src[1], src[2]); src += deltaSrc; } } static void fast_swizzle_rgb_to_rgba( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); SkOpts::RGB_to_RGB1((uint32_t*) dst, src + offset, width); } static void fast_swizzle_rgb_to_bgra( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); SkOpts::RGB_to_BGR1((uint32_t*) dst, src + offset, width); } static void swizzle_rgb_to_565( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bytesPerPixel, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow; for (int x = 0; x < dstWidth; x++) { dst[x] = SkPack888ToRGB16(src[0], src[1], src[2]); src += deltaSrc; } } // kRGBA static void swizzle_rgba_to_rgba_premul( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; for (int x = 0; x < dstWidth; x++) { dst[x] = premultiply_argb_as_rgba(src[3], src[0], src[1], src[2]); src += deltaSrc; } } static void swizzle_rgba_to_bgra_premul( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; for (int x = 0; x < dstWidth; x++) { dst[x] = premultiply_argb_as_bgra(src[3], src[0], src[1], src[2]); src += deltaSrc; } } static void fast_swizzle_rgba_to_rgba_premul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); SkOpts::RGBA_to_rgbA((uint32_t*) dst, src + offset, width); } static void fast_swizzle_rgba_to_bgra_premul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); SkOpts::RGBA_to_bgrA((uint32_t*) dst, src + offset, width); } static void swizzle_rgba_to_bgra_unpremul( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint32_t* SK_RESTRICT dst = reinterpret_cast<uint32_t*>(dstRow); for (int x = 0; x < dstWidth; x++) { unsigned alpha = src[3]; dst[x] = SkPackARGB_as_BGRA(alpha, src[0], src[1], src[2]); src += deltaSrc; } } static void fast_swizzle_rgba_to_bgra_unpremul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); SkOpts::RGBA_to_BGRA((uint32_t*) dst, src + offset, width); } // 16-bits per component kRGB and kRGBA static void swizzle_rgb16_to_rgba( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { auto strip16to8 = [](const uint8_t* ptr) { return 0xFF000000 | (ptr[4] << 16) | (ptr[2] << 8) | ptr[0]; }; src += offset; uint32_t* dst32 = (uint32_t*) dst; for (int x = 0; x < width; x++) { dst32[x] = strip16to8(src); src += deltaSrc; } } static void swizzle_rgb16_to_bgra( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { auto strip16to8 = [](const uint8_t* ptr) { return 0xFF000000 | (ptr[0] << 16) | (ptr[2] << 8) | ptr[4]; }; src += offset; uint32_t* dst32 = (uint32_t*) dst; for (int x = 0; x < width; x++) { dst32[x] = strip16to8(src); src += deltaSrc; } } static void swizzle_rgb16_to_565( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { auto strip16to565 = [](const uint8_t* ptr) { return SkPack888ToRGB16(ptr[0], ptr[2], ptr[4]); }; src += offset; uint16_t* dst16 = (uint16_t*) dst; for (int x = 0; x < width; x++) { dst16[x] = strip16to565(src); src += deltaSrc; } } static void swizzle_rgba16_to_rgba_unpremul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { auto strip16to8 = [](const uint8_t* ptr) { return (ptr[6] << 24) | (ptr[4] << 16) | (ptr[2] << 8) | ptr[0]; }; src += offset; uint32_t* dst32 = (uint32_t*) dst; for (int x = 0; x < width; x++) { dst32[x] = strip16to8(src); src += deltaSrc; } } static void swizzle_rgba16_to_rgba_premul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { auto stripAndPremul16to8 = [](const uint8_t* ptr) { return premultiply_argb_as_rgba(ptr[6], ptr[0], ptr[2], ptr[4]); }; src += offset; uint32_t* dst32 = (uint32_t*) dst; for (int x = 0; x < width; x++) { dst32[x] = stripAndPremul16to8(src); src += deltaSrc; } } static void swizzle_rgba16_to_bgra_unpremul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { auto strip16to8 = [](const uint8_t* ptr) { return (ptr[6] << 24) | (ptr[0] << 16) | (ptr[2] << 8) | ptr[4]; }; src += offset; uint32_t* dst32 = (uint32_t*) dst; for (int x = 0; x < width; x++) { dst32[x] = strip16to8(src); src += deltaSrc; } } static void swizzle_rgba16_to_bgra_premul( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { auto stripAndPremul16to8 = [](const uint8_t* ptr) { return premultiply_argb_as_bgra(ptr[6], ptr[0], ptr[2], ptr[4]); }; src += offset; uint32_t* dst32 = (uint32_t*) dst; for (int x = 0; x < width; x++) { dst32[x] = stripAndPremul16to8(src); src += deltaSrc; } } // kCMYK // // CMYK is stored as four bytes per pixel. // // We will implement a crude conversion from CMYK -> RGB using formulas // from easyrgb.com. // // CMYK -> CMY // C = C * (1 - K) + K // M = M * (1 - K) + K // Y = Y * (1 - K) + K // // libjpeg actually gives us inverted CMYK, so we must subtract the // original terms from 1. // CMYK -> CMY // C = (1 - C) * (1 - (1 - K)) + (1 - K) // M = (1 - M) * (1 - (1 - K)) + (1 - K) // Y = (1 - Y) * (1 - (1 - K)) + (1 - K) // // Simplifying the above expression. // CMYK -> CMY // C = 1 - CK // M = 1 - MK // Y = 1 - YK // // CMY -> RGB // R = (1 - C) * 255 // G = (1 - M) * 255 // B = (1 - Y) * 255 // // Therefore the full conversion is below. This can be verified at // www.rapidtables.com (assuming inverted CMYK). // CMYK -> RGB // R = C * K * 255 // G = M * K * 255 // B = Y * K * 255 // // As a final note, we have treated the CMYK values as if they were on // a scale from 0-1, when in fact they are 8-bit ints scaling from 0-255. // We must divide each CMYK component by 255 to obtain the true conversion // we should perform. // CMYK -> RGB // R = C * K / 255 // G = M * K / 255 // B = Y * K / 255 static void swizzle_cmyk_to_rgba( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; for (int x = 0; x < dstWidth; x++) { const uint8_t r = SkMulDiv255Round(src[0], src[3]); const uint8_t g = SkMulDiv255Round(src[1], src[3]); const uint8_t b = SkMulDiv255Round(src[2], src[3]); dst[x] = SkPackARGB_as_RGBA(0xFF, r, g, b); src += deltaSrc; } } static void swizzle_cmyk_to_bgra( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; for (int x = 0; x < dstWidth; x++) { const uint8_t r = SkMulDiv255Round(src[0], src[3]); const uint8_t g = SkMulDiv255Round(src[1], src[3]); const uint8_t b = SkMulDiv255Round(src[2], src[3]); dst[x] = SkPackARGB_as_BGRA(0xFF, r, g, b); src += deltaSrc; } } static void fast_swizzle_cmyk_to_rgba( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); SkOpts::inverted_CMYK_to_RGB1((uint32_t*) dst, src + offset, width); } static void fast_swizzle_cmyk_to_bgra( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { // This function must not be called if we are sampling. If we are not // sampling, deltaSrc should equal bpp. SkASSERT(deltaSrc == bpp); SkOpts::inverted_CMYK_to_BGR1((uint32_t*) dst, src + offset, width); } static void swizzle_cmyk_to_565( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { src += offset; uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow; for (int x = 0; x < dstWidth; x++) { const uint8_t r = SkMulDiv255Round(src[0], src[3]); const uint8_t g = SkMulDiv255Round(src[1], src[3]); const uint8_t b = SkMulDiv255Round(src[2], src[3]); dst[x] = SkPack888ToRGB16(r, g, b); src += deltaSrc; } } template <SkSwizzler::RowProc proc> void SkSwizzler::SkipLeadingGrayAlphaZerosThen( void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { SkASSERT(!ctable); const uint16_t* src16 = (const uint16_t*) (src + offset); uint32_t* dst32 = (uint32_t*) dst; // This may miss opportunities to skip when the output is premultiplied, // e.g. for a src pixel 0x00FF which is not zero but becomes zero after premultiplication. while (width > 0 && *src16 == 0x0000) { width--; dst32++; src16 += deltaSrc / 2; } proc(dst32, (const uint8_t*)src16, width, bpp, deltaSrc, 0, ctable); } template <SkSwizzler::RowProc proc> void SkSwizzler::SkipLeading8888ZerosThen( void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) { SkASSERT(!ctable); auto src32 = (const uint32_t*)(src+offset); auto dst32 = (uint32_t*)dstRow; // This may miss opportunities to skip when the output is premultiplied, // e.g. for a src pixel 0x00FFFFFF which is not zero but becomes zero after premultiplication. while (dstWidth > 0 && *src32 == 0x00000000) { dstWidth--; dst32++; src32 += deltaSrc/4; } proc(dst32, (const uint8_t*)src32, dstWidth, bpp, deltaSrc, 0, ctable); } SkSwizzler* SkSwizzler::CreateSwizzler(const SkEncodedInfo& encodedInfo, const SkPMColor* ctable, const SkImageInfo& dstInfo, const SkCodec::Options& options, const SkIRect* frame, bool skipFormatConversion) { if (SkEncodedInfo::kPalette_Color == encodedInfo.color() && nullptr == ctable) { return nullptr; } RowProc fastProc = nullptr; RowProc proc = nullptr; int srcBPP; const int dstBPP = SkColorTypeBytesPerPixel(dstInfo.colorType()); if (skipFormatConversion) { switch (encodedInfo.color()) { case SkEncodedInfo::kGray_Color: case SkEncodedInfo::kYUV_Color: // We have a jpeg that has already been converted to the dstColorType. srcBPP = dstBPP; switch (dstInfo.colorType()) { case kGray_8_SkColorType: proc = &sample1; fastProc = © break; case kRGB_565_SkColorType: proc = &sample2; fastProc = © break; case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: proc = &sample4; fastProc = © break; default: return nullptr; } break; case SkEncodedInfo::kInvertedCMYK_Color: case SkEncodedInfo::kYCCK_Color: // We have a jpeg that remains in its original format. srcBPP = 4; proc = &sample4; fastProc = © break; case SkEncodedInfo::kRGBA_Color: // We have a png that should remain in its original format. SkASSERT(16 == encodedInfo.bitsPerComponent() || 8 == encodedInfo.bitsPerComponent()); if (8 == encodedInfo.bitsPerComponent()) { srcBPP = 4; proc = &sample4; } else { srcBPP = 8; proc = &sample8; } fastProc = © break; case SkEncodedInfo::kRGB_Color: // We have a png that remains in its original format. SkASSERT(16 == encodedInfo.bitsPerComponent()); srcBPP = 6; proc = &sample6; fastProc = © break; default: return nullptr; } } else { SkCodec::ZeroInitialized zeroInit = options.fZeroInitialized; const bool premultiply = (SkEncodedInfo::kOpaque_Alpha != encodedInfo.alpha()) && (kPremul_SkAlphaType == dstInfo.alphaType()); switch (encodedInfo.color()) { case SkEncodedInfo::kGray_Color: switch (encodedInfo.bitsPerComponent()) { case 1: switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: proc = &swizzle_bit_to_n32; break; case kIndex_8_SkColorType: proc = &swizzle_bit_to_index; break; case kRGB_565_SkColorType: proc = &swizzle_bit_to_565; break; case kGray_8_SkColorType: proc = &swizzle_bit_to_grayscale; break; case kRGBA_F16_SkColorType: proc = &swizzle_bit_to_f16; break; default: return nullptr; } break; case 8: switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: proc = &swizzle_gray_to_n32; fastProc = &fast_swizzle_gray_to_n32; break; case kGray_8_SkColorType: proc = &sample1; fastProc = © break; case kRGB_565_SkColorType: proc = &swizzle_gray_to_565; break; default: return nullptr; } break; default: return nullptr; } break; case SkEncodedInfo::kGrayAlpha_Color: switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: if (premultiply) { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeadingGrayAlphaZerosThen <swizzle_grayalpha_to_n32_premul>; fastProc = &SkipLeadingGrayAlphaZerosThen <fast_swizzle_grayalpha_to_n32_premul>; } else { proc = &swizzle_grayalpha_to_n32_premul; fastProc = &fast_swizzle_grayalpha_to_n32_premul; } } else { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeadingGrayAlphaZerosThen <swizzle_grayalpha_to_n32_unpremul>; fastProc = &SkipLeadingGrayAlphaZerosThen <fast_swizzle_grayalpha_to_n32_unpremul>; } else { proc = &swizzle_grayalpha_to_n32_unpremul; fastProc = &fast_swizzle_grayalpha_to_n32_unpremul; } } break; default: return nullptr; } break; case SkEncodedInfo::kPalette_Color: // We assume that the color table is premultiplied and swizzled // as desired. switch (encodedInfo.bitsPerComponent()) { case 1: case 2: case 4: switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: proc = &swizzle_small_index_to_n32; break; case kRGB_565_SkColorType: proc = &swizzle_small_index_to_565; break; case kIndex_8_SkColorType: proc = &swizzle_small_index_to_index; break; default: return nullptr; } break; case 8: switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &swizzle_index_to_n32_skipZ; } else { proc = &swizzle_index_to_n32; } break; case kRGB_565_SkColorType: proc = &swizzle_index_to_565; break; case kIndex_8_SkColorType: proc = &sample1; fastProc = © break; default: return nullptr; } break; default: return nullptr; } break; case SkEncodedInfo::kRGB_Color: switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: if (16 == encodedInfo.bitsPerComponent()) { proc = &swizzle_rgb16_to_rgba; break; } SkASSERT(8 == encodedInfo.bitsPerComponent()); proc = &swizzle_rgb_to_rgba; fastProc = &fast_swizzle_rgb_to_rgba; break; case kBGRA_8888_SkColorType: if (16 == encodedInfo.bitsPerComponent()) { proc = &swizzle_rgb16_to_bgra; break; } SkASSERT(8 == encodedInfo.bitsPerComponent()); proc = &swizzle_rgb_to_bgra; fastProc = &fast_swizzle_rgb_to_bgra; break; case kRGB_565_SkColorType: if (16 == encodedInfo.bitsPerComponent()) { proc = &swizzle_rgb16_to_565; break; } proc = &swizzle_rgb_to_565; break; default: return nullptr; } break; case SkEncodedInfo::kRGBA_Color: switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: if (16 == encodedInfo.bitsPerComponent()) { proc = premultiply ? &swizzle_rgba16_to_rgba_premul : &swizzle_rgba16_to_rgba_unpremul; break; } SkASSERT(8 == encodedInfo.bitsPerComponent()); if (premultiply) { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_rgba_premul>; fastProc = &SkipLeading8888ZerosThen <fast_swizzle_rgba_to_rgba_premul>; } else { proc = &swizzle_rgba_to_rgba_premul; fastProc = &fast_swizzle_rgba_to_rgba_premul; } } else { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeading8888ZerosThen<sample4>; fastProc = &SkipLeading8888ZerosThen<copy>; } else { proc = &sample4; fastProc = © } } break; case kBGRA_8888_SkColorType: if (16 == encodedInfo.bitsPerComponent()) { proc = premultiply ? &swizzle_rgba16_to_bgra_premul : &swizzle_rgba16_to_bgra_unpremul; break; } SkASSERT(8 == encodedInfo.bitsPerComponent()); if (premultiply) { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_bgra_premul>; fastProc = &SkipLeading8888ZerosThen <fast_swizzle_rgba_to_bgra_premul>; } else { proc = &swizzle_rgba_to_bgra_premul; fastProc = &fast_swizzle_rgba_to_bgra_premul; } } else { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_bgra_unpremul>; fastProc = &SkipLeading8888ZerosThen <fast_swizzle_rgba_to_bgra_unpremul>; } else { proc = &swizzle_rgba_to_bgra_unpremul; fastProc = &fast_swizzle_rgba_to_bgra_unpremul; } } break; default: return nullptr; } break; case SkEncodedInfo::kBGR_Color: switch (dstInfo.colorType()) { case kBGRA_8888_SkColorType: proc = &swizzle_rgb_to_rgba; fastProc = &fast_swizzle_rgb_to_rgba; break; case kRGBA_8888_SkColorType: proc = &swizzle_rgb_to_bgra; fastProc = &fast_swizzle_rgb_to_bgra; break; case kRGB_565_SkColorType: proc = &swizzle_bgr_to_565; break; default: return nullptr; } break; case SkEncodedInfo::kBGRX_Color: switch (dstInfo.colorType()) { case kBGRA_8888_SkColorType: proc = &swizzle_rgb_to_rgba; break; case kRGBA_8888_SkColorType: proc = &swizzle_rgb_to_bgra; break; case kRGB_565_SkColorType: proc = &swizzle_bgr_to_565; break; default: return nullptr; } break; case SkEncodedInfo::kBGRA_Color: switch (dstInfo.colorType()) { case kBGRA_8888_SkColorType: if (premultiply) { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_rgba_premul>; fastProc = &SkipLeading8888ZerosThen <fast_swizzle_rgba_to_rgba_premul>; } else { proc = &swizzle_rgba_to_rgba_premul; fastProc = &fast_swizzle_rgba_to_rgba_premul; } } else { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeading8888ZerosThen<sample4>; fastProc = &SkipLeading8888ZerosThen<copy>; } else { proc = &sample4; fastProc = © } } break; case kRGBA_8888_SkColorType: if (premultiply) { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_bgra_premul>; fastProc = &SkipLeading8888ZerosThen <fast_swizzle_rgba_to_bgra_premul>; } else { proc = &swizzle_rgba_to_bgra_premul; fastProc = &fast_swizzle_rgba_to_bgra_premul; } } else { if (SkCodec::kYes_ZeroInitialized == zeroInit) { proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_bgra_unpremul>; fastProc = &SkipLeading8888ZerosThen <fast_swizzle_rgba_to_bgra_unpremul>; } else { proc = &swizzle_rgba_to_bgra_unpremul; fastProc = &fast_swizzle_rgba_to_bgra_unpremul; } } break; default: return nullptr; } break; case SkEncodedInfo::kInvertedCMYK_Color: switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: proc = &swizzle_cmyk_to_rgba; fastProc = &fast_swizzle_cmyk_to_rgba; break; case kBGRA_8888_SkColorType: proc = &swizzle_cmyk_to_bgra; fastProc = &fast_swizzle_cmyk_to_bgra; break; case kRGB_565_SkColorType: proc = &swizzle_cmyk_to_565; break; default: return nullptr; } break; default: return nullptr; } // Store bpp in bytes if it is an even multiple, otherwise use bits uint8_t bitsPerPixel = encodedInfo.bitsPerPixel(); srcBPP = SkIsAlign8(bitsPerPixel) ? bitsPerPixel / 8 : bitsPerPixel; } int srcOffset = 0; int srcWidth = dstInfo.width(); int dstOffset = 0; int dstWidth = srcWidth; if (options.fSubset) { // We do not currently support subset decodes for image types that may have // frames (gif). SkASSERT(!frame); srcOffset = options.fSubset->left(); srcWidth = options.fSubset->width(); dstWidth = srcWidth; } else if (frame) { dstOffset = frame->left(); srcWidth = frame->width(); } return new SkSwizzler(fastProc, proc, ctable, srcOffset, srcWidth, dstOffset, dstWidth, srcBPP, dstBPP); } SkSwizzler::SkSwizzler(RowProc fastProc, RowProc proc, const SkPMColor* ctable, int srcOffset, int srcWidth, int dstOffset, int dstWidth, int srcBPP, int dstBPP) : fFastProc(fastProc) , fSlowProc(proc) , fActualProc(fFastProc ? fFastProc : fSlowProc) , fColorTable(ctable) , fSrcOffset(srcOffset) , fDstOffset(dstOffset) , fSrcOffsetUnits(srcOffset * srcBPP) , fDstOffsetBytes(dstOffset * dstBPP) , fSrcWidth(srcWidth) , fDstWidth(dstWidth) , fSwizzleWidth(srcWidth) , fAllocatedWidth(dstWidth) , fSampleX(1) , fSrcBPP(srcBPP) , fDstBPP(dstBPP) {} int SkSwizzler::onSetSampleX(int sampleX) { SkASSERT(sampleX > 0); fSampleX = sampleX; fSrcOffsetUnits = (get_start_coord(sampleX) + fSrcOffset) * fSrcBPP; fDstOffsetBytes = (fDstOffset / sampleX) * fDstBPP; fSwizzleWidth = get_scaled_dimension(fSrcWidth, sampleX); fAllocatedWidth = get_scaled_dimension(fDstWidth, sampleX); // The optimized swizzler functions do not support sampling. Sampled swizzles // are already fast because they skip pixels. We haven't seen a situation // where speeding up sampling has a significant impact on total decode time. if (1 == fSampleX && fFastProc) { fActualProc = fFastProc; } else { fActualProc = fSlowProc; } return fAllocatedWidth; } void SkSwizzler::swizzle(void* dst, const uint8_t* SK_RESTRICT src) { SkASSERT(nullptr != dst && nullptr != src); fActualProc(SkTAddOffset<void>(dst, fDstOffsetBytes), src, fSwizzleWidth, fSrcBPP, fSampleX * fSrcBPP, fSrcOffsetUnits, fColorTable); }