//===-- PerfectShuffle.cpp - Perfect Shuffle Generator --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file computes an optimal sequence of instructions for doing all shuffles // of two 4-element vectors. With a release build and when configured to emit // an altivec instruction table, this takes about 30s to run on a 2.7Ghz // PowerPC G5. // //===----------------------------------------------------------------------===// #include <iostream> #include <iomanip> #include <vector> #include <cassert> #include <cstdlib> struct Operator; // Masks are 4-nibble hex numbers. Values 0-7 in any nibble means that it takes // an element from that value of the input vectors. A value of 8 means the // entry is undefined. // Mask manipulation functions. static inline unsigned short MakeMask(unsigned V0, unsigned V1, unsigned V2, unsigned V3) { return (V0 << (3*4)) | (V1 << (2*4)) | (V2 << (1*4)) | (V3 << (0*4)); } /// getMaskElt - Return element N of the specified mask. static unsigned getMaskElt(unsigned Mask, unsigned Elt) { return (Mask >> ((3-Elt)*4)) & 0xF; } static unsigned setMaskElt(unsigned Mask, unsigned Elt, unsigned NewVal) { unsigned FieldShift = ((3-Elt)*4); return (Mask & ~(0xF << FieldShift)) | (NewVal << FieldShift); } // Reject elements where the values are 9-15. static bool isValidMask(unsigned short Mask) { unsigned short UndefBits = Mask & 0x8888; return (Mask & ((UndefBits >> 1)|(UndefBits>>2)|(UndefBits>>3))) == 0; } /// hasUndefElements - Return true if any of the elements in the mask are undefs /// static bool hasUndefElements(unsigned short Mask) { return (Mask & 0x8888) != 0; } /// isOnlyLHSMask - Return true if this mask only refers to its LHS, not /// including undef values.. static bool isOnlyLHSMask(unsigned short Mask) { return (Mask & 0x4444) == 0; } /// getLHSOnlyMask - Given a mask that refers to its LHS and RHS, modify it to /// refer to the LHS only (for when one argument value is passed into the same /// function twice). #if 0 static unsigned short getLHSOnlyMask(unsigned short Mask) { return Mask & 0xBBBB; // Keep only LHS and Undefs. } #endif /// getCompressedMask - Turn a 16-bit uncompressed mask (where each elt uses 4 /// bits) into a compressed 13-bit mask, where each elt is multiplied by 9. static unsigned getCompressedMask(unsigned short Mask) { return getMaskElt(Mask, 0)*9*9*9 + getMaskElt(Mask, 1)*9*9 + getMaskElt(Mask, 2)*9 + getMaskElt(Mask, 3); } static void PrintMask(unsigned i, std::ostream &OS) { OS << "<" << (char)(getMaskElt(i, 0) == 8 ? 'u' : ('0'+getMaskElt(i, 0))) << "," << (char)(getMaskElt(i, 1) == 8 ? 'u' : ('0'+getMaskElt(i, 1))) << "," << (char)(getMaskElt(i, 2) == 8 ? 'u' : ('0'+getMaskElt(i, 2))) << "," << (char)(getMaskElt(i, 3) == 8 ? 'u' : ('0'+getMaskElt(i, 3))) << ">"; } /// ShuffleVal - This represents a shufflevector operation. struct ShuffleVal { unsigned Cost; // Number of instrs used to generate this value. Operator *Op; // The Operation used to generate this value. unsigned short Arg0, Arg1; // Input operands for this value. ShuffleVal() : Cost(1000000) {} }; /// ShufTab - This is the actual shuffle table that we are trying to generate. /// static ShuffleVal ShufTab[65536]; /// TheOperators - All of the operators that this target supports. static std::vector<Operator*> TheOperators; /// Operator - This is a vector operation that is available for use. struct Operator { unsigned short ShuffleMask; unsigned short OpNum; const char *Name; unsigned Cost; Operator(unsigned short shufflemask, const char *name, unsigned opnum, unsigned cost = 1) : ShuffleMask(shufflemask), OpNum(opnum), Name(name), Cost(cost) { TheOperators.push_back(this); } ~Operator() { assert(TheOperators.back() == this); TheOperators.pop_back(); } bool isOnlyLHSOperator() const { return isOnlyLHSMask(ShuffleMask); } const char *getName() const { return Name; } unsigned getCost() const { return Cost; } unsigned short getTransformedMask(unsigned short LHSMask, unsigned RHSMask) { // Extract the elements from LHSMask and RHSMask, as appropriate. unsigned Result = 0; for (unsigned i = 0; i != 4; ++i) { unsigned SrcElt = (ShuffleMask >> (4*i)) & 0xF; unsigned ResElt; if (SrcElt < 4) ResElt = getMaskElt(LHSMask, SrcElt); else if (SrcElt < 8) ResElt = getMaskElt(RHSMask, SrcElt-4); else { assert(SrcElt == 8 && "Bad src elt!"); ResElt = 8; } Result |= ResElt << (4*i); } return Result; } }; static const char *getZeroCostOpName(unsigned short Op) { if (ShufTab[Op].Arg0 == 0x0123) return "LHS"; else if (ShufTab[Op].Arg0 == 0x4567) return "RHS"; else { assert(0 && "bad zero cost operation"); abort(); } } static void PrintOperation(unsigned ValNo, unsigned short Vals[]) { unsigned short ThisOp = Vals[ValNo]; std::cerr << "t" << ValNo; PrintMask(ThisOp, std::cerr); std::cerr << " = " << ShufTab[ThisOp].Op->getName() << "("; if (ShufTab[ShufTab[ThisOp].Arg0].Cost == 0) { std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg0); PrintMask(ShufTab[ThisOp].Arg0, std::cerr); } else { // Figure out what tmp # it is. for (unsigned i = 0; ; ++i) if (Vals[i] == ShufTab[ThisOp].Arg0) { std::cerr << "t" << i; break; } } if (!ShufTab[Vals[ValNo]].Op->isOnlyLHSOperator()) { std::cerr << ", "; if (ShufTab[ShufTab[ThisOp].Arg1].Cost == 0) { std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg1); PrintMask(ShufTab[ThisOp].Arg1, std::cerr); } else { // Figure out what tmp # it is. for (unsigned i = 0; ; ++i) if (Vals[i] == ShufTab[ThisOp].Arg1) { std::cerr << "t" << i; break; } } } std::cerr << ") "; } static unsigned getNumEntered() { unsigned Count = 0; for (unsigned i = 0; i != 65536; ++i) Count += ShufTab[i].Cost < 100; return Count; } static void EvaluateOps(unsigned short Elt, unsigned short Vals[], unsigned &NumVals) { if (ShufTab[Elt].Cost == 0) return; // If this value has already been evaluated, it is free. FIXME: match undefs. for (unsigned i = 0, e = NumVals; i != e; ++i) if (Vals[i] == Elt) return; // Otherwise, get the operands of the value, then add it. unsigned Arg0 = ShufTab[Elt].Arg0, Arg1 = ShufTab[Elt].Arg1; if (ShufTab[Arg0].Cost) EvaluateOps(Arg0, Vals, NumVals); if (Arg0 != Arg1 && ShufTab[Arg1].Cost) EvaluateOps(Arg1, Vals, NumVals); Vals[NumVals++] = Elt; } int main() { // Seed the table with accesses to the LHS and RHS. ShufTab[0x0123].Cost = 0; ShufTab[0x0123].Op = 0; ShufTab[0x0123].Arg0 = 0x0123; ShufTab[0x4567].Cost = 0; ShufTab[0x4567].Op = 0; ShufTab[0x4567].Arg0 = 0x4567; // Seed the first-level of shuffles, shuffles whose inputs are the input to // the vectorshuffle operation. bool MadeChange = true; unsigned OpCount = 0; while (MadeChange) { MadeChange = false; ++OpCount; std::cerr << "Starting iteration #" << OpCount << " with " << getNumEntered() << " entries established.\n"; // Scan the table for two reasons: First, compute the maximum cost of any // operation left in the table. Second, make sure that values with undefs // have the cheapest alternative that they match. unsigned MaxCost = ShufTab[0].Cost; for (unsigned i = 1; i != 0x8889; ++i) { if (!isValidMask(i)) continue; if (ShufTab[i].Cost > MaxCost) MaxCost = ShufTab[i].Cost; // If this value has an undef, make it be computed the cheapest possible // way of any of the things that it matches. if (hasUndefElements(i)) { // This code is a little bit tricky, so here's the idea: consider some // permutation, like 7u4u. To compute the lowest cost for 7u4u, we // need to take the minimum cost of all of 7[0-8]4[0-8], 81 entries. If // there are 3 undefs, the number rises to 729 entries we have to scan, // and for the 4 undef case, we have to scan the whole table. // // Instead of doing this huge amount of scanning, we process the table // entries *in order*, and use the fact that 'u' is 8, larger than any // valid index. Given an entry like 7u4u then, we only need to scan // 7[0-7]4u - 8 entries. We can get away with this, because we already // know that each of 704u, 714u, 724u, etc contain the minimum value of // all of the 704[0-8], 714[0-8] and 724[0-8] entries respectively. unsigned UndefIdx; if (i & 0x8000) UndefIdx = 0; else if (i & 0x0800) UndefIdx = 1; else if (i & 0x0080) UndefIdx = 2; else if (i & 0x0008) UndefIdx = 3; else abort(); unsigned MinVal = i; unsigned MinCost = ShufTab[i].Cost; // Scan the 8 entries. for (unsigned j = 0; j != 8; ++j) { unsigned NewElt = setMaskElt(i, UndefIdx, j); if (ShufTab[NewElt].Cost < MinCost) { MinCost = ShufTab[NewElt].Cost; MinVal = NewElt; } } // If we found something cheaper than what was here before, use it. if (i != MinVal) { MadeChange = true; ShufTab[i] = ShufTab[MinVal]; } } } for (unsigned LHS = 0; LHS != 0x8889; ++LHS) { if (!isValidMask(LHS)) continue; if (ShufTab[LHS].Cost > 1000) continue; // If nothing involving this operand could possibly be cheaper than what // we already have, don't consider it. if (ShufTab[LHS].Cost + 1 >= MaxCost) continue; for (unsigned opnum = 0, e = TheOperators.size(); opnum != e; ++opnum) { Operator *Op = TheOperators[opnum]; // Evaluate op(LHS,LHS) unsigned ResultMask = Op->getTransformedMask(LHS, LHS); unsigned Cost = ShufTab[LHS].Cost + Op->getCost(); if (Cost < ShufTab[ResultMask].Cost) { ShufTab[ResultMask].Cost = Cost; ShufTab[ResultMask].Op = Op; ShufTab[ResultMask].Arg0 = LHS; ShufTab[ResultMask].Arg1 = LHS; MadeChange = true; } // If this is a two input instruction, include the op(x,y) cases. If // this is a one input instruction, skip this. if (Op->isOnlyLHSOperator()) continue; for (unsigned RHS = 0; RHS != 0x8889; ++RHS) { if (!isValidMask(RHS)) continue; if (ShufTab[RHS].Cost > 1000) continue; // If nothing involving this operand could possibly be cheaper than // what we already have, don't consider it. if (ShufTab[RHS].Cost + 1 >= MaxCost) continue; // Evaluate op(LHS,RHS) unsigned ResultMask = Op->getTransformedMask(LHS, RHS); if (ShufTab[ResultMask].Cost <= OpCount || ShufTab[ResultMask].Cost <= ShufTab[LHS].Cost || ShufTab[ResultMask].Cost <= ShufTab[RHS].Cost) continue; // Figure out the cost to evaluate this, knowing that CSE's only need // to be evaluated once. unsigned short Vals[30]; unsigned NumVals = 0; EvaluateOps(LHS, Vals, NumVals); EvaluateOps(RHS, Vals, NumVals); unsigned Cost = NumVals + Op->getCost(); if (Cost < ShufTab[ResultMask].Cost) { ShufTab[ResultMask].Cost = Cost; ShufTab[ResultMask].Op = Op; ShufTab[ResultMask].Arg0 = LHS; ShufTab[ResultMask].Arg1 = RHS; MadeChange = true; } } } } } std::cerr << "Finished Table has " << getNumEntered() << " entries established.\n"; unsigned CostArray[10] = { 0 }; // Compute a cost histogram. for (unsigned i = 0; i != 65536; ++i) { if (!isValidMask(i)) continue; if (ShufTab[i].Cost > 9) ++CostArray[9]; else ++CostArray[ShufTab[i].Cost]; } for (unsigned i = 0; i != 9; ++i) if (CostArray[i]) std::cout << "// " << CostArray[i] << " entries have cost " << i << "\n"; if (CostArray[9]) std::cout << "// " << CostArray[9] << " entries have higher cost!\n"; // Build up the table to emit. std::cout << "\n// This table is 6561*4 = 26244 bytes in size.\n"; std::cout << "static const unsigned PerfectShuffleTable[6561+1] = {\n"; for (unsigned i = 0; i != 0x8889; ++i) { if (!isValidMask(i)) continue; // CostSat - The cost of this operation saturated to two bits. unsigned CostSat = ShufTab[i].Cost; if (CostSat > 4) CostSat = 4; if (CostSat == 0) CostSat = 1; --CostSat; // Cost is now between 0-3. unsigned OpNum = ShufTab[i].Op ? ShufTab[i].Op->OpNum : 0; assert(OpNum < 16 && "Too few bits to encode operation!"); unsigned LHS = getCompressedMask(ShufTab[i].Arg0); unsigned RHS = getCompressedMask(ShufTab[i].Arg1); // Encode this as 2 bits of saturated cost, 4 bits of opcodes, 13 bits of // LHS, and 13 bits of RHS = 32 bits. unsigned Val = (CostSat << 30) | (OpNum << 26) | (LHS << 13) | RHS; std::cout << " " << std::setw(10) << Val << "U, // "; PrintMask(i, std::cout); std::cout << ": Cost " << ShufTab[i].Cost; std::cout << " " << (ShufTab[i].Op ? ShufTab[i].Op->getName() : "copy"); std::cout << " "; if (ShufTab[ShufTab[i].Arg0].Cost == 0) { std::cout << getZeroCostOpName(ShufTab[i].Arg0); } else { PrintMask(ShufTab[i].Arg0, std::cout); } if (ShufTab[i].Op && !ShufTab[i].Op->isOnlyLHSOperator()) { std::cout << ", "; if (ShufTab[ShufTab[i].Arg1].Cost == 0) { std::cout << getZeroCostOpName(ShufTab[i].Arg1); } else { PrintMask(ShufTab[i].Arg1, std::cout); } } std::cout << "\n"; } std::cout << " 0\n};\n"; if (0) { // Print out the table. for (unsigned i = 0; i != 0x8889; ++i) { if (!isValidMask(i)) continue; if (ShufTab[i].Cost < 1000) { PrintMask(i, std::cerr); std::cerr << " - Cost " << ShufTab[i].Cost << " - "; unsigned short Vals[30]; unsigned NumVals = 0; EvaluateOps(i, Vals, NumVals); for (unsigned j = 0, e = NumVals; j != e; ++j) PrintOperation(j, Vals); std::cerr << "\n"; } } } } #ifdef GENERATE_ALTIVEC ///===---------------------------------------------------------------------===// /// The altivec instruction definitions. This is the altivec-specific part of /// this file. ///===---------------------------------------------------------------------===// // Note that the opcode numbers here must match those in the PPC backend. enum { OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> OP_VMRGHW, OP_VMRGLW, OP_VSPLTISW0, OP_VSPLTISW1, OP_VSPLTISW2, OP_VSPLTISW3, OP_VSLDOI4, OP_VSLDOI8, OP_VSLDOI12 }; struct vmrghw : public Operator { vmrghw() : Operator(0x0415, "vmrghw", OP_VMRGHW) {} } the_vmrghw; struct vmrglw : public Operator { vmrglw() : Operator(0x2637, "vmrglw", OP_VMRGLW) {} } the_vmrglw; template<unsigned Elt> struct vspltisw : public Operator { vspltisw(const char *N, unsigned Opc) : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {} }; vspltisw<0> the_vspltisw0("vspltisw0", OP_VSPLTISW0); vspltisw<1> the_vspltisw1("vspltisw1", OP_VSPLTISW1); vspltisw<2> the_vspltisw2("vspltisw2", OP_VSPLTISW2); vspltisw<3> the_vspltisw3("vspltisw3", OP_VSPLTISW3); template<unsigned N> struct vsldoi : public Operator { vsldoi(const char *Name, unsigned Opc) : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) { } }; vsldoi<1> the_vsldoi1("vsldoi4" , OP_VSLDOI4); vsldoi<2> the_vsldoi2("vsldoi8" , OP_VSLDOI8); vsldoi<3> the_vsldoi3("vsldoi12", OP_VSLDOI12); #endif #define GENERATE_NEON #ifdef GENERATE_NEON enum { OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> OP_VREV, OP_VDUP0, OP_VDUP1, OP_VDUP2, OP_VDUP3, OP_VEXT1, OP_VEXT2, OP_VEXT3, OP_VUZPL, // VUZP, left result OP_VUZPR, // VUZP, right result OP_VZIPL, // VZIP, left result OP_VZIPR, // VZIP, right result OP_VTRNL, // VTRN, left result OP_VTRNR // VTRN, right result }; struct vrev : public Operator { vrev() : Operator(0x1032, "vrev", OP_VREV) {} } the_vrev; template<unsigned Elt> struct vdup : public Operator { vdup(const char *N, unsigned Opc) : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {} }; vdup<0> the_vdup0("vdup0", OP_VDUP0); vdup<1> the_vdup1("vdup1", OP_VDUP1); vdup<2> the_vdup2("vdup2", OP_VDUP2); vdup<3> the_vdup3("vdup3", OP_VDUP3); template<unsigned N> struct vext : public Operator { vext(const char *Name, unsigned Opc) : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) { } }; vext<1> the_vext1("vext1", OP_VEXT1); vext<2> the_vext2("vext2", OP_VEXT2); vext<3> the_vext3("vext3", OP_VEXT3); struct vuzpl : public Operator { vuzpl() : Operator(0x0246, "vuzpl", OP_VUZPL, 2) {} } the_vuzpl; struct vuzpr : public Operator { vuzpr() : Operator(0x1357, "vuzpr", OP_VUZPR, 2) {} } the_vuzpr; struct vzipl : public Operator { vzipl() : Operator(0x0415, "vzipl", OP_VZIPL, 2) {} } the_vzipl; struct vzipr : public Operator { vzipr() : Operator(0x2637, "vzipr", OP_VZIPR, 2) {} } the_vzipr; struct vtrnl : public Operator { vtrnl() : Operator(0x0426, "vtrnl", OP_VTRNL, 2) {} } the_vtrnl; struct vtrnr : public Operator { vtrnr() : Operator(0x1537, "vtrnr", OP_VTRNR, 2) {} } the_vtrnr; #endif