/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "effects/GrPorterDuffXferProcessor.h" #include "GrBlend.h" #include "GrCaps.h" #include "GrPipeline.h" #include "GrPipelineAnalysis.h" #include "GrProcessor.h" #include "GrTypes.h" #include "GrXferProcessor.h" #include "glsl/GrGLSLBlend.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLXferProcessor.h" /** * Wraps the shader outputs and HW blend state that comprise a Porter Duff blend mode with coverage. */ struct BlendFormula { public: /** * Values the shader can write to primary and secondary outputs. These must all be modulated by * coverage to support mixed samples. The XP will ignore the multiplies when not using coverage. */ enum OutputType { kNone_OutputType, //<! 0 kCoverage_OutputType, //<! inputCoverage kModulate_OutputType, //<! inputColor * inputCoverage kSAModulate_OutputType, //<! inputColor.a * inputCoverage kISAModulate_OutputType, //<! (1 - inputColor.a) * inputCoverage kISCModulate_OutputType, //<! (1 - inputColor) * inputCoverage kLast_OutputType = kISCModulate_OutputType }; enum Properties { kModifiesDst_Property = 1, kUsesDstColor_Property = 1 << 1, kUsesInputColor_Property = 1 << 2, kCanTweakAlphaForCoverage_Property = 1 << 3, kLast_Property = kCanTweakAlphaForCoverage_Property }; BlendFormula& operator =(const BlendFormula& other) { fData = other.fData; return *this; } bool operator ==(const BlendFormula& other) const { return fData == other.fData; } bool hasSecondaryOutput() const { return kNone_OutputType != fSecondaryOutputType; } bool modifiesDst() const { return SkToBool(fProps & kModifiesDst_Property); } bool usesDstColor() const { return SkToBool(fProps & kUsesDstColor_Property); } bool usesInputColor() const { return SkToBool(fProps & kUsesInputColor_Property); } bool canTweakAlphaForCoverage() const { return SkToBool(fProps & kCanTweakAlphaForCoverage_Property); } /** * Deduce the properties of a compile-time constant BlendFormula. */ template<OutputType PrimaryOut, OutputType SecondaryOut, GrBlendEquation BlendEquation, GrBlendCoeff SrcCoeff, GrBlendCoeff DstCoeff> struct get_properties : std::integral_constant<Properties, static_cast<Properties>( (GR_BLEND_MODIFIES_DST(BlendEquation, SrcCoeff, DstCoeff) ? kModifiesDst_Property : 0) | (GR_BLEND_COEFFS_USE_DST_COLOR(SrcCoeff, DstCoeff) ? kUsesDstColor_Property : 0) | ((PrimaryOut >= kModulate_OutputType && GR_BLEND_COEFFS_USE_SRC_COLOR(SrcCoeff,DstCoeff)) || (SecondaryOut >= kModulate_OutputType && GR_BLEND_COEFF_REFS_SRC2(DstCoeff)) ? kUsesInputColor_Property : 0) | // We assert later that SrcCoeff doesn't ref src2. (kModulate_OutputType == PrimaryOut && kNone_OutputType == SecondaryOut && GR_BLEND_CAN_TWEAK_ALPHA_FOR_COVERAGE(BlendEquation, SrcCoeff, DstCoeff) ? kCanTweakAlphaForCoverage_Property : 0))> { // The provided formula should already be optimized. GR_STATIC_ASSERT((kNone_OutputType == PrimaryOut) == !GR_BLEND_COEFFS_USE_SRC_COLOR(SrcCoeff, DstCoeff)); GR_STATIC_ASSERT(!GR_BLEND_COEFF_REFS_SRC2(SrcCoeff)); GR_STATIC_ASSERT((kNone_OutputType == SecondaryOut) == !GR_BLEND_COEFF_REFS_SRC2(DstCoeff)); GR_STATIC_ASSERT(PrimaryOut != SecondaryOut || kNone_OutputType == PrimaryOut); GR_STATIC_ASSERT(kNone_OutputType != PrimaryOut || kNone_OutputType == SecondaryOut); }; union { struct { // We allot the enums one more bit than they require because MSVC seems to sign-extend // them when the top bit is set. (This is in violation of the C++03 standard 9.6/4) OutputType fPrimaryOutputType : 4; OutputType fSecondaryOutputType : 4; GrBlendEquation fBlendEquation : 6; GrBlendCoeff fSrcCoeff : 6; GrBlendCoeff fDstCoeff : 6; Properties fProps : 32 - (4 + 4 + 6 + 6 + 6); }; uint32_t fData; }; GR_STATIC_ASSERT(kLast_OutputType < (1 << 3)); GR_STATIC_ASSERT(kLast_GrBlendEquation < (1 << 5)); GR_STATIC_ASSERT(kLast_GrBlendCoeff < (1 << 5)); GR_STATIC_ASSERT(kLast_Property < (1 << 6)); }; GR_STATIC_ASSERT(4 == sizeof(BlendFormula)); GR_MAKE_BITFIELD_OPS(BlendFormula::Properties); /** * Initialize a compile-time constant BlendFormula and automatically deduce fProps. */ #define INIT_BLEND_FORMULA(PRIMARY_OUT, SECONDARY_OUT, BLEND_EQUATION, SRC_COEFF, DST_COEFF) \ {{{PRIMARY_OUT, \ SECONDARY_OUT, \ BLEND_EQUATION, SRC_COEFF, DST_COEFF, \ BlendFormula::get_properties<PRIMARY_OUT, SECONDARY_OUT, \ BLEND_EQUATION, SRC_COEFF, DST_COEFF>::value}}} /** * When there is no coverage, or the blend mode can tweak alpha for coverage, we use the standard * Porter Duff formula. */ #define COEFF_FORMULA(SRC_COEFF, DST_COEFF) \ INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \ BlendFormula::kNone_OutputType, \ kAdd_GrBlendEquation, SRC_COEFF, DST_COEFF) /** * Basic coeff formula similar to COEFF_FORMULA but we will make the src f*Sa. This is used in * LCD dst-out. */ #define COEFF_FORMULA_SA_MODULATE(SRC_COEFF, DST_COEFF) \ INIT_BLEND_FORMULA(BlendFormula::kSAModulate_OutputType, \ BlendFormula::kNone_OutputType, \ kAdd_GrBlendEquation, SRC_COEFF, DST_COEFF) /** * When the coeffs are (Zero, Zero), we clear the dst. This formula has its own macro so we can set * the primary output type to none. */ #define DST_CLEAR_FORMULA \ INIT_BLEND_FORMULA(BlendFormula::kNone_OutputType, \ BlendFormula::kNone_OutputType, \ kAdd_GrBlendEquation, kZero_GrBlendCoeff, kZero_GrBlendCoeff) /** * When the coeffs are (Zero, One), we don't write to the dst at all. This formula has its own macro * so we can set the primary output type to none. */ #define NO_DST_WRITE_FORMULA \ INIT_BLEND_FORMULA(BlendFormula::kNone_OutputType, \ BlendFormula::kNone_OutputType, \ kAdd_GrBlendEquation, kZero_GrBlendCoeff, kOne_GrBlendCoeff) /** * When there is coverage, the equation with f=coverage is: * * D' = f * (S * srcCoeff + D * dstCoeff) + (1-f) * D * * This can be rewritten as: * * D' = f * S * srcCoeff + D * (1 - [f * (1 - dstCoeff)]) * * To implement this formula, we output [f * (1 - dstCoeff)] for the secondary color and replace the * HW dst coeff with IS2C. * * Xfer modes: dst-atop (Sa!=1) */ #define COVERAGE_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, SRC_COEFF) \ INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \ ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, \ kAdd_GrBlendEquation, SRC_COEFF, kIS2C_GrBlendCoeff) /** * When there is coverage and the src coeff is Zero, the equation with f=coverage becomes: * * D' = f * D * dstCoeff + (1-f) * D * * This can be rewritten as: * * D' = D - D * [f * (1 - dstCoeff)] * * To implement this formula, we output [f * (1 - dstCoeff)] for the primary color and use a reverse * subtract HW blend equation with coeffs of (DC, One). * * Xfer modes: clear, dst-out (Sa=1), dst-in (Sa!=1), modulate (Sc!=1) */ #define COVERAGE_SRC_COEFF_ZERO_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT) \ INIT_BLEND_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, \ BlendFormula::kNone_OutputType, \ kReverseSubtract_GrBlendEquation, kDC_GrBlendCoeff, kOne_GrBlendCoeff) /** * When there is coverage and the dst coeff is Zero, the equation with f=coverage becomes: * * D' = f * S * srcCoeff + (1-f) * D * * To implement this formula, we output [f] for the secondary color and replace the HW dst coeff * with IS2A. (Note that we can avoid dual source blending when Sa=1 by using ISA.) * * Xfer modes (Sa!=1): src, src-in, src-out */ #define COVERAGE_DST_COEFF_ZERO_FORMULA(SRC_COEFF) \ INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \ BlendFormula::kCoverage_OutputType, \ kAdd_GrBlendEquation, SRC_COEFF, kIS2A_GrBlendCoeff) /** * This table outlines the blend formulas we will use with each xfermode, with and without coverage, * with and without an opaque input color. Optimization properties are deduced at compile time so we * can make runtime decisions quickly. RGB coverage is not supported. */ static const BlendFormula gBlendTable[2][2][(int)SkBlendMode::kLastCoeffMode + 1] = { /*>> No coverage, input color unknown <<*/ {{ /* clear */ DST_CLEAR_FORMULA, /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), /* dst */ NO_DST_WRITE_FORMULA, /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), /* dst-in */ COEFF_FORMULA( kZero_GrBlendCoeff, kSA_GrBlendCoeff), /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), /* dst-out */ COEFF_FORMULA( kZero_GrBlendCoeff, kISA_GrBlendCoeff), /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kSA_GrBlendCoeff), /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), /* modulate */ COEFF_FORMULA( kZero_GrBlendCoeff, kSC_GrBlendCoeff), /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), }, /*>> Has coverage, input color unknown <<*/ { /* clear */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_OutputType), /* src */ COVERAGE_DST_COEFF_ZERO_FORMULA(kOne_GrBlendCoeff), /* dst */ NO_DST_WRITE_FORMULA, /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), /* src-in */ COVERAGE_DST_COEFF_ZERO_FORMULA(kDA_GrBlendCoeff), /* dst-in */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISAModulate_OutputType), /* src-out */ COVERAGE_DST_COEFF_ZERO_FORMULA(kIDA_GrBlendCoeff), /* dst-out */ COEFF_FORMULA( kZero_GrBlendCoeff, kISA_GrBlendCoeff), /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), /* dst-atop */ COVERAGE_FORMULA(BlendFormula::kISAModulate_OutputType, kIDA_GrBlendCoeff), /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), /* modulate */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_OutputType), /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), }}, /*>> No coverage, input color opaque <<*/ {{ /* clear */ DST_CLEAR_FORMULA, /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), /* dst */ NO_DST_WRITE_FORMULA, /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), /* dst-in */ NO_DST_WRITE_FORMULA, /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), /* dst-out */ DST_CLEAR_FORMULA, /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), /* modulate */ COEFF_FORMULA( kZero_GrBlendCoeff, kSC_GrBlendCoeff), /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), }, /*>> Has coverage, input color opaque <<*/ { /* clear */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_OutputType), /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), /* dst */ NO_DST_WRITE_FORMULA, /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), /* dst-in */ NO_DST_WRITE_FORMULA, /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), /* dst-out */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_OutputType), /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), /* modulate */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_OutputType), /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), }}}; static const BlendFormula gLCDBlendTable[(int)SkBlendMode::kLastCoeffMode + 1] = { /* clear */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_OutputType), /* src */ COVERAGE_FORMULA(BlendFormula::kCoverage_OutputType, kOne_GrBlendCoeff), /* dst */ NO_DST_WRITE_FORMULA, /* src-over */ COVERAGE_FORMULA(BlendFormula::kSAModulate_OutputType, kOne_GrBlendCoeff), /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), /* src-in */ COVERAGE_FORMULA(BlendFormula::kCoverage_OutputType, kDA_GrBlendCoeff), /* dst-in */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISAModulate_OutputType), /* src-out */ COVERAGE_FORMULA(BlendFormula::kCoverage_OutputType, kIDA_GrBlendCoeff), /* dst-out */ COEFF_FORMULA_SA_MODULATE( kZero_GrBlendCoeff, kISC_GrBlendCoeff), /* src-atop */ COVERAGE_FORMULA(BlendFormula::kSAModulate_OutputType, kDA_GrBlendCoeff), /* dst-atop */ COVERAGE_FORMULA(BlendFormula::kISAModulate_OutputType, kIDA_GrBlendCoeff), /* xor */ COVERAGE_FORMULA(BlendFormula::kSAModulate_OutputType, kIDA_GrBlendCoeff), /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), /* modulate */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_OutputType), /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), }; static BlendFormula get_blend_formula(bool isOpaque, bool hasCoverage, bool hasMixedSamples, SkBlendMode xfermode) { SkASSERT((unsigned)xfermode <= (unsigned)SkBlendMode::kLastCoeffMode); bool conflatesCoverage = hasCoverage || hasMixedSamples; return gBlendTable[isOpaque][conflatesCoverage][(int)xfermode]; } static BlendFormula get_lcd_blend_formula(SkBlendMode xfermode) { SkASSERT((unsigned)xfermode <= (unsigned)SkBlendMode::kLastCoeffMode); return gLCDBlendTable[(int)xfermode]; } /////////////////////////////////////////////////////////////////////////////// class PorterDuffXferProcessor : public GrXferProcessor { public: PorterDuffXferProcessor(BlendFormula blendFormula) : fBlendFormula(blendFormula) { this->initClassID<PorterDuffXferProcessor>(); } const char* name() const override { return "Porter Duff"; } GrGLSLXferProcessor* createGLSLInstance() const override; BlendFormula getBlendFormula() const { return fBlendFormula; } private: GrXferProcessor::OptFlags onGetOptimizations(const FragmentProcessorAnalysis&) const override; void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override; bool onHasSecondaryOutput() const override { return fBlendFormula.hasSecondaryOutput(); } void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override { blendInfo->fEquation = fBlendFormula.fBlendEquation; blendInfo->fSrcBlend = fBlendFormula.fSrcCoeff; blendInfo->fDstBlend = fBlendFormula.fDstCoeff; blendInfo->fWriteColor = fBlendFormula.modifiesDst(); } bool onIsEqual(const GrXferProcessor& xpBase) const override { const PorterDuffXferProcessor& xp = xpBase.cast<PorterDuffXferProcessor>(); return fBlendFormula == xp.fBlendFormula; } const BlendFormula fBlendFormula; typedef GrXferProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// static void append_color_output(const PorterDuffXferProcessor& xp, GrGLSLXPFragmentBuilder* fragBuilder, BlendFormula::OutputType outputType, const char* output, const char* inColor, const char* inCoverage) { SkASSERT(inCoverage); SkASSERT(inColor); switch (outputType) { case BlendFormula::kNone_OutputType: fragBuilder->codeAppendf("%s = vec4(0.0);", output); break; case BlendFormula::kCoverage_OutputType: // We can have a coverage formula while not reading coverage if there are mixed samples. fragBuilder->codeAppendf("%s = %s;", output, inCoverage); break; case BlendFormula::kModulate_OutputType: fragBuilder->codeAppendf("%s = %s * %s;", output, inColor, inCoverage); break; case BlendFormula::kSAModulate_OutputType: fragBuilder->codeAppendf("%s = %s.a * %s;", output, inColor, inCoverage); break; case BlendFormula::kISAModulate_OutputType: fragBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;", output, inColor, inCoverage); break; case BlendFormula::kISCModulate_OutputType: fragBuilder->codeAppendf("%s = (vec4(1.0) - %s) * %s;", output, inColor, inCoverage); break; default: SkFAIL("Unsupported output type."); break; } } class GLPorterDuffXferProcessor : public GrGLSLXferProcessor { public: static void GenKey(const GrProcessor& processor, GrProcessorKeyBuilder* b) { const PorterDuffXferProcessor& xp = processor.cast<PorterDuffXferProcessor>(); b->add32(xp.getBlendFormula().fPrimaryOutputType | (xp.getBlendFormula().fSecondaryOutputType << 3)); GR_STATIC_ASSERT(BlendFormula::kLast_OutputType < 8); } private: void emitOutputsForBlendState(const EmitArgs& args) override { const PorterDuffXferProcessor& xp = args.fXP.cast<PorterDuffXferProcessor>(); GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder; BlendFormula blendFormula = xp.getBlendFormula(); if (blendFormula.hasSecondaryOutput()) { append_color_output(xp, fragBuilder, blendFormula.fSecondaryOutputType, args.fOutputSecondary, args.fInputColor, args.fInputCoverage); } append_color_output(xp, fragBuilder, blendFormula.fPrimaryOutputType, args.fOutputPrimary, args.fInputColor, args.fInputCoverage); } void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {} typedef GrGLSLXferProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// void PorterDuffXferProcessor::onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const { GLPorterDuffXferProcessor::GenKey(*this, b); } GrGLSLXferProcessor* PorterDuffXferProcessor::createGLSLInstance() const { return new GLPorterDuffXferProcessor; } GrXferProcessor::OptFlags PorterDuffXferProcessor::onGetOptimizations( const FragmentProcessorAnalysis& analysis) const { GrXferProcessor::OptFlags optFlags = GrXferProcessor::kNone_OptFlags; if (!fBlendFormula.modifiesDst()) { optFlags |= (GrXferProcessor::kIgnoreColor_OptFlag | GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag); } else { if (!fBlendFormula.usesInputColor()) { optFlags |= GrXferProcessor::kIgnoreColor_OptFlag; } if (analysis.isCompatibleWithCoverageAsAlpha() && fBlendFormula.canTweakAlphaForCoverage()) { optFlags |= GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag; } } return optFlags; } /////////////////////////////////////////////////////////////////////////////// class ShaderPDXferProcessor : public GrXferProcessor { public: ShaderPDXferProcessor(const DstTexture* dstTexture, bool hasMixedSamples, SkBlendMode xfermode) : INHERITED(dstTexture, true, hasMixedSamples) , fXfermode(xfermode) { this->initClassID<ShaderPDXferProcessor>(); } const char* name() const override { return "Porter Duff Shader"; } GrGLSLXferProcessor* createGLSLInstance() const override; SkBlendMode getXfermode() const { return fXfermode; } private: GrXferProcessor::OptFlags onGetOptimizations(const FragmentProcessorAnalysis&) const override { return kNone_OptFlags; } void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override; bool onIsEqual(const GrXferProcessor& xpBase) const override { const ShaderPDXferProcessor& xp = xpBase.cast<ShaderPDXferProcessor>(); return fXfermode == xp.fXfermode; } const SkBlendMode fXfermode; typedef GrXferProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class GLShaderPDXferProcessor : public GrGLSLXferProcessor { public: static void GenKey(const GrProcessor& processor, GrProcessorKeyBuilder* b) { const ShaderPDXferProcessor& xp = processor.cast<ShaderPDXferProcessor>(); b->add32((int)xp.getXfermode()); } private: void emitBlendCodeForDstRead(GrGLSLXPFragmentBuilder* fragBuilder, GrGLSLUniformHandler* uniformHandler, const char* srcColor, const char* srcCoverage, const char* dstColor, const char* outColor, const char* outColorSecondary, const GrXferProcessor& proc) override { const ShaderPDXferProcessor& xp = proc.cast<ShaderPDXferProcessor>(); GrGLSLBlend::AppendMode(fragBuilder, srcColor, dstColor, outColor, xp.getXfermode()); // Apply coverage. INHERITED::DefaultCoverageModulation(fragBuilder, srcCoverage, dstColor, outColor, outColorSecondary, xp); } void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {} typedef GrGLSLXferProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// void ShaderPDXferProcessor::onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const { GLShaderPDXferProcessor::GenKey(*this, b); } GrGLSLXferProcessor* ShaderPDXferProcessor::createGLSLInstance() const { return new GLShaderPDXferProcessor; } /////////////////////////////////////////////////////////////////////////////// class PDLCDXferProcessor : public GrXferProcessor { public: static GrXferProcessor* Create(SkBlendMode xfermode, const FragmentProcessorAnalysis& analysis); ~PDLCDXferProcessor() override; const char* name() const override { return "Porter Duff LCD"; } GrGLSLXferProcessor* createGLSLInstance() const override; uint8_t alpha() const { return fAlpha; } private: PDLCDXferProcessor(GrColor blendConstant, uint8_t alpha); GrXferProcessor::OptFlags onGetOptimizations(const FragmentProcessorAnalysis&) const override; void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override; void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override { blendInfo->fSrcBlend = kConstC_GrBlendCoeff; blendInfo->fDstBlend = kISC_GrBlendCoeff; blendInfo->fBlendConstant = fBlendConstant; } bool onIsEqual(const GrXferProcessor& xpBase) const override { const PDLCDXferProcessor& xp = xpBase.cast<PDLCDXferProcessor>(); if (fBlendConstant != xp.fBlendConstant || fAlpha != xp.fAlpha) { return false; } return true; } GrColor fBlendConstant; uint8_t fAlpha; typedef GrXferProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class GLPDLCDXferProcessor : public GrGLSLXferProcessor { public: GLPDLCDXferProcessor(const GrProcessor&) : fLastAlpha(SK_MaxU32) {} ~GLPDLCDXferProcessor() override {} static void GenKey(const GrProcessor& processor, const GrShaderCaps& caps, GrProcessorKeyBuilder* b) {} private: void emitOutputsForBlendState(const EmitArgs& args) override { const char* alpha; fAlphaUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "alpha", &alpha); GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder; // We want to force our primary output to be alpha * Coverage, where alpha is the alpha // value of the src color. We know that there are no color stages (or we wouldn't have // created this xp) and the r,g, and b channels of the op's input color are baked into the // blend constant. SkASSERT(args.fInputCoverage); fragBuilder->codeAppendf("%s = %s * %s;", args.fOutputPrimary, alpha, args.fInputCoverage); } void onSetData(const GrGLSLProgramDataManager& pdm, const GrXferProcessor& xp) override { uint32_t alpha = SkToU32(xp.cast<PDLCDXferProcessor>().alpha()); if (fLastAlpha != alpha) { pdm.set1f(fAlphaUniform, alpha / 255.f); fLastAlpha = alpha; } } GrGLSLUniformHandler::UniformHandle fAlphaUniform; uint32_t fLastAlpha; typedef GrGLSLXferProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// PDLCDXferProcessor::PDLCDXferProcessor(GrColor blendConstant, uint8_t alpha) : fBlendConstant(blendConstant) , fAlpha(alpha) { this->initClassID<PDLCDXferProcessor>(); } GrXferProcessor* PDLCDXferProcessor::Create(SkBlendMode xfermode, const FragmentProcessorAnalysis& analysis) { if (SkBlendMode::kSrcOver != xfermode) { return nullptr; } GrColor blendConstant; if (!analysis.hasKnownOutputColor(&blendConstant)) { return nullptr; } blendConstant = GrUnpremulColor(blendConstant); uint8_t alpha = GrColorUnpackA(blendConstant); blendConstant |= (0xff << GrColor_SHIFT_A); return new PDLCDXferProcessor(blendConstant, alpha); } PDLCDXferProcessor::~PDLCDXferProcessor() { } void PDLCDXferProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GLPDLCDXferProcessor::GenKey(*this, caps, b); } GrGLSLXferProcessor* PDLCDXferProcessor::createGLSLInstance() const { return new GLPDLCDXferProcessor(*this); } GrXferProcessor::OptFlags PDLCDXferProcessor::onGetOptimizations( const FragmentProcessorAnalysis&) const { return GrXferProcessor::kIgnoreColor_OptFlag; } /////////////////////////////////////////////////////////////////////////////// constexpr GrPorterDuffXPFactory::GrPorterDuffXPFactory(SkBlendMode xfermode) : fBlendMode(xfermode) {} const GrXPFactory* GrPorterDuffXPFactory::Get(SkBlendMode blendMode) { SkASSERT((unsigned)blendMode <= (unsigned)SkBlendMode::kLastCoeffMode); // If these objects are constructed as static constexpr by cl.exe (2015 SP2) the vtables are // null. #ifdef SK_BUILD_FOR_WIN #define _CONSTEXPR_ #else #define _CONSTEXPR_ constexpr #endif static _CONSTEXPR_ const GrPorterDuffXPFactory gClearPDXPF(SkBlendMode::kClear); static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcPDXPF(SkBlendMode::kSrc); static _CONSTEXPR_ const GrPorterDuffXPFactory gDstPDXPF(SkBlendMode::kDst); static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcOverPDXPF(SkBlendMode::kSrcOver); static _CONSTEXPR_ const GrPorterDuffXPFactory gDstOverPDXPF(SkBlendMode::kDstOver); static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcInPDXPF(SkBlendMode::kSrcIn); static _CONSTEXPR_ const GrPorterDuffXPFactory gDstInPDXPF(SkBlendMode::kDstIn); static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcOutPDXPF(SkBlendMode::kSrcOut); static _CONSTEXPR_ const GrPorterDuffXPFactory gDstOutPDXPF(SkBlendMode::kDstOut); static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcATopPDXPF(SkBlendMode::kSrcATop); static _CONSTEXPR_ const GrPorterDuffXPFactory gDstATopPDXPF(SkBlendMode::kDstATop); static _CONSTEXPR_ const GrPorterDuffXPFactory gXorPDXPF(SkBlendMode::kXor); static _CONSTEXPR_ const GrPorterDuffXPFactory gPlusPDXPF(SkBlendMode::kPlus); static _CONSTEXPR_ const GrPorterDuffXPFactory gModulatePDXPF(SkBlendMode::kModulate); static _CONSTEXPR_ const GrPorterDuffXPFactory gScreenPDXPF(SkBlendMode::kScreen); #undef _CONSTEXPR_ switch (blendMode) { case SkBlendMode::kClear: return &gClearPDXPF; case SkBlendMode::kSrc: return &gSrcPDXPF; case SkBlendMode::kDst: return &gDstPDXPF; case SkBlendMode::kSrcOver: return &gSrcOverPDXPF; case SkBlendMode::kDstOver: return &gDstOverPDXPF; case SkBlendMode::kSrcIn: return &gSrcInPDXPF; case SkBlendMode::kDstIn: return &gDstInPDXPF; case SkBlendMode::kSrcOut: return &gSrcOutPDXPF; case SkBlendMode::kDstOut: return &gDstOutPDXPF; case SkBlendMode::kSrcATop: return &gSrcATopPDXPF; case SkBlendMode::kDstATop: return &gDstATopPDXPF; case SkBlendMode::kXor: return &gXorPDXPF; case SkBlendMode::kPlus: return &gPlusPDXPF; case SkBlendMode::kModulate: return &gModulatePDXPF; case SkBlendMode::kScreen: return &gScreenPDXPF; default: SkFAIL("Unexpected blend mode."); return nullptr; } } GrXferProcessor* GrPorterDuffXPFactory::onCreateXferProcessor( const GrCaps& caps, const FragmentProcessorAnalysis& analysis, bool hasMixedSamples, const DstTexture* dstTexture) const { BlendFormula blendFormula; if (analysis.outputCoverageType() == GrPipelineAnalysisCoverage::kLCD) { if (SkBlendMode::kSrcOver == fBlendMode && analysis.hasKnownOutputColor() && !caps.shaderCaps()->dualSourceBlendingSupport() && !caps.shaderCaps()->dstReadInShaderSupport()) { // If we don't have dual source blending or in shader dst reads, we fall back to this // trick for rendering SrcOver LCD text instead of doing a dst copy. SkASSERT(!dstTexture || !dstTexture->texture()); return PDLCDXferProcessor::Create(fBlendMode, analysis); } blendFormula = get_lcd_blend_formula(fBlendMode); } else { blendFormula = get_blend_formula(analysis.isOutputColorOpaque(), analysis.hasCoverage(), hasMixedSamples, fBlendMode); } if (blendFormula.hasSecondaryOutput() && !caps.shaderCaps()->dualSourceBlendingSupport()) { return new ShaderPDXferProcessor(dstTexture, hasMixedSamples, fBlendMode); } SkASSERT(!dstTexture || !dstTexture->texture()); return new PorterDuffXferProcessor(blendFormula); } bool GrPorterDuffXPFactory::canCombineOverlappedStencilAndCover(bool colorIsOpaque) const { // Ignore the effect of coverage here. BlendFormula colorFormula = gBlendTable[colorIsOpaque][0][(int)fBlendMode]; SkASSERT(kAdd_GrBlendEquation == colorFormula.fBlendEquation); return !colorFormula.usesDstColor(); } bool GrPorterDuffXPFactory::willReadDstInShader(const GrCaps& caps, const FragmentProcessorAnalysis& analysis) const { if (caps.shaderCaps()->dualSourceBlendingSupport()) { return false; } // When we have four channel coverage we always need to read the dst in order to correctly // blend. The one exception is when we are using srcover mode and we know the input color into // the XP. if (analysis.outputCoverageType() == GrPipelineAnalysisCoverage::kLCD) { if (SkBlendMode::kSrcOver == fBlendMode && analysis.hasKnownOutputColor() && !caps.shaderCaps()->dstReadInShaderSupport()) { return false; } return get_lcd_blend_formula(fBlendMode).hasSecondaryOutput(); } // We fallback on the shader XP when the blend formula would use dual source blending but we // don't have support for it. static const bool kHasMixedSamples = false; SkASSERT(!caps.usesMixedSamples()); // We never use mixed samples without dual source blending. auto formula = get_blend_formula(analysis.isOutputColorOpaque(), analysis.hasCoverage(), kHasMixedSamples, fBlendMode); return formula.hasSecondaryOutput(); } bool GrPorterDuffXPFactory::compatibleWithCoverageAsAlpha(bool colorIsOpaque) const { // We assume we have coverage (or else this doesn't matter). return gBlendTable[colorIsOpaque][1][(int)fBlendMode].canTweakAlphaForCoverage(); } GR_DEFINE_XP_FACTORY_TEST(GrPorterDuffXPFactory); #if GR_TEST_UTILS const GrXPFactory* GrPorterDuffXPFactory::TestGet(GrProcessorTestData* d) { SkBlendMode mode = SkBlendMode(d->fRandom->nextULessThan((int)SkBlendMode::kLastCoeffMode)); return GrPorterDuffXPFactory::Get(mode); } #endif void GrPorterDuffXPFactory::TestGetXPOutputTypes(const GrXferProcessor* xp, int* outPrimary, int* outSecondary) { if (!!strcmp(xp->name(), "Porter Duff")) { *outPrimary = *outSecondary = -1; return; } BlendFormula blendFormula = static_cast<const PorterDuffXferProcessor*>(xp)->getBlendFormula(); *outPrimary = blendFormula.fPrimaryOutputType; *outSecondary = blendFormula.fSecondaryOutputType; } //////////////////////////////////////////////////////////////////////////////////////////////// // SrcOver Global functions //////////////////////////////////////////////////////////////////////////////////////////////// const GrXferProcessor& GrPorterDuffXPFactory::SimpleSrcOverXP() { static BlendFormula gSrcOverBlendFormula = COEFF_FORMULA(kOne_GrBlendCoeff, kISA_GrBlendCoeff); static PorterDuffXferProcessor gSrcOverXP(gSrcOverBlendFormula); return gSrcOverXP; } GrXferProcessor* GrPorterDuffXPFactory::CreateSrcOverXferProcessor( const GrCaps& caps, const FragmentProcessorAnalysis& analysis, bool hasMixedSamples, const GrXferProcessor::DstTexture* dstTexture) { // We want to not make an xfer processor if possible. Thus for the simple case where we are not // doing lcd blending we will just use our global SimpleSrcOverXP. This slightly differs from // the general case where we convert a src-over blend that has solid coverage and an opaque // color to src-mode, which allows disabling of blending. if (analysis.outputCoverageType() != GrPipelineAnalysisCoverage::kLCD) { // We return nullptr here, which our caller interprets as meaning "use SimpleSrcOverXP". // We don't simply return the address of that XP here because our caller would have to unref // it and since it is a global object and GrProgramElement's ref-cnting system is not thread // safe. return nullptr; } if (analysis.hasKnownOutputColor() && !caps.shaderCaps()->dualSourceBlendingSupport() && !caps.shaderCaps()->dstReadInShaderSupport()) { // If we don't have dual source blending or in shader dst reads, we fall // back to this trick for rendering SrcOver LCD text instead of doing a // dst copy. SkASSERT(!dstTexture || !dstTexture->texture()); return PDLCDXferProcessor::Create(SkBlendMode::kSrcOver, analysis); } BlendFormula blendFormula; blendFormula = get_lcd_blend_formula(SkBlendMode::kSrcOver); if (blendFormula.hasSecondaryOutput() && !caps.shaderCaps()->dualSourceBlendingSupport()) { return new ShaderPDXferProcessor(dstTexture, hasMixedSamples, SkBlendMode::kSrcOver); } SkASSERT(!dstTexture || !dstTexture->texture()); return new PorterDuffXferProcessor(blendFormula); } sk_sp<GrXferProcessor> GrPorterDuffXPFactory::CreateNoCoverageXP(SkBlendMode blendmode) { BlendFormula formula = get_blend_formula(false, false, false, blendmode); return sk_make_sp<PorterDuffXferProcessor>(formula); } bool GrPorterDuffXPFactory::WillSrcOverNeedDstTexture(const GrCaps& caps, const FragmentProcessorAnalysis& analysis) { if (caps.shaderCaps()->dstReadInShaderSupport() || caps.shaderCaps()->dualSourceBlendingSupport()) { return false; } // When we have four channel coverage we always need to read the dst in order to correctly // blend. The one exception is when we are using srcover mode and we know the input color // into the XP. if (analysis.outputCoverageType() == GrPipelineAnalysisCoverage::kLCD) { if (analysis.hasKnownOutputColor() && !caps.shaderCaps()->dstReadInShaderSupport()) { return false; } auto formula = get_lcd_blend_formula(SkBlendMode::kSrcOver); return formula.hasSecondaryOutput(); } // We fallback on the shader XP when the blend formula would use dual source blending but we // don't have support for it. static const bool kHasMixedSamples = false; bool isOpaque = analysis.isOutputColorOpaque(); bool hasCoverage = analysis.hasCoverage(); SkASSERT(!caps.usesMixedSamples()); // We never use mixed samples without dual source blending. auto formula = get_blend_formula(isOpaque, hasCoverage, kHasMixedSamples, SkBlendMode::kSrcOver); return formula.hasSecondaryOutput(); }