//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCAsmBackend.h" #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86FixupKinds.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCMachObjectWriter.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Object/MachOFormat.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ELF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // Option to allow disabling arithmetic relaxation to workaround PR9807, which // is useful when running bitwise comparison experiments on Darwin. We should be // able to remove this once PR9807 is resolved. static cl::opt<bool> MCDisableArithRelaxation("mc-x86-disable-arith-relaxation", cl::desc("Disable relaxation of arithmetic instruction for X86")); static unsigned getFixupKindLog2Size(unsigned Kind) { switch (Kind) { default: assert(0 && "invalid fixup kind!"); case FK_PCRel_1: case FK_Data_1: return 0; case FK_PCRel_2: case FK_Data_2: return 1; case FK_PCRel_4: case X86::reloc_riprel_4byte: case X86::reloc_riprel_4byte_movq_load: case X86::reloc_signed_4byte: case X86::reloc_global_offset_table: case FK_Data_4: return 2; case FK_PCRel_8: case FK_Data_8: return 3; } } namespace { class X86ELFObjectWriter : public MCELFObjectTargetWriter { public: X86ELFObjectWriter(bool is64Bit, Triple::OSType OSType, uint16_t EMachine, bool HasRelocationAddend) : MCELFObjectTargetWriter(is64Bit, OSType, EMachine, HasRelocationAddend) {} }; class X86AsmBackend : public MCAsmBackend { public: X86AsmBackend(const Target &T) : MCAsmBackend() {} unsigned getNumFixupKinds() const { return X86::NumTargetFixupKinds; } const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = { { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel}, { "reloc_signed_4byte", 0, 4 * 8, 0}, { "reloc_global_offset_table", 0, 4 * 8, 0} }; if (Kind < FirstTargetFixupKind) return MCAsmBackend::getFixupKindInfo(Kind); assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && "Invalid kind!"); return Infos[Kind - FirstTargetFixupKind]; } void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, uint64_t Value) const { unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind()); assert(Fixup.getOffset() + Size <= DataSize && "Invalid fixup offset!"); // Check that uppper bits are either all zeros or all ones. // Specifically ignore overflow/underflow as long as the leakage is // limited to the lower bits. This is to remain compatible with // other assemblers. assert(isIntN(Size * 8 + 1, Value) && "Value does not fit in the Fixup field"); for (unsigned i = 0; i != Size; ++i) Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); } bool MayNeedRelaxation(const MCInst &Inst) const; void RelaxInstruction(const MCInst &Inst, MCInst &Res) const; bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const; }; } // end anonymous namespace static unsigned getRelaxedOpcodeBranch(unsigned Op) { switch (Op) { default: return Op; case X86::JAE_1: return X86::JAE_4; case X86::JA_1: return X86::JA_4; case X86::JBE_1: return X86::JBE_4; case X86::JB_1: return X86::JB_4; case X86::JE_1: return X86::JE_4; case X86::JGE_1: return X86::JGE_4; case X86::JG_1: return X86::JG_4; case X86::JLE_1: return X86::JLE_4; case X86::JL_1: return X86::JL_4; case X86::JMP_1: return X86::JMP_4; case X86::JNE_1: return X86::JNE_4; case X86::JNO_1: return X86::JNO_4; case X86::JNP_1: return X86::JNP_4; case X86::JNS_1: return X86::JNS_4; case X86::JO_1: return X86::JO_4; case X86::JP_1: return X86::JP_4; case X86::JS_1: return X86::JS_4; } } static unsigned getRelaxedOpcodeArith(unsigned Op) { switch (Op) { default: return Op; // IMUL case X86::IMUL16rri8: return X86::IMUL16rri; case X86::IMUL16rmi8: return X86::IMUL16rmi; case X86::IMUL32rri8: return X86::IMUL32rri; case X86::IMUL32rmi8: return X86::IMUL32rmi; case X86::IMUL64rri8: return X86::IMUL64rri32; case X86::IMUL64rmi8: return X86::IMUL64rmi32; // AND case X86::AND16ri8: return X86::AND16ri; case X86::AND16mi8: return X86::AND16mi; case X86::AND32ri8: return X86::AND32ri; case X86::AND32mi8: return X86::AND32mi; case X86::AND64ri8: return X86::AND64ri32; case X86::AND64mi8: return X86::AND64mi32; // OR case X86::OR16ri8: return X86::OR16ri; case X86::OR16mi8: return X86::OR16mi; case X86::OR32ri8: return X86::OR32ri; case X86::OR32mi8: return X86::OR32mi; case X86::OR64ri8: return X86::OR64ri32; case X86::OR64mi8: return X86::OR64mi32; // XOR case X86::XOR16ri8: return X86::XOR16ri; case X86::XOR16mi8: return X86::XOR16mi; case X86::XOR32ri8: return X86::XOR32ri; case X86::XOR32mi8: return X86::XOR32mi; case X86::XOR64ri8: return X86::XOR64ri32; case X86::XOR64mi8: return X86::XOR64mi32; // ADD case X86::ADD16ri8: return X86::ADD16ri; case X86::ADD16mi8: return X86::ADD16mi; case X86::ADD32ri8: return X86::ADD32ri; case X86::ADD32mi8: return X86::ADD32mi; case X86::ADD64ri8: return X86::ADD64ri32; case X86::ADD64mi8: return X86::ADD64mi32; // SUB case X86::SUB16ri8: return X86::SUB16ri; case X86::SUB16mi8: return X86::SUB16mi; case X86::SUB32ri8: return X86::SUB32ri; case X86::SUB32mi8: return X86::SUB32mi; case X86::SUB64ri8: return X86::SUB64ri32; case X86::SUB64mi8: return X86::SUB64mi32; // CMP case X86::CMP16ri8: return X86::CMP16ri; case X86::CMP16mi8: return X86::CMP16mi; case X86::CMP32ri8: return X86::CMP32ri; case X86::CMP32mi8: return X86::CMP32mi; case X86::CMP64ri8: return X86::CMP64ri32; case X86::CMP64mi8: return X86::CMP64mi32; // PUSH case X86::PUSHi8: return X86::PUSHi32; case X86::PUSHi16: return X86::PUSHi32; case X86::PUSH64i8: return X86::PUSH64i32; case X86::PUSH64i16: return X86::PUSH64i32; } } static unsigned getRelaxedOpcode(unsigned Op) { unsigned R = getRelaxedOpcodeArith(Op); if (R != Op) return R; return getRelaxedOpcodeBranch(Op); } bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const { // Branches can always be relaxed. if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode()) return true; if (MCDisableArithRelaxation) return false; // Check if this instruction is ever relaxable. if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode()) return false; // Check if it has an expression and is not RIP relative. bool hasExp = false; bool hasRIP = false; for (unsigned i = 0; i < Inst.getNumOperands(); ++i) { const MCOperand &Op = Inst.getOperand(i); if (Op.isExpr()) hasExp = true; if (Op.isReg() && Op.getReg() == X86::RIP) hasRIP = true; } // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on // how we do relaxations? return hasExp && !hasRIP; } // FIXME: Can tblgen help at all here to verify there aren't other instructions // we can relax? void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const { // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); if (RelaxedOp == Inst.getOpcode()) { SmallString<256> Tmp; raw_svector_ostream OS(Tmp); Inst.dump_pretty(OS); OS << "\n"; report_fatal_error("unexpected instruction to relax: " + OS.str()); } Res = Inst; Res.setOpcode(RelaxedOp); } /// WriteNopData - Write optimal nops to the output file for the \arg Count /// bytes. This returns the number of bytes written. It may return 0 if /// the \arg Count is more than the maximum optimal nops. bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const { static const uint8_t Nops[10][10] = { // nop {0x90}, // xchg %ax,%ax {0x66, 0x90}, // nopl (%[re]ax) {0x0f, 0x1f, 0x00}, // nopl 0(%[re]ax) {0x0f, 0x1f, 0x40, 0x00}, // nopl 0(%[re]ax,%[re]ax,1) {0x0f, 0x1f, 0x44, 0x00, 0x00}, // nopw 0(%[re]ax,%[re]ax,1) {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, // nopl 0L(%[re]ax) {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, // nopl 0L(%[re]ax,%[re]ax,1) {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, // nopw 0L(%[re]ax,%[re]ax,1) {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, // nopw %cs:0L(%[re]ax,%[re]ax,1) {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, }; // Write an optimal sequence for the first 15 bytes. const uint64_t OptimalCount = (Count < 16) ? Count : 15; const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10; for (uint64_t i = 0, e = Prefixes; i != e; i++) OW->Write8(0x66); const uint64_t Rest = OptimalCount - Prefixes; for (uint64_t i = 0, e = Rest; i != e; i++) OW->Write8(Nops[Rest - 1][i]); // Finish with single byte nops. for (uint64_t i = OptimalCount, e = Count; i != e; ++i) OW->Write8(0x90); return true; } /* *** */ namespace { class ELFX86AsmBackend : public X86AsmBackend { public: Triple::OSType OSType; ELFX86AsmBackend(const Target &T, Triple::OSType _OSType) : X86AsmBackend(T), OSType(_OSType) { HasReliableSymbolDifference = true; } virtual bool doesSectionRequireSymbols(const MCSection &Section) const { const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section); return ES.getFlags() & ELF::SHF_MERGE; } }; class ELFX86_32AsmBackend : public ELFX86AsmBackend { public: ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType) : ELFX86AsmBackend(T, OSType) {} MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createELFObjectWriter(createELFObjectTargetWriter(), OS, /*IsLittleEndian*/ true); } MCELFObjectTargetWriter *createELFObjectTargetWriter() const { return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false); } }; class ELFX86_64AsmBackend : public ELFX86AsmBackend { public: ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType) : ELFX86AsmBackend(T, OSType) {} MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createELFObjectWriter(createELFObjectTargetWriter(), OS, /*IsLittleEndian*/ true); } MCELFObjectTargetWriter *createELFObjectTargetWriter() const { return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true); } }; class WindowsX86AsmBackend : public X86AsmBackend { bool Is64Bit; public: WindowsX86AsmBackend(const Target &T, bool is64Bit) : X86AsmBackend(T) , Is64Bit(is64Bit) { } MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createWinCOFFObjectWriter(OS, Is64Bit); } }; class DarwinX86AsmBackend : public X86AsmBackend { public: DarwinX86AsmBackend(const Target &T) : X86AsmBackend(T) { } }; class DarwinX86_32AsmBackend : public DarwinX86AsmBackend { public: DarwinX86_32AsmBackend(const Target &T) : DarwinX86AsmBackend(T) {} MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createX86MachObjectWriter(OS, /*Is64Bit=*/false, object::mach::CTM_i386, object::mach::CSX86_ALL); } }; class DarwinX86_64AsmBackend : public DarwinX86AsmBackend { public: DarwinX86_64AsmBackend(const Target &T) : DarwinX86AsmBackend(T) { HasReliableSymbolDifference = true; } MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createX86MachObjectWriter(OS, /*Is64Bit=*/true, object::mach::CTM_x86_64, object::mach::CSX86_ALL); } virtual bool doesSectionRequireSymbols(const MCSection &Section) const { // Temporary labels in the string literals sections require symbols. The // issue is that the x86_64 relocation format does not allow symbol + // offset, and so the linker does not have enough information to resolve the // access to the appropriate atom unless an external relocation is used. For // non-cstring sections, we expect the compiler to use a non-temporary label // for anything that could have an addend pointing outside the symbol. // // See <rdar://problem/4765733>. const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section); return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS; } virtual bool isSectionAtomizable(const MCSection &Section) const { const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section); // Fixed sized data sections are uniqued, they cannot be diced into atoms. switch (SMO.getType()) { default: return true; case MCSectionMachO::S_4BYTE_LITERALS: case MCSectionMachO::S_8BYTE_LITERALS: case MCSectionMachO::S_16BYTE_LITERALS: case MCSectionMachO::S_LITERAL_POINTERS: case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS: case MCSectionMachO::S_LAZY_SYMBOL_POINTERS: case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS: case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS: case MCSectionMachO::S_INTERPOSING: return false; } } }; } // end anonymous namespace MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT) { Triple TheTriple(TT); if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) return new DarwinX86_32AsmBackend(T); if (TheTriple.isOSWindows()) return new WindowsX86AsmBackend(T, false); return new ELFX86_32AsmBackend(T, TheTriple.getOS()); } MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT) { Triple TheTriple(TT); if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) return new DarwinX86_64AsmBackend(T); if (TheTriple.isOSWindows()) return new WindowsX86AsmBackend(T, true); return new ELFX86_64AsmBackend(T, TheTriple.getOS()); }