//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Define several functions to decode x86 specific shuffle semantics into a // generic vector mask. // //===----------------------------------------------------------------------===// #include "X86ShuffleDecode.h" //===----------------------------------------------------------------------===// // Vector Mask Decoding //===----------------------------------------------------------------------===// namespace llvm { void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { // Defaults the copying the dest value. ShuffleMask.push_back(0); ShuffleMask.push_back(1); ShuffleMask.push_back(2); ShuffleMask.push_back(3); // Decode the immediate. unsigned ZMask = Imm & 15; unsigned CountD = (Imm >> 4) & 3; unsigned CountS = (Imm >> 6) & 3; // CountS selects which input element to use. unsigned InVal = 4+CountS; // CountD specifies which element of destination to update. ShuffleMask[CountD] = InVal; // ZMask zaps values, potentially overriding the CountD elt. if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero; if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero; if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero; if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero; } // <3,1> or <6,7,2,3> void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { for (unsigned i = NElts/2; i != NElts; ++i) ShuffleMask.push_back(NElts+i); for (unsigned i = NElts/2; i != NElts; ++i) ShuffleMask.push_back(i); } // <0,2> or <0,1,4,5> void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { for (unsigned i = 0; i != NElts/2; ++i) ShuffleMask.push_back(i); for (unsigned i = 0; i != NElts/2; ++i) ShuffleMask.push_back(NElts+i); } void DecodePSHUFMask(unsigned NElts, unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { for (unsigned i = 0; i != NElts; ++i) { ShuffleMask.push_back(Imm % NElts); Imm /= NElts; } } void DecodePSHUFHWMask(unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { ShuffleMask.push_back(0); ShuffleMask.push_back(1); ShuffleMask.push_back(2); ShuffleMask.push_back(3); for (unsigned i = 0; i != 4; ++i) { ShuffleMask.push_back(4+(Imm & 3)); Imm >>= 2; } } void DecodePSHUFLWMask(unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { for (unsigned i = 0; i != 4; ++i) { ShuffleMask.push_back((Imm & 3)); Imm >>= 2; } ShuffleMask.push_back(4); ShuffleMask.push_back(5); ShuffleMask.push_back(6); ShuffleMask.push_back(7); } void DecodePUNPCKLBWMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i8, NElts), ShuffleMask); } void DecodePUNPCKLWDMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i16, NElts), ShuffleMask); } void DecodePUNPCKLDQMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask); } void DecodePUNPCKLQDQMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask); } void DecodePUNPCKLMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) { DecodeUNPCKLPMask(VT, ShuffleMask); } void DecodePUNPCKHMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { for (unsigned i = 0; i != NElts/2; ++i) { ShuffleMask.push_back(i+NElts/2); ShuffleMask.push_back(i+NElts+NElts/2); } } void DecodeSHUFPSMask(unsigned NElts, unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { // Part that reads from dest. for (unsigned i = 0; i != NElts/2; ++i) { ShuffleMask.push_back(Imm % NElts); Imm /= NElts; } // Part that reads from src. for (unsigned i = 0; i != NElts/2; ++i) { ShuffleMask.push_back(Imm % NElts + NElts); Imm /= NElts; } } void DecodeUNPCKHPMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { for (unsigned i = 0; i != NElts/2; ++i) { ShuffleMask.push_back(i+NElts/2); // Reads from dest ShuffleMask.push_back(i+NElts+NElts/2); // Reads from src } } void DecodeUNPCKLPSMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask); } void DecodeUNPCKLPDMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask) { DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask); } /// DecodeUNPCKLPMask - This decodes the shuffle masks for unpcklps/unpcklpd /// etc. VT indicates the type of the vector allowing it to handle different /// datatypes and vector widths. void DecodeUNPCKLPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate // independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits() / 128; if (NumLanes == 0 ) NumLanes = 1; // Handle MMX unsigned NumLaneElts = NumElts / NumLanes; unsigned Start = 0; unsigned End = NumLaneElts / 2; for (unsigned s = 0; s < NumLanes; ++s) { for (unsigned i = Start; i != End; ++i) { ShuffleMask.push_back(i); // Reads from dest/src1 ShuffleMask.push_back(i+NumLaneElts); // Reads from src/src2 } // Process the next 128 bits. Start += NumLaneElts; End += NumLaneElts; } } // DecodeVPERMILPSMask - Decodes VPERMILPS permutes for any 128-bit 32-bit // elements. For 256-bit vectors, it's considered as two 128 lanes, the // referenced elements can't cross lanes and the mask of the first lane must // be the same of the second. void DecodeVPERMILPSMask(unsigned NumElts, unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { unsigned NumLanes = (NumElts*32)/128; unsigned LaneSize = NumElts/NumLanes; for (unsigned l = 0; l != NumLanes; ++l) { for (unsigned i = 0; i != LaneSize; ++i) { unsigned Idx = (Imm >> (i*2)) & 0x3 ; ShuffleMask.push_back(Idx+(l*LaneSize)); } } } // DecodeVPERMILPDMask - Decodes VPERMILPD permutes for any 128-bit 64-bit // elements. For 256-bit vectors, it's considered as two 128 lanes, the // referenced elements can't cross lanes but the mask of the first lane can // be the different of the second (not like VPERMILPS). void DecodeVPERMILPDMask(unsigned NumElts, unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { unsigned NumLanes = (NumElts*64)/128; unsigned LaneSize = NumElts/NumLanes; for (unsigned l = 0; l < NumLanes; ++l) { for (unsigned i = l*LaneSize; i < LaneSize*(l+1); ++i) { unsigned Idx = (Imm >> i) & 0x1; ShuffleMask.push_back(Idx+(l*LaneSize)); } } } void DecodeVPERM2F128Mask(EVT VT, unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { unsigned HalfSize = VT.getVectorNumElements()/2; unsigned FstHalfBegin = (Imm & 0x3) * HalfSize; unsigned SndHalfBegin = ((Imm >> 4) & 0x3) * HalfSize; for (int i = FstHalfBegin, e = FstHalfBegin+HalfSize; i != e; ++i) ShuffleMask.push_back(i); for (int i = SndHalfBegin, e = SndHalfBegin+HalfSize; i != e; ++i) ShuffleMask.push_back(i); } void DecodeVPERM2F128Mask(unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { // VPERM2F128 is used by any 256-bit EVT, but X86InstComments only // has information about the instruction and not the types. So for // instruction comments purpose, assume the 256-bit vector is v4i64. return DecodeVPERM2F128Mask(MVT::v4i64, Imm, ShuffleMask); } } // llvm namespace