/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkCurveMeasure.h" #include "SkGeometry.h" // for abs #include <cmath> #define UNIMPLEMENTED SkDEBUGF(("%s:%d unimplemented\n", __FILE__, __LINE__)) /// Used inside SkCurveMeasure::getTime's Newton's iteration static inline SkPoint evaluate(const SkPoint pts[4], SkSegType segType, SkScalar t) { SkPoint pos; switch (segType) { case kQuad_SegType: pos = SkEvalQuadAt(pts, t); break; case kLine_SegType: pos = SkPoint::Make(SkScalarInterp(pts[0].x(), pts[1].x(), t), SkScalarInterp(pts[0].y(), pts[1].y(), t)); break; case kCubic_SegType: SkEvalCubicAt(pts, t, &pos, nullptr, nullptr); break; case kConic_SegType: { SkConic conic(pts, pts[3].x()); conic.evalAt(t, &pos); } break; default: UNIMPLEMENTED; } return pos; } /// Used inside SkCurveMeasure::getTime's Newton's iteration static inline SkVector evaluateDerivative(const SkPoint pts[4], SkSegType segType, SkScalar t) { SkVector tan; switch (segType) { case kQuad_SegType: tan = SkEvalQuadTangentAt(pts, t); break; case kLine_SegType: tan = pts[1] - pts[0]; break; case kCubic_SegType: SkEvalCubicAt(pts, t, nullptr, &tan, nullptr); break; case kConic_SegType: { SkConic conic(pts, pts[3].x()); conic.evalAt(t, nullptr, &tan); } break; default: UNIMPLEMENTED; } return tan; } /// Used in ArcLengthIntegrator::computeLength static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, const float (&xCoeff)[3][8], const float (&yCoeff)[3][8], const SkSegType segType) { Sk8f x; Sk8f y; Sk8f x0 = Sk8f::Load(&xCoeff[0]), x1 = Sk8f::Load(&xCoeff[1]), x2 = Sk8f::Load(&xCoeff[2]); Sk8f y0 = Sk8f::Load(&yCoeff[0]), y1 = Sk8f::Load(&yCoeff[1]), y2 = Sk8f::Load(&yCoeff[2]); switch (segType) { case kQuad_SegType: x = x0*ts + x1; y = y0*ts + y1; break; case kCubic_SegType: x = (x0*ts + x1)*ts + x2; y = (y0*ts + y1)*ts + y2; break; case kConic_SegType: UNIMPLEMENTED; break; default: UNIMPLEMENTED; } x = x * x; y = y * y; return (x + y).sqrt(); } ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) : fSegType(segType) { switch (fSegType) { case kQuad_SegType: { float Ax = pts[0].x(); float Bx = pts[1].x(); float Cx = pts[2].x(); float Ay = pts[0].y(); float By = pts[1].y(); float Cy = pts[2].y(); // precompute coefficients for derivative Sk8f(2*(Ax - 2*Bx + Cx)).store(&xCoeff[0]); Sk8f(2*(Bx - Ax)).store(&xCoeff[1]); Sk8f(2*(Ay - 2*By + Cy)).store(&yCoeff[0]); Sk8f(2*(By - Ay)).store(&yCoeff[1]); } break; case kCubic_SegType: { float Ax = pts[0].x(); float Bx = pts[1].x(); float Cx = pts[2].x(); float Dx = pts[3].x(); float Ay = pts[0].y(); float By = pts[1].y(); float Cy = pts[2].y(); float Dy = pts[3].y(); // precompute coefficients for derivative Sk8f(3*(-Ax + 3*(Bx - Cx) + Dx)).store(&xCoeff[0]); Sk8f(6*(Ax - 2*Bx + Cx)).store(&xCoeff[1]); Sk8f(3*(-Ax + Bx)).store(&xCoeff[2]); Sk8f(3*(-Ay + 3*(By - Cy) + Dy)).store(&yCoeff[0]); Sk8f(6*(Ay - 2*By + Cy)).store(&yCoeff[1]); Sk8f(3*(-Ay + By)).store(&yCoeff[2]); } break; case kConic_SegType: UNIMPLEMENTED; break; default: UNIMPLEMENTED; } } // We use Gaussian quadrature // (https://en.wikipedia.org/wiki/Gaussian_quadrature) // to approximate the arc length integral here, because it is amenable to SIMD. SkScalar ArcLengthIntegrator::computeLength(SkScalar t) { SkScalar length = 0.0f; Sk8f lengths = evaluateDerivativeLength(absc*t, xCoeff, yCoeff, fSegType); lengths = weights*lengths; // is it faster or more accurate to sum and then multiply or vice versa? lengths = lengths*(t*0.5f); // Why does SkNx index with ints? does negative index mean something? for (int i = 0; i < 8; i++) { length += lengths[i]; } return length; } SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType) : fSegType(segType) { switch (fSegType) { case SkSegType::kQuad_SegType: for (size_t i = 0; i < 3; i++) { fPts[i] = pts[i]; } break; case SkSegType::kLine_SegType: fPts[0] = pts[0]; fPts[1] = pts[1]; fLength = (fPts[1] - fPts[0]).length(); break; case SkSegType::kCubic_SegType: for (size_t i = 0; i < 4; i++) { fPts[i] = pts[i]; } break; case SkSegType::kConic_SegType: for (size_t i = 0; i < 4; i++) { fPts[i] = pts[i]; } break; default: UNIMPLEMENTED; break; } if (kLine_SegType != segType) { fIntegrator = ArcLengthIntegrator(fPts, fSegType); } } SkScalar SkCurveMeasure::getLength() { if (-1.0f == fLength) { fLength = fIntegrator.computeLength(1.0f); } return fLength; } // Given an arc length targetLength, we want to determine what t // gives us the corresponding arc length along the curve. // We do this by letting the arc length integral := f(t) and // solving for the root of the equation f(t) - targetLength = 0 // using Newton's method and lerp-bisection. // The computationally expensive parts are the integral approximation // at each step, and computing the derivative of the arc length integral, // which is equal to the length of the tangent (so we have to do a sqrt). SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { if (targetLength <= 0.0f) { return 0.0f; } SkScalar currentLength = getLength(); if (targetLength > currentLength || (SkScalarNearlyEqual(targetLength, currentLength))) { return 1.0f; } if (kLine_SegType == fSegType) { return targetLength / currentLength; } // initial estimate of t is percentage of total length SkScalar currentT = targetLength / currentLength; SkScalar prevT = -1.0f; SkScalar newT; SkScalar minT = 0.0f; SkScalar maxT = 1.0f; int iterations = 0; while (iterations < kNewtonIters + kBisectIters) { currentLength = fIntegrator.computeLength(currentT); SkScalar lengthDiff = currentLength - targetLength; // Update root bounds. // If lengthDiff is positive, we have overshot the target, so // we know the current t is an upper bound, and similarly // for the lower bound. if (lengthDiff > 0.0f) { if (currentT < maxT) { maxT = currentT; } } else { if (currentT > minT) { minT = currentT; } } // We have a tolerance on both the absolute value of the difference and // on the t value // because we may not have enough precision in the t to get close enough // in the length. if ((std::abs(lengthDiff) < kTolerance) || (std::abs(prevT - currentT) < kTolerance)) { break; } prevT = currentT; if (iterations < kNewtonIters) { // This is just newton's formula. SkScalar dt = evaluateDerivative(fPts, fSegType, currentT).length(); newT = currentT - (lengthDiff / dt); // If newT is out of bounds, bisect inside newton. if ((newT < 0.0f) || (newT > 1.0f)) { newT = (minT + maxT) * 0.5f; } } else if (iterations < kNewtonIters + kBisectIters) { if (lengthDiff > 0.0f) { maxT = currentT; } else { minT = currentT; } // TODO(hstern) do a lerp here instead of a bisection newT = (minT + maxT) * 0.5f; } else { SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n", currentT, currentLength)); break; } currentT = newT; SkASSERT(minT <= maxT); iterations++; } // debug. is there an SKDEBUG or something for ifdefs? fIters = iterations; return currentT; } void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos, SkVector* tan, SkScalar* time) { SkScalar t = getTime(targetLength); if (time) { *time = t; } if (pos) { *pos = evaluate(fPts, fSegType, t); } if (tan) { *tan = evaluateDerivative(fPts, fSegType, t); } }