//===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Mips FPU instruction set. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Floating Point Instructions // ------------------------ // * 64bit fp: // - 32 64-bit registers (default mode) // - 16 even 32-bit registers (32-bit compatible mode) for // single and double access. // * 32bit fp: // - 16 even 32-bit registers - single and double (aliased) // - 32 32-bit registers (within single-only mode) //===----------------------------------------------------------------------===// // Floating Point Compare and Branch def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>; def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>, SDTCisVT<2, i32>]>; def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>]>; def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, f64>, SDTCisVT<2, i32>]>; def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>; def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>; def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>; def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond, [SDNPHasChain, SDNPOptInGlue]>; def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>; def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64", SDT_MipsExtractElementF64>; // Operand for printing out a condition code. let PrintMethod = "printFCCOperand" in def condcode : Operand<i32>; //===----------------------------------------------------------------------===// // Feature predicates. //===----------------------------------------------------------------------===// def IsFP64bit : Predicate<"Subtarget.isFP64bit()">; def NotFP64bit : Predicate<"!Subtarget.isFP64bit()">; def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">; def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">; //===----------------------------------------------------------------------===// // Instruction Class Templates // // A set of multiclasses is used to address the register usage. // // S32 - single precision in 16 32bit even fp registers // single precision in 32 32bit fp registers in SingleOnly mode // S64 - single precision in 32 64bit fp registers (In64BitMode) // D32 - double precision in 16 32bit even fp registers // D64 - double precision in 32 64bit fp registers (In64BitMode) // // Only S32 and D32 are supported right now. //===----------------------------------------------------------------------===// // FP load. class FPLoad<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC, Operand MemOpnd>: FMem<op, (outs RC:$ft), (ins MemOpnd:$addr), !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (FOp addr:$addr))], IILoad>; // FP store. class FPStore<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC, Operand MemOpnd>: FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr), !strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)], IIStore>; // Instructions that convert an FP value to 32-bit fixed point. multiclass FFR1_W_M<bits<6> funct, string opstr> { def _S : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>; def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>, Requires<[NotFP64bit]>; def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>, Requires<[IsFP64bit]>; } // Instructions that convert an FP value to 64-bit fixed point. let Predicates = [IsFP64bit] in multiclass FFR1_L_M<bits<6> funct, string opstr> { def _S : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>; def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>; } // FP-to-FP conversion instructions. multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> { def _S : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>; def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>, Requires<[NotFP64bit]>; def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>, Requires<[IsFP64bit]>; } multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> { let isCommutable = isComm in { def _S : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>; def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>, Requires<[NotFP64bit]>; def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>, Requires<[IsFP64bit]>; } } //===----------------------------------------------------------------------===// // Floating Point Instructions //===----------------------------------------------------------------------===// defm ROUND_W : FFR1_W_M<0xc, "round">; defm ROUND_L : FFR1_L_M<0x8, "round">; defm TRUNC_W : FFR1_W_M<0xd, "trunc">; defm TRUNC_L : FFR1_L_M<0x9, "trunc">; defm CEIL_W : FFR1_W_M<0xe, "ceil">; defm CEIL_L : FFR1_L_M<0xa, "ceil">; defm FLOOR_W : FFR1_W_M<0xf, "floor">; defm FLOOR_L : FFR1_L_M<0xb, "floor">; defm CVT_W : FFR1_W_M<0x24, "cvt">; defm CVT_L : FFR1_L_M<0x25, "cvt">; def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>; let Predicates = [NotFP64bit] in { def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>; def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>; def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>; } let Predicates = [IsFP64bit] in { def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>; def CVT_S_L : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>; def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>; def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>; def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>; } defm FABS : FFR1P_M<0x5, "abs", fabs>; defm FNEG : FFR1P_M<0x7, "neg", fneg>; defm FSQRT : FFR1P_M<0x4, "sqrt", fsqrt>; // The odd-numbered registers are only referenced when doing loads, // stores, and moves between floating-point and integer registers. // When defining instructions, we reference all 32-bit registers, // regardless of register aliasing. class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>: FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> { bits<5> rt; let ft = rt; let fd = 0; } /// Move Control Registers From/To CPU Registers def CFC1 : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs), "cfc1\t$rt, $fs", []>; def CTC1 : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt), "ctc1\t$rt, $fs", []>; def MFC1 : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs), "mfc1\t$rt, $fs", [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>; def MTC1 : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt), "mtc1\t$rt, $fs", [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>; def FMOV_S : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>; def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>, Requires<[NotFP64bit]>; def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>, Requires<[IsFP64bit]>; /// Floating Point Memory Instructions let Predicates = [IsN64] in { def LWC1_P8 : FPLoad<0x31, "lwc1", load, FGR32, mem64>; def SWC1_P8 : FPStore<0x39, "swc1", store, FGR32, mem64>; def LDC164_P8 : FPLoad<0x35, "ldc1", load, FGR64, mem64>; def SDC164_P8 : FPStore<0x3d, "sdc1", store, FGR64, mem64>; } let Predicates = [NotN64] in { def LWC1 : FPLoad<0x31, "lwc1", load, FGR32, mem>; def SWC1 : FPStore<0x39, "swc1", store, FGR32, mem>; let Predicates = [HasMips64] in { def LDC164 : FPLoad<0x35, "ldc1", load, FGR64, mem>; def SDC164 : FPStore<0x3d, "sdc1", store, FGR64, mem>; } let Predicates = [NotMips64] in { def LDC1 : FPLoad<0x35, "ldc1", load, AFGR64, mem>; def SDC1 : FPStore<0x3d, "sdc1", store, AFGR64, mem>; } } /// Floating-point Aritmetic defm FADD : FFR2P_M<0x00, "add", fadd, 1>; defm FDIV : FFR2P_M<0x03, "div", fdiv>; defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>; defm FSUB : FFR2P_M<0x01, "sub", fsub>; //===----------------------------------------------------------------------===// // Floating Point Branch Codes //===----------------------------------------------------------------------===// // Mips branch codes. These correspond to condcode in MipsInstrInfo.h. // They must be kept in synch. def MIPS_BRANCH_F : PatLeaf<(i32 0)>; def MIPS_BRANCH_T : PatLeaf<(i32 1)>; /// Floating Point Branch of False/True (Likely) let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> : FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"), [(MipsFPBrcond op, bb:$dst)]> { let Inst{20-18} = 0; let Inst{17} = nd; let Inst{16} = tf; } def BC1F : FBRANCH<0, 0, MIPS_BRANCH_F, "bc1f">; def BC1T : FBRANCH<0, 1, MIPS_BRANCH_T, "bc1t">; //===----------------------------------------------------------------------===// // Floating Point Flag Conditions //===----------------------------------------------------------------------===// // Mips condition codes. They must correspond to condcode in MipsInstrInfo.h. // They must be kept in synch. def MIPS_FCOND_F : PatLeaf<(i32 0)>; def MIPS_FCOND_UN : PatLeaf<(i32 1)>; def MIPS_FCOND_OEQ : PatLeaf<(i32 2)>; def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>; def MIPS_FCOND_OLT : PatLeaf<(i32 4)>; def MIPS_FCOND_ULT : PatLeaf<(i32 5)>; def MIPS_FCOND_OLE : PatLeaf<(i32 6)>; def MIPS_FCOND_ULE : PatLeaf<(i32 7)>; def MIPS_FCOND_SF : PatLeaf<(i32 8)>; def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>; def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>; def MIPS_FCOND_NGL : PatLeaf<(i32 11)>; def MIPS_FCOND_LT : PatLeaf<(i32 12)>; def MIPS_FCOND_NGE : PatLeaf<(i32 13)>; def MIPS_FCOND_LE : PatLeaf<(i32 14)>; def MIPS_FCOND_NGT : PatLeaf<(i32 15)>; /// Floating Point Compare let Defs=[FCR31] in { def FCMP_S32 : FCC<0x10, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc), "c.$cc.s\t$fs, $ft", [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc)]>; def FCMP_D32 : FCC<0x11, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc), "c.$cc.d\t$fs, $ft", [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc)]>, Requires<[NotFP64bit]>; } // Conditional moves: // These instructions are expanded in // MipsISelLowering::EmitInstrWithCustomInserter if target does not have // conditional move instructions. // flag:int, data:float let usesCustomInserter = 1, Constraints = "$F = $dst" in class CondMovIntFP<RegisterClass RC, bits<5> fmt, bits<6> func, string instr_asm> : FFR<0x11, func, fmt, (outs RC:$dst), (ins RC:$T, CPURegs:$cond, RC:$F), !strconcat(instr_asm, "\t$dst, $T, $cond"), []>; def MOVZ_S : CondMovIntFP<FGR32, 16, 18, "movz.s">; def MOVN_S : CondMovIntFP<FGR32, 16, 19, "movn.s">; let Predicates = [NotFP64bit] in { def MOVZ_D : CondMovIntFP<AFGR64, 17, 18, "movz.d">; def MOVN_D : CondMovIntFP<AFGR64, 17, 19, "movn.d">; } defm : MovzPats<FGR32, MOVZ_S>; defm : MovnPats<FGR32, MOVN_S>; let Predicates = [NotFP64bit] in { defm : MovzPats<AFGR64, MOVZ_D>; defm : MovnPats<AFGR64, MOVN_D>; } let cc = 0, usesCustomInserter = 1, Uses = [FCR31], Constraints = "$F = $dst" in { // flag:float, data:int class CondMovFPInt<SDNode cmov, bits<1> tf, string instr_asm> : FCMOV<tf, (outs CPURegs:$dst), (ins CPURegs:$T, CPURegs:$F), !strconcat(instr_asm, "\t$dst, $T, $$fcc0"), [(set CPURegs:$dst, (cmov CPURegs:$T, CPURegs:$F))]>; // flag:float, data:float let cc = 0 in class CondMovFPFP<RegisterClass RC, SDNode cmov, bits<5> fmt, bits<1> tf, string instr_asm> : FFCMOV<fmt, tf, (outs RC:$dst), (ins RC:$T, RC:$F), !strconcat(instr_asm, "\t$dst, $T, $$fcc0"), [(set RC:$dst, (cmov RC:$T, RC:$F))]>; } def MOVT : CondMovFPInt<MipsCMovFP_T, 1, "movt">; def MOVF : CondMovFPInt<MipsCMovFP_F, 0, "movf">; def MOVT_S : CondMovFPFP<FGR32, MipsCMovFP_T, 16, 1, "movt.s">; def MOVF_S : CondMovFPFP<FGR32, MipsCMovFP_F, 16, 0, "movf.s">; let Predicates = [NotFP64bit] in { def MOVT_D : CondMovFPFP<AFGR64, MipsCMovFP_T, 17, 1, "movt.d">; def MOVF_D : CondMovFPFP<AFGR64, MipsCMovFP_F, 17, 0, "movf.d">; } //===----------------------------------------------------------------------===// // Floating Point Pseudo-Instructions //===----------------------------------------------------------------------===// def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src), "# MOVCCRToCCR", []>; // This pseudo instr gets expanded into 2 mtc1 instrs after register // allocation. def BuildPairF64 : MipsPseudo<(outs AFGR64:$dst), (ins CPURegs:$lo, CPURegs:$hi), "", [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>; // This pseudo instr gets expanded into 2 mfc1 instrs after register // allocation. // if n is 0, lower part of src is extracted. // if n is 1, higher part of src is extracted. def ExtractElementF64 : MipsPseudo<(outs CPURegs:$dst), (ins AFGR64:$src, i32imm:$n), "", [(set CPURegs:$dst, (MipsExtractElementF64 AFGR64:$src, imm:$n))]>; //===----------------------------------------------------------------------===// // Floating Point Patterns //===----------------------------------------------------------------------===// def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; def fpimm0neg : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; def : Pat<(f32 fpimm0), (MTC1 ZERO)>; def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>; def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>; def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>; def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>; def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>; let Predicates = [NotFP64bit] in { def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>; def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>; }