/* * Portions of this file taken from the Linux kernel, * Copyright 1991-2009 Linus Torvalds and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <stdio.h> #include <string.h> #include "cpuid.h" const char *cpu_flags_names[] = { CPU_FLAGS(STRUCT_MEMBER_NAMES) }; size_t cpu_flags_offset[] = { CPU_FLAGS(STRUCTURE_MEMBER_OFFSETS) }; size_t cpu_flags_count = sizeof cpu_flags_names / sizeof *cpu_flags_names; struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = { }; bool get_cpu_flag_value_from_name(s_cpu *cpu, const char * flag_name) { size_t i; bool cpu_flag_present=false, *flag_value = &cpu_flag_present; for (i = 0; i < cpu_flags_count; i++) { if (strcmp(cpu_flags_names[i],flag_name) == 0) { flag_value = (bool *)((char *)&cpu->flags + cpu_flags_offset[i]); } } return *flag_value; } /* * CPUID functions returning a single datum */ /* Probe for the CPUID instruction */ static int have_cpuid_p(void) { return cpu_has_eflag(X86_EFLAGS_ID); } static struct cpu_dev amd_cpu_dev = { .c_vendor = "AMD", .c_ident = {"AuthenticAMD"} }; static struct cpu_dev intel_cpu_dev = { .c_vendor = "Intel", .c_ident = {"GenuineIntel"} }; static struct cpu_dev cyrix_cpu_dev = { .c_vendor = "Cyrix", .c_ident = {"CyrixInstead"} }; static struct cpu_dev umc_cpu_dev = { .c_vendor = "UMC", .c_ident = {"UMC UMC UMC"} }; static struct cpu_dev nexgen_cpu_dev = { .c_vendor = "Nexgen", .c_ident = {"NexGenDriven"} }; static struct cpu_dev centaur_cpu_dev = { .c_vendor = "Centaur", .c_ident = {"CentaurHauls"} }; static struct cpu_dev rise_cpu_dev = { .c_vendor = "Rise", .c_ident = {"RiseRiseRise"} }; static struct cpu_dev transmeta_cpu_dev = { .c_vendor = "Transmeta", .c_ident = {"GenuineTMx86", "TransmetaCPU"} }; static struct cpu_dev nsc_cpu_dev = { .c_vendor = "National Semiconductor", .c_ident = {"Geode by NSC"} }; static struct cpu_dev unknown_cpu_dev = { .c_vendor = "Unknown Vendor", .c_ident = {"Unknown CPU"} }; /* * Read NSC/Cyrix DEVID registers (DIR) to get more detailed info. about the CPU */ void do_cyrix_devid(unsigned char *dir0, unsigned char *dir1) { unsigned char ccr2, ccr3; /* we test for DEVID by checking whether CCR3 is writable */ ccr3 = getCx86(CX86_CCR3); setCx86(CX86_CCR3, ccr3 ^ 0x80); getCx86(0xc0); /* dummy to change bus */ if (getCx86(CX86_CCR3) == ccr3) { /* no DEVID regs. */ ccr2 = getCx86(CX86_CCR2); setCx86(CX86_CCR2, ccr2 ^ 0x04); getCx86(0xc0); /* dummy */ if (getCx86(CX86_CCR2) == ccr2) /* old Cx486SLC/DLC */ *dir0 = 0xfd; else { /* Cx486S A step */ setCx86(CX86_CCR2, ccr2); *dir0 = 0xfe; } } else { setCx86(CX86_CCR3, ccr3); /* restore CCR3 */ /* read DIR0 and DIR1 CPU registers */ *dir0 = getCx86(CX86_DIR0); *dir1 = getCx86(CX86_DIR1); } } void init_cpu_devs(void) { cpu_devs[X86_VENDOR_INTEL] = &intel_cpu_dev; cpu_devs[X86_VENDOR_CYRIX] = &cyrix_cpu_dev; cpu_devs[X86_VENDOR_AMD] = &amd_cpu_dev; cpu_devs[X86_VENDOR_UMC] = &umc_cpu_dev; cpu_devs[X86_VENDOR_NEXGEN] = &nexgen_cpu_dev; cpu_devs[X86_VENDOR_CENTAUR] = ¢aur_cpu_dev; cpu_devs[X86_VENDOR_RISE] = &rise_cpu_dev; cpu_devs[X86_VENDOR_TRANSMETA] = &transmeta_cpu_dev; cpu_devs[X86_VENDOR_NSC] = &nsc_cpu_dev; cpu_devs[X86_VENDOR_UNKNOWN] = &unknown_cpu_dev; } void get_cpu_vendor(struct cpuinfo_x86 *c) { char *v = c->x86_vendor_id; int i; init_cpu_devs(); for (i = 0; i < X86_VENDOR_NUM-1; i++) { if (cpu_devs[i]) { if (!strcmp(v, cpu_devs[i]->c_ident[0]) || (cpu_devs[i]->c_ident[1] && !strcmp(v, cpu_devs[i]->c_ident[1]))) { c->x86_vendor = i; return; } } } c->x86_vendor = X86_VENDOR_UNKNOWN; } int get_model_name(struct cpuinfo_x86 *c) { unsigned int *v; char *p, *q; if (cpuid_eax(0x80000000) < 0x80000004) return 0; v = (unsigned int *)c->x86_model_id; cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); c->x86_model_id[48] = 0; /* Intel chips right-justify this string for some dumb reason; undo that brain damage */ p = q = &c->x86_model_id[0]; while (*p == ' ') p++; if (p != q) { while (*p) *q++ = *p++; while (q <= &c->x86_model_id[48]) *q++ = '\0'; /* Zero-pad the rest */ } return 1; } void detect_cache(uint32_t xlvl, struct cpuinfo_x86 *c) { uint32_t eax, ebx, ecx, edx, l2size; /* Detecting L1 cache */ if (xlvl >= 0x80000005) { cpuid(0x80000005, &eax, &ebx, &ecx, &edx); c->x86_l1_data_cache_size = ecx >> 24; c->x86_l1_instruction_cache_size = edx >> 24; } /* Detecting L2 cache */ c->x86_l2_cache_size = 0; if (xlvl < 0x80000006) /* Some chips just has a large L1. */ return; cpuid(0x80000006, &eax, &ebx, &ecx, &edx); l2size = ecx >> 16; /* Vendor based fixes */ switch (c->x86_vendor) { case X86_VENDOR_INTEL: /* * Intel PIII Tualatin. This comes in two flavours. * One has 256kb of cache, the other 512. We have no way * to determine which, so we use a boottime override * for the 512kb model, and assume 256 otherwise. */ if ((c->x86 == 6) && (c->x86_model == 11) && (l2size == 0)) l2size = 256; break; case X86_VENDOR_AMD: /* AMD errata T13 (order #21922) */ if ((c->x86 == 6)) { if (c->x86_model == 3 && c->x86_mask == 0) /* Duron Rev A0 */ l2size = 64; if (c->x86_model == 4 && (c->x86_mask == 0 || c->x86_mask == 1)) /* Tbird rev A1/A2 */ l2size = 256; } break; } c->x86_l2_cache_size = l2size; } void detect_cyrix(struct cpuinfo_x86 *c) { unsigned char dir0, dir0_msn, dir0_lsn, dir1 = 0; char *buf = c->x86_model_id; char Cx86_cb[] = "?.5x Core/Bus Clock"; const char cyrix_model_mult1[] = "12??43"; const char cyrix_model_mult2[] = "12233445"; const char *p = NULL; do_cyrix_devid(&dir0, &dir1); dir0_msn = dir0 >> 4; /* identifies CPU "family" */ dir0_lsn = dir0 & 0xf; /* model or clock multiplier */ c->x86_model = (dir1 >> 4) + 1; c->x86_mask = dir1 & 0xf; switch (dir0_msn) { unsigned char tmp; case 0: /* Cx486SLC/DLC/SRx/DRx */ p = Cx486_name[dir0_lsn & 7]; break; case 1: /* Cx486S/DX/DX2/DX4 */ p = (dir0_lsn & 8) ? Cx486D_name[dir0_lsn & 5] : Cx486S_name[dir0_lsn & 3]; break; case 2: /* 5x86 */ Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5]; p = Cx86_cb+2; break; case 3: /* 6x86/6x86L */ Cx86_cb[1] = ' '; Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5]; if (dir1 > 0x21) { /* 686L */ Cx86_cb[0] = 'L'; p = Cx86_cb; (c->x86_model)++; } else /* 686 */ p = Cx86_cb+1; c->coma_bug = 1; break; case 4: c->x86_l1_data_cache_size = 16; /* Yep 16K integrated cache thats it */ if (c->cpuid_level != 2) { /* Media GX */ Cx86_cb[2] = (dir0_lsn & 1) ? '3' : '4'; p = Cx86_cb+2; } break; case 5: /* 6x86MX/M II */ if (dir1 > 7) { dir0_msn++; /* M II */ } else { c->coma_bug = 1; /* 6x86MX, it has the bug. */ } tmp = (!(dir0_lsn & 7) || dir0_lsn & 1) ? 2 : 0; Cx86_cb[tmp] = cyrix_model_mult2[dir0_lsn & 7]; p = Cx86_cb+tmp; if (((dir1 & 0x0f) > 4) || ((dir1 & 0xf0) == 0x20)) (c->x86_model)++; break; case 0xf: /* Cyrix 486 without DEVID registers */ switch (dir0_lsn) { case 0xd: /* either a 486SLC or DLC w/o DEVID */ dir0_msn = 0; p = Cx486_name[(c->hard_math) ? 1 : 0]; break; case 0xe: /* a 486S A step */ dir0_msn = 0; p = Cx486S_name[0]; break; } break; default: dir0_msn = 7; break; } /* If the processor is unknown, we keep the model name we got * from the generic call */ if (dir0_msn < 7) { strcpy(buf, Cx86_model[dir0_msn & 7]); if (p) strcat(buf, p); } } void generic_identify(struct cpuinfo_x86 *c) { uint32_t tfms, xlvl; uint32_t eax, ebx, ecx, edx; /* Get vendor name */ cpuid(0x00000000, (uint32_t *) & c->cpuid_level, (uint32_t *) & c->x86_vendor_id[0], (uint32_t *) & c->x86_vendor_id[8], (uint32_t *) & c->x86_vendor_id[4]); get_cpu_vendor(c); /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { uint32_t capability, excap; cpuid(0x00000001, &tfms, &ebx, &excap, &capability); c->x86_capability[0] = capability; c->x86_capability[4] = excap; c->x86 = (tfms >> 8) & 15; c->x86_model = (tfms >> 4) & 15; if (c->x86 == 0xf) c->x86 += (tfms >> 20) & 0xff; if (c->x86 >= 0x6) c->x86_model += ((tfms >> 16) & 0xF) << 4; c->x86_mask = tfms & 15; if (cpu_has(c, X86_FEATURE_CLFLSH)) c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8; } else { /* Have CPUID level 0 only - unheard of */ c->x86 = 4; } /* AMD-defined flags: level 0x80000001 */ xlvl = cpuid_eax(0x80000000); if ((xlvl & 0xffff0000) == 0x80000000) { if (xlvl >= 0x80000001) { c->x86_capability[1] = cpuid_edx(0x80000001); c->x86_capability[6] = cpuid_ecx(0x80000001); } if (xlvl >= 0x80000004) get_model_name(c); /* Default name */ } /* Specific detection code */ switch (c->x86_vendor) { case X86_VENDOR_CYRIX: case X86_VENDOR_NSC: detect_cyrix(c); break; default: break; } /* Detecting the number of cores */ switch (c->x86_vendor) { case X86_VENDOR_AMD: if (xlvl >= 0x80000008) { c->x86_num_cores = (cpuid_ecx(0x80000008) & 0xff) + 1; if (c->x86_num_cores & (c->x86_num_cores - 1)) c->x86_num_cores = 1; } break; case X86_VENDOR_INTEL: if (c->cpuid_level >= 0x00000004) { cpuid(0x4, &eax, &ebx, &ecx, &edx); c->x86_num_cores = ((eax & 0xfc000000) >> 26) + 1; } break; default: c->x86_num_cores = 1; break; } detect_cache(xlvl, c); } /* * Checksum an MP configuration block. */ static int mpf_checksum(unsigned char *mp, int len) { int sum = 0; while (len--) sum += *mp++; return sum & 0xFF; } static int smp_scan_config(unsigned long base, unsigned long length) { unsigned long *bp = (unsigned long *)base; struct intel_mp_floating *mpf; // printf("Scan SMP from %p for %ld bytes.\n", bp,length); if (sizeof(*mpf) != 16) { printf("Error: MPF size\n"); return 0; } while (length > 0) { mpf = (struct intel_mp_floating *)bp; if ((*bp == SMP_MAGIC_IDENT) && (mpf->mpf_length == 1) && !mpf_checksum((unsigned char *)bp, 16) && ((mpf->mpf_specification == 1) || (mpf->mpf_specification == 4))) { return 1; } bp += 4; length -= 16; } return 0; } int find_smp_config(void) { // unsigned int address; /* * FIXME: Linux assumes you have 640K of base ram.. * this continues the error... * * 1) Scan the bottom 1K for a signature * 2) Scan the top 1K of base RAM * 3) Scan the 64K of bios */ if (smp_scan_config(0x0, 0x400) || smp_scan_config(639 * 0x400, 0x400) || smp_scan_config(0xF0000, 0x10000)) return 1; /* * If it is an SMP machine we should know now, unless the * configuration is in an EISA/MCA bus machine with an * extended bios data area. * * there is a real-mode segmented pointer pointing to the * 4K EBDA area at 0x40E, calculate and scan it here. * * NOTE! There are Linux loaders that will corrupt the EBDA * area, and as such this kind of SMP config may be less * trustworthy, simply because the SMP table may have been * stomped on during early boot. These loaders are buggy and * should be fixed. * * MP1.4 SPEC states to only scan first 1K of 4K EBDA. */ // address = get_bios_ebda(); // if (address) // smp_scan_config(address, 0x400); return 0; } void set_cpu_flags(struct cpuinfo_x86 *c, s_cpu * cpu) { cpu->flags.fpu = cpu_has(c, X86_FEATURE_FPU); cpu->flags.vme = cpu_has(c, X86_FEATURE_VME); cpu->flags.de = cpu_has(c, X86_FEATURE_DE); cpu->flags.pse = cpu_has(c, X86_FEATURE_PSE); cpu->flags.tsc = cpu_has(c, X86_FEATURE_TSC); cpu->flags.msr = cpu_has(c, X86_FEATURE_MSR); cpu->flags.pae = cpu_has(c, X86_FEATURE_PAE); cpu->flags.mce = cpu_has(c, X86_FEATURE_MCE); cpu->flags.cx8 = cpu_has(c, X86_FEATURE_CX8); cpu->flags.apic = cpu_has(c, X86_FEATURE_APIC); cpu->flags.sep = cpu_has(c, X86_FEATURE_SEP); cpu->flags.mtrr = cpu_has(c, X86_FEATURE_MTRR); cpu->flags.pge = cpu_has(c, X86_FEATURE_PGE); cpu->flags.mca = cpu_has(c, X86_FEATURE_MCA); cpu->flags.cmov = cpu_has(c, X86_FEATURE_CMOV); cpu->flags.pat = cpu_has(c, X86_FEATURE_PAT); cpu->flags.pse_36 = cpu_has(c, X86_FEATURE_PSE36); cpu->flags.psn = cpu_has(c, X86_FEATURE_PN); cpu->flags.clflsh = cpu_has(c, X86_FEATURE_CLFLSH); cpu->flags.dts = cpu_has(c, X86_FEATURE_DTES); cpu->flags.acpi = cpu_has(c, X86_FEATURE_ACPI); cpu->flags.pbe = cpu_has(c, X86_FEATURE_PBE); cpu->flags.mmx = cpu_has(c, X86_FEATURE_MMX); cpu->flags.fxsr = cpu_has(c, X86_FEATURE_FXSR); cpu->flags.sse = cpu_has(c, X86_FEATURE_XMM); cpu->flags.sse2 = cpu_has(c, X86_FEATURE_XMM2); cpu->flags.ss = cpu_has(c, X86_FEATURE_SELFSNOOP); cpu->flags.htt = cpu_has(c, X86_FEATURE_HT); cpu->flags.acc = cpu_has(c, X86_FEATURE_ACC); cpu->flags.syscall = cpu_has(c, X86_FEATURE_SYSCALL); cpu->flags.mp = cpu_has(c, X86_FEATURE_MP); cpu->flags.nx = cpu_has(c, X86_FEATURE_NX); cpu->flags.mmxext = cpu_has(c, X86_FEATURE_MMXEXT); cpu->flags.fxsr_opt = cpu_has(c, X86_FEATURE_FXSR_OPT); cpu->flags.gbpages = cpu_has(c, X86_FEATURE_GBPAGES); cpu->flags.rdtscp = cpu_has(c, X86_FEATURE_RDTSCP); cpu->flags.lm = cpu_has(c, X86_FEATURE_LM); cpu->flags.nowext = cpu_has(c, X86_FEATURE_3DNOWEXT); cpu->flags.now = cpu_has(c, X86_FEATURE_3DNOW); cpu->flags.smp = find_smp_config(); cpu->flags.pni = cpu_has(c, X86_FEATURE_XMM3); cpu->flags.pclmulqd = cpu_has(c, X86_FEATURE_PCLMULQDQ); cpu->flags.dtes64 = cpu_has(c, X86_FEATURE_DTES64); cpu->flags.vmx = cpu_has(c, X86_FEATURE_VMX); cpu->flags.smx = cpu_has(c, X86_FEATURE_SMX); cpu->flags.est = cpu_has(c, X86_FEATURE_EST); cpu->flags.tm2 = cpu_has(c, X86_FEATURE_TM2); cpu->flags.sse3 = cpu_has(c, X86_FEATURE_SSE3); cpu->flags.cid = cpu_has(c, X86_FEATURE_CID); cpu->flags.fma = cpu_has(c, X86_FEATURE_FMA); cpu->flags.cx16 = cpu_has(c, X86_FEATURE_CX16); cpu->flags.xtpr = cpu_has(c, X86_FEATURE_XTPR); cpu->flags.pdcm = cpu_has(c, X86_FEATURE_PDCM); cpu->flags.dca = cpu_has(c, X86_FEATURE_DCA); cpu->flags.xmm4_1 = cpu_has(c, X86_FEATURE_XMM4_1); cpu->flags.xmm4_2 = cpu_has(c, X86_FEATURE_XMM4_2); cpu->flags.x2apic = cpu_has(c, X86_FEATURE_X2APIC); cpu->flags.movbe = cpu_has(c, X86_FEATURE_MOVBE); cpu->flags.popcnt = cpu_has(c, X86_FEATURE_POPCNT); cpu->flags.aes = cpu_has(c, X86_FEATURE_AES); cpu->flags.xsave = cpu_has(c, X86_FEATURE_XSAVE); cpu->flags.osxsave = cpu_has(c, X86_FEATURE_OSXSAVE); cpu->flags.avx = cpu_has(c, X86_FEATURE_AVX); cpu->flags.hypervisor = cpu_has(c, X86_FEATURE_HYPERVISOR); cpu->flags.ace2 = cpu_has(c, X86_FEATURE_ACE2); cpu->flags.ace2_en = cpu_has(c, X86_FEATURE_ACE2_EN); cpu->flags.phe = cpu_has(c, X86_FEATURE_PHE); cpu->flags.phe_en = cpu_has(c, X86_FEATURE_PHE_EN); cpu->flags.pmm = cpu_has(c, X86_FEATURE_PMM); cpu->flags.pmm_en = cpu_has(c, X86_FEATURE_PMM_EN); cpu->flags.extapic = cpu_has(c, X86_FEATURE_EXTAPIC); cpu->flags.cr8_legacy = cpu_has(c, X86_FEATURE_CR8_LEGACY); cpu->flags.abm = cpu_has(c, X86_FEATURE_ABM); cpu->flags.sse4a = cpu_has(c, X86_FEATURE_SSE4A); cpu->flags.misalignsse = cpu_has(c, X86_FEATURE_MISALIGNSSE); cpu->flags.nowprefetch = cpu_has(c, X86_FEATURE_3DNOWPREFETCH); cpu->flags.osvw = cpu_has(c, X86_FEATURE_OSVW); cpu->flags.ibs = cpu_has(c, X86_FEATURE_IBS); cpu->flags.sse5 = cpu_has(c, X86_FEATURE_SSE5); cpu->flags.skinit = cpu_has(c, X86_FEATURE_SKINIT); cpu->flags.wdt = cpu_has(c, X86_FEATURE_WDT); cpu->flags.ida = cpu_has(c, X86_FEATURE_IDA); cpu->flags.arat = cpu_has(c, X86_FEATURE_ARAT); cpu->flags.tpr_shadow = cpu_has(c, X86_FEATURE_TPR_SHADOW); cpu->flags.vnmi = cpu_has(c, X86_FEATURE_VNMI); cpu->flags.flexpriority = cpu_has(c, X86_FEATURE_FLEXPRIORITY); cpu->flags.ept = cpu_has(c, X86_FEATURE_EPT); cpu->flags.vpid = cpu_has(c, X86_FEATURE_VPID); cpu->flags.svm = cpu_has(c, X86_FEATURE_SVM); } void set_generic_info(struct cpuinfo_x86 *c, s_cpu * cpu) { cpu->family = c->x86; cpu->vendor_id = c->x86_vendor; cpu->model_id = c->x86_model; cpu->stepping = c->x86_mask; strlcpy(cpu->vendor, cpu_devs[c->x86_vendor]->c_vendor, sizeof(cpu->vendor)); strlcpy(cpu->model, c->x86_model_id, sizeof(cpu->model)); cpu->num_cores = c->x86_num_cores; cpu->l1_data_cache_size = c->x86_l1_data_cache_size; cpu->l1_instruction_cache_size = c->x86_l1_instruction_cache_size; cpu->l2_cache_size = c->x86_l2_cache_size; } void detect_cpu(s_cpu * cpu) { struct cpuinfo_x86 c; memset(&c,0,sizeof(c)); c.x86_clflush_size = 32; c.x86_vendor = X86_VENDOR_UNKNOWN; c.cpuid_level = -1; /* CPUID not detected */ c.x86_num_cores = 1; memset(&cpu->flags, 0, sizeof(s_cpu_flags)); if (!have_cpuid_p()) return; generic_identify(&c); set_generic_info(&c, cpu); set_cpu_flags(&c, cpu); }