/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCircleBlurFragmentProcessor.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrResourceProvider.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "SkFixed.h" class GrCircleBlurFragmentProcessor::GLSLProcessor : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs&) override; protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fDataUniform; typedef GrGLSLFragmentProcessor INHERITED; }; void GrCircleBlurFragmentProcessor::GLSLProcessor::emitCode(EmitArgs& args) { const char *dataName; // The data is formatted as: // x,y - the center of the circle // z - inner radius that should map to 0th entry in the texture. // w - the inverse of the distance over which the texture is stretched. fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "data", &dataName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; if (args.fInputColor) { fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor); } else { fragBuilder->codeAppendf("vec4 src=vec4(1);"); } // We just want to compute "(length(vec) - %s.z + 0.5) * %s.w" but need to rearrange // for precision. fragBuilder->codeAppendf("vec2 vec = vec2( (sk_FragCoord.x - %s.x) * %s.w, " "(sk_FragCoord.y - %s.y) * %s.w );", dataName, dataName, dataName, dataName); fragBuilder->codeAppendf("float dist = length(vec) + (0.5 - %s.z) * %s.w;", dataName, dataName); fragBuilder->codeAppendf("float intensity = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "vec2(dist, 0.5)"); fragBuilder->codeAppend(".a;"); fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor ); } void GrCircleBlurFragmentProcessor::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& proc) { const GrCircleBlurFragmentProcessor& cbfp = proc.cast<GrCircleBlurFragmentProcessor>(); const SkRect& circle = cbfp.fCircle; // The data is formatted as: // x,y - the center of the circle // z - inner radius that should map to 0th entry in the texture. // w - the inverse of the distance over which the profile texture is stretched. pdman.set4f(fDataUniform, circle.centerX(), circle.centerY(), cbfp.fSolidRadius, 1.f / cbfp.fTextureRadius); } /////////////////////////////////////////////////////////////////////////////// GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(GrResourceProvider* resourceProvider, const SkRect& circle, float textureRadius, float solidRadius, sk_sp<GrTextureProxy> blurProfile) : INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag) , fCircle(circle) , fSolidRadius(solidRadius) , fTextureRadius(textureRadius) , fBlurProfileSampler(resourceProvider, std::move(blurProfile), GrSamplerParams::kBilerp_FilterMode) { this->initClassID<GrCircleBlurFragmentProcessor>(); this->addTextureSampler(&fBlurProfileSampler); } GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const { return new GLSLProcessor; } void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { // The code for this processor is always the same so there is nothing to add to the key. return; } // Computes an unnormalized half kernel (right side). Returns the summation of all the half kernel // values. static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) { const float invSigma = 1.f / sigma; const float b = -0.5f * invSigma * invSigma; float tot = 0.0f; // Compute half kernel values at half pixel steps out from the center. float t = 0.5f; for (int i = 0; i < halfKernelSize; ++i) { float value = expf(t * t * b); tot += value; halfKernel[i] = value; t += 1.f; } return tot; } // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number of // discrete steps. The half kernel is normalized to sum to 0.5. static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel, int halfKernelSize, float sigma) { // The half kernel should sum to 0.5 not 1.0. const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma); float sum = 0.f; for (int i = 0; i < halfKernelSize; ++i) { halfKernel[i] /= tot; sum += halfKernel[i]; summedHalfKernel[i] = sum; } } // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the // origin with radius circleR. void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR, int halfKernelSize, const float* summedHalfKernelTable) { float x = firstX; for (int i = 0; i < numSteps; ++i, x += 1.f) { if (x < -circleR || x > circleR) { results[i] = 0; continue; } float y = sqrtf(circleR * circleR - x * x); // In the column at x we exit the circle at +y and -y // The summed table entry j is actually reflects an offset of j + 0.5. y -= 0.5f; int yInt = SkScalarFloorToInt(y); SkASSERT(yInt >= -1); if (y < 0) { results[i] = (y + 0.5f) * summedHalfKernelTable[0]; } else if (yInt >= halfKernelSize - 1) { results[i] = 0.5f; } else { float yFrac = y - yInt; results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] + yFrac * summedHalfKernelTable[yInt + 1]; } } } // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR. // This relies on having a half kernel computed for the Gaussian and a table of applications of // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX + // halfKernel) passed in as yKernelEvaluations. static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize, const float* yKernelEvaluations) { float acc = 0; float x = evalX - halfKernelSize; for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { if (x < -circleR || x > circleR) { continue; } float verticalEval = yKernelEvaluations[i]; acc += verticalEval * halfKernel[halfKernelSize - i - 1]; } for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { if (x < -circleR || x > circleR) { continue; } float verticalEval = yKernelEvaluations[i + halfKernelSize]; acc += verticalEval * halfKernel[i]; } // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about the // x axis). return SkUnitScalarClampToByte(2.f * acc); } // This function creates a profile of a blurred circle. It does this by computing a kernel for // half the Gaussian and a matching summed area table. The summed area table is used to compute // an array of vertical applications of the half kernel to the circle along the x axis. The table // of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is the size // of the profile being computed. Then for each of the n profile entries we walk out k steps in each // horizontal direction multiplying the corresponding y evaluation by the half kernel entry and // sum these values to compute the profile entry. static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) { const int numSteps = profileTextureWidth; uint8_t* weights = new uint8_t[numSteps]; // The full kernel is 6 sigmas wide. int halfKernelSize = SkScalarCeilToInt(6.0f*sigma); // round up to next multiple of 2 and then divide by 2 halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1; // Number of x steps at which to apply kernel in y to cover all the profile samples in x. int numYSteps = numSteps + 2 * halfKernelSize; SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps); float* halfKernel = bulkAlloc.get(); float* summedKernel = bulkAlloc.get() + halfKernelSize; float* yEvals = bulkAlloc.get() + 2 * halfKernelSize; make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma); float firstX = -halfKernelSize + 0.5f; apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel); for (int i = 0; i < numSteps - 1; ++i) { float evalX = i + 0.5f; weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i); } // Ensure the tail of the Gaussian goes to zero. weights[numSteps - 1] = 0; return weights; } static uint8_t* create_half_plane_profile(int profileWidth) { SkASSERT(!(profileWidth & 0x1)); // The full kernel is 6 sigmas wide. float sigma = profileWidth / 6.f; int halfKernelSize = profileWidth / 2; SkAutoTArray<float> halfKernel(halfKernelSize); uint8_t* profile = new uint8_t[profileWidth]; // The half kernel should sum to 0.5. const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma); float sum = 0.f; // Populate the profile from the right edge to the middle. for (int i = 0; i < halfKernelSize; ++i) { halfKernel[halfKernelSize - i - 1] /= tot; sum += halfKernel[halfKernelSize - i - 1]; profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum); } // Populate the profile from the middle to the left edge (by flipping the half kernel and // continuing the summation). for (int i = 0; i < halfKernelSize; ++i) { sum += halfKernel[i]; profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum); } // Ensure tail goes to 0. profile[profileWidth - 1] = 0; return profile; } static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider, const SkRect& circle, float sigma, float* solidRadius, float* textureRadius) { float circleR = circle.width() / 2.0f; // Profile textures are cached by the ratio of sigma to circle radius and by the size of the // profile texture (binned by powers of 2). SkScalar sigmaToCircleRRatio = sigma / circleR; // When sigma is really small this becomes a equivalent to convolving a Gaussian with a half- // plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the Guassian // and the profile texture is a just a Gaussian evaluation. However, we haven't yet implemented // this latter optimization. sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f); SkFixed sigmaToCircleRRatioFixed; static const SkScalar kHalfPlaneThreshold = 0.1f; bool useHalfPlaneApprox = false; if (sigmaToCircleRRatio <= kHalfPlaneThreshold) { useHalfPlaneApprox = true; sigmaToCircleRRatioFixed = 0; *solidRadius = circleR - 3 * sigma; *textureRadius = 6 * sigma; } else { // Convert to fixed point for the key. sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio); // We shave off some bits to reduce the number of unique entries. We could probably shave // off more than we do. sigmaToCircleRRatioFixed &= ~0xff; sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed); sigma = circleR * sigmaToCircleRRatio; *solidRadius = 0; *textureRadius = circleR + 3 * sigma; } static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey key; GrUniqueKey::Builder builder(&key, kDomain, 1); builder[0] = sigmaToCircleRRatioFixed; builder.finish(); sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key); if (!blurProfile) { static constexpr int kProfileTextureWidth = 512; GrSurfaceDesc texDesc; texDesc.fWidth = kProfileTextureWidth; texDesc.fHeight = 1; texDesc.fConfig = kAlpha_8_GrPixelConfig; std::unique_ptr<uint8_t[]> profile(nullptr); if (useHalfPlaneApprox) { profile.reset(create_half_plane_profile(kProfileTextureWidth)); } else { // Rescale params to the size of the texture we're creating. SkScalar scale = kProfileTextureWidth / *textureRadius; profile.reset(create_circle_profile(sigma * scale, circleR * scale, kProfileTextureWidth)); } blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider, texDesc, SkBudgeted::kYes, profile.get(), 0); if (!blurProfile) { return nullptr; } resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get()); } return blurProfile; } ////////////////////////////////////////////////////////////////////////////// sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(GrResourceProvider* resourceProvider, const SkRect& circle, float sigma) { float solidRadius; float textureRadius; sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma, &solidRadius, &textureRadius)); if (!profile) { return nullptr; } return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(resourceProvider, circle, textureRadius, solidRadius, std::move(profile))); } ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor); #if GR_TEST_UTILS sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* d) { SkScalar wh = d->fRandom->nextRangeScalar(100.f, 1000.f); SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f); SkRect circle = SkRect::MakeWH(wh, wh); return GrCircleBlurFragmentProcessor::Make(d->resourceProvider(), circle, sigma); } #endif #endif