/* ----------------------------------------------------------------------- * * * Copyright 2006 Erwan Velu - All Rights Reserved * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall * be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * ----------------------------------------------------------------------- */ #include <stdio.h> #include <string.h> #include "dmi/dmi.h" const char *out_of_spec = "<OUT OF SPEC>"; const char *bad_index = "<BAD INDEX>"; /* * Misc. util stuff */ /* * 3.3.11 On Board Devices Information (Type 10) */ static const char *dmi_on_board_devices_type(uint8_t code) { /* 3.3.11.1 */ static const char *type[] = { "Other", /* 0x01 */ "Unknown", "Video", "SCSI Controller", "Ethernet", "Token Ring", "Sound", "PATA Controller", "SATA Controller", "SAS Controller" /* 0x0A */ }; if (code >= 0x01 && code <= 0x0A) return type[code - 0x01]; return out_of_spec; } static void dmi_on_board_devices(struct dmi_header *h, s_dmi * dmi) { uint8_t *p = h->data + 4; uint8_t count = (h->length - 0x04) / 2; unsigned int i; for (i = 0; i < count && i < sizeof dmi->base_board.devices_information / sizeof *dmi->base_board.devices_information; i++) { strlcpy(dmi->base_board.devices_information[i].type, dmi_on_board_devices_type(p[2 * i] & 0x7F), sizeof dmi->base_board.devices_information[i].type); dmi->base_board.devices_information[i].status = p[2 * i] & 0x80; strlcpy(dmi->base_board.devices_information[i].description, dmi_string(h, p[2 * i + 1]), sizeof dmi->base_board.devices_information[i].description); } } /* * 3.3.24 System Reset (Type 23) */ static const char *dmi_system_reset_boot_option(uint8_t code) { static const char *option[] = { "Operating System", /* 0x1 */ "System Utilities", "Do Not Reboot" /* 0x3 */ }; if (code >= 0x1) return option[code - 0x1]; return out_of_spec; } static void dmi_system_reset_count(uint16_t code, char *array) { if (code == 0xFFFF) strlcpy(array, "Unknown", sizeof array); else snprintf(array, sizeof array, "%u", code); } static void dmi_system_reset_timer(uint16_t code, char *array) { if (code == 0xFFFF) strlcpy(array, "Unknown", sizeof array); else snprintf(array, sizeof array, "%u min", code); } /* * 3.3.25 Hardware Security (Type 24) */ static const char *dmi_hardware_security_status(uint8_t code) { static const char *status[] = { "Disabled", /* 0x00 */ "Enabled", "Not Implemented", "Unknown" /* 0x03 */ }; return status[code]; } /* * 3.3.12 OEM Strings (Type 11) */ static void dmi_oem_strings(struct dmi_header *h, const char *prefix, s_dmi * dmi) { uint8_t *p = h->data + 4; uint8_t count = p[0x00]; int i; for (i = 1; i <= count; i++) snprintf(dmi->oem_strings, OEM_STRINGS_SIZE, "%s %s %s\n", dmi->oem_strings, prefix, dmi_string(h, i)); } /* * 3.3.13 System Configuration Options (Type 12) */ static void dmi_system_configuration_options(struct dmi_header *h, const char *prefix, s_dmi * dmi) { uint8_t *p = h->data + 4; uint8_t count = p[0x00]; int i; for (i = 1; i <= count; i++) snprintf(dmi->system.configuration_options, SYSTEM_CONFIGURATION_OPTIONS_SIZE, "%s %s %s\n", dmi->system.configuration_options, prefix, dmi_string(h, i)); } static void dmi_system_boot_status(uint8_t code, char *array) { static const char *status[] = { "No errors detected", /* 0 */ "No bootable media", "Operating system failed to load", "Firmware-detected hardware failure", "Operating system-detected hardware failure", "User-requested boot", "System security violation", "Previously-requested image", "System watchdog timer expired" /* 8 */ }; if (code <= 8) strlcpy(array, status[code], SYSTEM_BOOT_STATUS_SIZE); if (code >= 128 && code <= 191) strlcpy(array, "OEM-specific", SYSTEM_BOOT_STATUS_SIZE); if (code >= 192) strlcpy(array, "Product-specific", SYSTEM_BOOT_STATUS_SIZE); } void dmi_bios_runtime_size(uint32_t code, s_dmi * dmi) { if (code & 0x000003FF) { dmi->bios.runtime_size = code; strlcpy(dmi->bios.runtime_size_unit, "bytes", sizeof(dmi->bios.runtime_size_unit)); } else { dmi->bios.runtime_size = code >> 10; strlcpy(dmi->bios.runtime_size_unit, "KB", sizeof(dmi->bios.runtime_size_unit)); } } void dmi_bios_characteristics(uint64_t code, s_dmi * dmi) { int i; /* * This isn't very clear what this bit is supposed to mean */ //if(code.l&(1<<3)) if (code && (1 << 3)) { ((bool *) (&dmi->bios.characteristics))[0] = true; return; } for (i = 4; i <= 31; i++) //if(code.l&(1<<i)) if (code & (1 << i)) ((bool *) (&dmi->bios.characteristics))[i - 3] = true; } void dmi_bios_characteristics_x1(uint8_t code, s_dmi * dmi) { int i; for (i = 0; i <= 7; i++) if (code & (1 << i)) ((bool *) (&dmi->bios.characteristics_x1))[i] = true; } void dmi_bios_characteristics_x2(uint8_t code, s_dmi * dmi) { int i; for (i = 0; i <= 2; i++) if (code & (1 << i)) ((bool *) (&dmi->bios.characteristics_x2))[i] = true; } void dmi_system_uuid(uint8_t * p, s_dmi * dmi) { int only0xFF = 1, only0x00 = 1; int i; for (i = 0; i < 16 && (only0x00 || only0xFF); i++) { if (p[i] != 0x00) only0x00 = 0; if (p[i] != 0xFF) only0xFF = 0; } if (only0xFF) { sprintf(dmi->system.uuid, "Not Present"); return; } if (only0x00) { sprintf(dmi->system.uuid, "Not Settable"); return; } sprintf(dmi->system.uuid, "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); } void dmi_system_wake_up_type(uint8_t code, s_dmi * dmi) { /* 3.3.2.1 */ static const char *type[] = { "Reserved", /* 0x00 */ "Other", "Unknown", "APM Timer", "Modem Ring", "LAN Remote", "Power Switch", "PCI PME#", "AC Power Restored" /* 0x08 */ }; if (code <= 0x08) { strlcpy(dmi->system.wakeup_type, type[code], sizeof(dmi->system.wakeup_type)); } else { strlcpy(dmi->system.wakeup_type, out_of_spec, sizeof(dmi->system.wakeup_type)); } return; } static void dmi_base_board_features(uint8_t code, s_dmi * dmi) { if ((code & 0x1F) != 0) { int i; for (i = 0; i <= 4; i++) if (code & (1 << i)) ((bool *) (&dmi->base_board.features))[i] = true; } } static void dmi_base_board_type(uint8_t code, s_dmi * dmi) { /* 3.3.3.2 */ static const char *type[] = { "Unknown", /* 0x01 */ "Other", "Server Blade", "Connectivity Switch", "System Management Module", "Processor Module", "I/O Module", "Memory Module", "Daughter Board", "Motherboard", "Processor+Memory Module", "Processor+I/O Module", "Interconnect Board" /* 0x0D */ }; if (code >= 0x01 && code <= 0x0D) { strlcpy(dmi->base_board.type, type[code], sizeof(dmi->base_board.type)); } else { strlcpy(dmi->base_board.type, out_of_spec, sizeof(dmi->base_board.type)); } return; } static void dmi_processor_voltage(uint8_t code, s_dmi * dmi) { /* 3.3.5.4 */ static const uint16_t voltage[] = { 5000, 3300, 2900 }; int i; if (code & 0x80) dmi->processor.voltage_mv = (code & 0x7f) * 100; else { for (i = 0; i <= 2; i++) if (code & (1 << i)) dmi->processor.voltage_mv = voltage[i]; } } static void dmi_processor_id(uint8_t type, uint8_t * p, const char *version, s_dmi * dmi) { /* * Extra flags are now returned in the ECX register when one calls * the CPUID instruction. Their meaning is explained in table 6, but * DMI doesn't support this yet. */ uint32_t eax, edx; int sig = 0; /* * This might help learn about new processors supporting the * CPUID instruction or another form of identification. */ sprintf(dmi->processor.id, "ID: %02X %02X %02X %02X %02X %02X %02X %02X\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); if (type == 0x05) { /* 80386 */ uint16_t dx = WORD(p); /* * 80386 have a different signature. */ dmi->processor.signature.type = (dx >> 12); dmi->processor.signature.family = ((dx >> 8) & 0xF); dmi->processor.signature.stepping = (dx >> 4) & 0xF; dmi->processor.signature.minor_stepping = (dx & 0xF); return; } if (type == 0x06) { /* 80486 */ uint16_t dx = WORD(p); /* * Not all 80486 CPU support the CPUID instruction, we have to find * wether the one we have here does or not. Note that this trick * works only because we know that 80486 must be little-endian. */ if ((dx & 0x0F00) == 0x0400 && ((dx & 0x00F0) == 0x0040 || (dx & 0x00F0) >= 0x0070) && ((dx & 0x000F) >= 0x0003)) sig = 1; else { dmi->processor.signature.type = ((dx >> 12) & 0x3); dmi->processor.signature.family = ((dx >> 8) & 0xF); dmi->processor.signature.model = ((dx >> 4) & 0xF); dmi->processor.signature.stepping = (dx & 0xF); return; } } else if ((type >= 0x0B && type <= 0x13) /* Intel, Cyrix */ ||(type >= 0xB0 && type <= 0xB3) /* Intel */ ||type == 0xB5 /* Intel */ || type == 0xB9) /* Intel */ sig = 1; else if ((type >= 0x18 && type <= 0x1D) /* AMD */ ||type == 0x1F /* AMD */ || (type >= 0xB6 && type <= 0xB7) /* AMD */ ||(type >= 0x83 && type <= 0x85)) /* AMD */ sig = 2; else if (type == 0x01 || type == 0x02) { /* * Some X86-class CPU have family "Other" or "Unknown". In this case, * we use the version string to determine if they are known to * support the CPUID instruction. */ if (strncmp(version, "Pentium III MMX", 15) == 0) sig = 1; else if (strncmp(version, "AMD Athlon(TM)", 14) == 0 || strncmp(version, "AMD Opteron(tm)", 15) == 0) sig = 2; else return; } else /* not X86-class */ return; eax = DWORD(p); edx = DWORD(p + 4); switch (sig) { case 1: /* Intel */ dmi->processor.signature.type = ((eax >> 12) & 0x3); dmi->processor.signature.family = (((eax >> 16) & 0xFF0) + ((eax >> 8) & 0x00F)); dmi->processor.signature.model = (((eax >> 12) & 0xF0) + ((eax >> 4) & 0x0F)); dmi->processor.signature.stepping = (eax & 0xF); break; case 2: /* AMD */ dmi->processor.signature.family = (((eax >> 8) & 0xF) == 0xF ? (eax >> 20) & 0xFF : (eax >> 8) & 0xF); dmi->processor.signature.model = (((eax >> 4) & 0xF) == 0xF ? (eax >> 16) & 0xF : (eax >> 4) & 0xF); dmi->processor.signature.stepping = (eax & 0xF); break; } edx = DWORD(p + 4); if ((edx & 0x3FF7FDFF) != 0) { int i; for (i = 0; i <= 31; i++) if (cpu_flags_strings[i] != NULL && edx & (1 << i)) ((bool *) (&dmi->processor.cpu_flags))[i] = true; } } void to_dmi_header(struct dmi_header *h, uint8_t * data) { h->type = data[0]; h->length = data[1]; h->handle = WORD(data + 2); h->data = data; } const char *dmi_string(struct dmi_header *dm, uint8_t s) { char *bp = (char *)dm->data; size_t i, len; if (s == 0) return "Not Specified"; bp += dm->length; while (s > 1 && *bp) { bp += strlen(bp); bp++; s--; } if (!*bp) return bad_index; /* ASCII filtering */ len = strlen(bp); for (i = 0; i < len; i++) if (bp[i] < 32 || bp[i] == 127) bp[i] = '.'; return bp; } int checksum(uint8_t * buf, int len) { uint8_t sum = 0; int a; for (a = 0; a < len; a++) sum += buf[a]; return (sum == 0); } static int smbios_decode(s_dmi * dmi, uint8_t * buf) { dmi->dmitable.ver = (buf[0x06] << 8) + buf[0x07]; /* Some BIOS report weird SMBIOS version, fix that up */ switch (dmi->dmitable.ver) { case 0x021F: dmi->dmitable.ver = 0x0203; break; case 0x0233: dmi->dmitable.ver = 0x0206; break; } dmi->dmitable.major_version = dmi->dmitable.ver >> 8; dmi->dmitable.minor_version = dmi->dmitable.ver & 0xFF; return DMI_TABLE_PRESENT; } static int legacy_decode(s_dmi * dmi, uint8_t * buf) { dmi->dmitable.num = buf[13] << 8 | buf[12]; dmi->dmitable.len = buf[7] << 8 | buf[6]; dmi->dmitable.base = buf[11] << 24 | buf[10] << 16 | buf[9] << 8 | buf[8]; /* Version already found? */ if (dmi->dmitable.ver > 0) return DMI_TABLE_PRESENT; dmi->dmitable.ver = (buf[0x06] << 8) + buf[0x07]; /* * DMI version 0.0 means that the real version is taken from * the SMBIOS version, which we don't know at this point. */ if (buf[14] != 0) { dmi->dmitable.major_version = buf[14] >> 4; dmi->dmitable.minor_version = buf[14] & 0x0F; } else { dmi->dmitable.major_version = 0; dmi->dmitable.minor_version = 0; } return DMI_TABLE_PRESENT; } int dmi_iterate(s_dmi * dmi) { uint8_t *p, *q; int found = 0; /* Cleaning structures */ memset(dmi, 0, sizeof(s_dmi)); memset(&dmi->base_board, 0, sizeof(s_base_board)); memset(&dmi->battery, 0, sizeof(s_battery)); memset(&dmi->bios, 0, sizeof(s_bios)); memset(&dmi->chassis, 0, sizeof(s_chassis)); for (int i = 0; i < MAX_DMI_MEMORY_ITEMS; i++) memset(&dmi->memory[i], 0, sizeof(s_memory)); memset(&dmi->processor, 0, sizeof(s_processor)); memset(&dmi->system, 0, sizeof(s_system)); /* Until we found this elements in the dmitable, we consider them as not filled */ dmi->base_board.filled = false; dmi->battery.filled = false; dmi->bios.filled = false; dmi->chassis.filled = false; for (int i = 0; i < MAX_DMI_MEMORY_ITEMS; i++) dmi->memory[i].filled = false; dmi->processor.filled = false; dmi->system.filled = false; p = (uint8_t *) 0xF0000; /* The start address to look at the dmi table */ /* The anchor-string is 16-bytes aligned */ for (q = p; q < p + 0x10000; q += 16) { /* To validate the presence of SMBIOS: * + the overall checksum must be correct * + the intermediate anchor-string must be _DMI_ * + the intermediate checksum must be correct */ if (memcmp(q, "_SM_", 4) == 0 && checksum(q, q[0x05]) && memcmp(q + 0x10, "_DMI_", 5) == 0 && checksum(q + 0x10, 0x0F)) { /* Do not return, legacy_decode will need to be called * on the intermediate structure to get the table length * and address */ smbios_decode(dmi, q); } else if (memcmp(q, "_DMI_", 5) == 0 && checksum(q, 0x0F)) { found = 1; legacy_decode(dmi, q); } } if (found) return DMI_TABLE_PRESENT; dmi->dmitable.base = 0; dmi->dmitable.num = 0; dmi->dmitable.ver = 0; dmi->dmitable.len = 0; return -ENODMITABLE; } void dmi_decode(struct dmi_header *h, uint16_t ver, s_dmi * dmi) { uint8_t *data = h->data; /* * Note: DMI types 37, 38 and 39 are untested */ switch (h->type) { case 0: /* 3.3.1 BIOS Information */ if (h->length < 0x12) break; dmi->bios.filled = true; strlcpy(dmi->bios.vendor, dmi_string(h, data[0x04]), sizeof(dmi->bios.vendor)); strlcpy(dmi->bios.version, dmi_string(h, data[0x05]), sizeof(dmi->bios.version)); strlcpy(dmi->bios.release_date, dmi_string(h, data[0x08]), sizeof(dmi->bios.release_date)); dmi->bios.address = WORD(data + 0x06); dmi_bios_runtime_size((0x10000 - WORD(data + 0x06)) << 4, dmi); dmi->bios.rom_size = (data[0x09] + 1) << 6; strlcpy(dmi->bios.rom_size_unit, "kB", sizeof(dmi->bios.rom_size_unit)); dmi_bios_characteristics(QWORD(data + 0x0A), dmi); if (h->length < 0x13) break; dmi_bios_characteristics_x1(data[0x12], dmi); if (h->length < 0x14) break; dmi_bios_characteristics_x2(data[0x13], dmi); if (h->length < 0x18) break; if (data[0x14] != 0xFF && data[0x15] != 0xFF) snprintf(dmi->bios.bios_revision, sizeof(dmi->bios.bios_revision), "%u.%u", data[0x14], data[0x15]); if (data[0x16] != 0xFF && data[0x17] != 0xFF) snprintf(dmi->bios.firmware_revision, sizeof(dmi->bios.firmware_revision), "%u.%u", data[0x16], data[0x17]); break; case 1: /* 3.3.2 System Information */ if (h->length < 0x08) break; dmi->system.filled = true; strlcpy(dmi->system.manufacturer, dmi_string(h, data[0x04]), sizeof(dmi->system.manufacturer)); strlcpy(dmi->system.product_name, dmi_string(h, data[0x05]), sizeof(dmi->system.product_name)); strlcpy(dmi->system.version, dmi_string(h, data[0x06]), sizeof(dmi->system.version)); strlcpy(dmi->system.serial, dmi_string(h, data[0x07]), sizeof(dmi->system.serial)); if (h->length < 0x19) break; dmi_system_uuid(data + 0x08, dmi); dmi_system_wake_up_type(data[0x18], dmi); if (h->length < 0x1B) break; strlcpy(dmi->system.sku_number, dmi_string(h, data[0x19]), sizeof(dmi->system.sku_number)); strlcpy(dmi->system.family, dmi_string(h, data[0x1A]), sizeof(dmi->system.family)); break; case 2: /* 3.3.3 Base Board Information */ if (h->length < 0x08) break; dmi->base_board.filled = true; strlcpy(dmi->base_board.manufacturer, dmi_string(h, data[0x04]), sizeof(dmi->base_board.manufacturer)); strlcpy(dmi->base_board.product_name, dmi_string(h, data[0x05]), sizeof(dmi->base_board.product_name)); strlcpy(dmi->base_board.version, dmi_string(h, data[0x06]), sizeof(dmi->base_board.version)); strlcpy(dmi->base_board.serial, dmi_string(h, data[0x07]), sizeof(dmi->base_board.serial)); if (h->length < 0x0F) break; strlcpy(dmi->base_board.asset_tag, dmi_string(h, data[0x08]), sizeof(dmi->base_board.asset_tag)); dmi_base_board_features(data[0x09], dmi); strlcpy(dmi->base_board.location, dmi_string(h, data[0x0A]), sizeof(dmi->base_board.location)); dmi_base_board_type(data[0x0D], dmi); if (h->length < 0x0F + data[0x0E] * sizeof(uint16_t)) break; break; case 3: /* 3.3.4 Chassis Information */ if (h->length < 0x09) break; dmi->chassis.filled = true; strlcpy(dmi->chassis.manufacturer, dmi_string(h, data[0x04]), sizeof(dmi->chassis.manufacturer)); strlcpy(dmi->chassis.type, dmi_chassis_type(data[0x05] & 0x7F), sizeof(dmi->chassis.type)); strlcpy(dmi->chassis.lock, dmi_chassis_lock(data[0x05] >> 7), sizeof(dmi->chassis.lock)); strlcpy(dmi->chassis.version, dmi_string(h, data[0x06]), sizeof(dmi->chassis.version)); strlcpy(dmi->chassis.serial, dmi_string(h, data[0x07]), sizeof(dmi->chassis.serial)); strlcpy(dmi->chassis.asset_tag, dmi_string(h, data[0x08]), sizeof(dmi->chassis.asset_tag)); if (h->length < 0x0D) break; strlcpy(dmi->chassis.boot_up_state, dmi_chassis_state(data[0x09]), sizeof(dmi->chassis.boot_up_state)); strlcpy(dmi->chassis.power_supply_state, dmi_chassis_state(data[0x0A]), sizeof(dmi->chassis.power_supply_state)); strlcpy(dmi->chassis.thermal_state, dmi_chassis_state(data[0x0B]), sizeof(dmi->chassis.thermal_state)); strlcpy(dmi->chassis.security_status, dmi_chassis_security_status(data[0x0C]), sizeof(dmi->chassis.security_status)); if (h->length < 0x11) break; snprintf(dmi->chassis.oem_information, sizeof(dmi->chassis.oem_information), "0x%08X", DWORD(data + 0x0D)); if (h->length < 0x15) break; dmi->chassis.height = data[0x11]; dmi->chassis.nb_power_cords = data[0x12]; break; case 4: /* 3.3.5 Processor Information */ if (h->length < 0x1A) break; dmi->processor.filled = true; strlcpy(dmi->processor.socket_designation, dmi_string(h, data[0x04]), sizeof(dmi->processor.socket_designation)); strlcpy(dmi->processor.type, dmi_processor_type(data[0x05]), sizeof(dmi->processor.type)); strlcpy(dmi->processor.manufacturer, dmi_string(h, data[0x07]), sizeof(dmi->processor.manufacturer)); strlcpy(dmi->processor.family, dmi_processor_family(data[0x06], dmi->processor.manufacturer), sizeof(dmi->processor.family)); dmi_processor_id(data[0x06], data + 8, dmi_string(h, data[0x10]), dmi); strlcpy(dmi->processor.version, dmi_string(h, data[0x10]), sizeof(dmi->processor.version)); dmi_processor_voltage(data[0x11], dmi); dmi->processor.external_clock = WORD(data + 0x12); dmi->processor.max_speed = WORD(data + 0x14); dmi->processor.current_speed = WORD(data + 0x16); if (data[0x18] & (1 << 6)) strlcpy(dmi->processor.status, dmi_processor_status(data[0x18] & 0x07), sizeof(dmi->processor.status)); else sprintf(dmi->processor.status, "Unpopulated"); strlcpy(dmi->processor.upgrade, dmi_processor_upgrade(data[0x19]), sizeof(dmi->processor.upgrade)); if (h->length < 0x20) break; dmi_processor_cache(WORD(data + 0x1A), "L1", ver, dmi->processor.cache1); dmi_processor_cache(WORD(data + 0x1C), "L2", ver, dmi->processor.cache2); dmi_processor_cache(WORD(data + 0x1E), "L3", ver, dmi->processor.cache3); if (h->length < 0x23) break; strlcpy(dmi->processor.serial, dmi_string(h, data[0x20]), sizeof(dmi->processor.serial)); strlcpy(dmi->processor.asset_tag, dmi_string(h, data[0x21]), sizeof(dmi->processor.asset_tag)); strlcpy(dmi->processor.part_number, dmi_string(h, data[0x22]), sizeof(dmi->processor.part_number)); dmi->processor.core_count = 0; dmi->processor.core_enabled = 0; dmi->processor.thread_count = 0; if (h->length < 0x28) break; dmi->processor.core_count = data[0x23]; dmi->processor.core_enabled = data[0x24]; dmi->processor.thread_count = data[0x25]; break; case 6: /* 3.3.7 Memory Module Information */ if (h->length < 0x0C) break; dmi->memory_module_count++; s_memory_module *module = &dmi->memory_module[dmi->memory_module_count - 1]; dmi->memory_module[dmi->memory_module_count - 1].filled = true; strlcpy(module->socket_designation, dmi_string(h, data[0x04]), sizeof(module->socket_designation)); dmi_memory_module_connections(data[0x05], module->bank_connections, sizeof(module->bank_connections)); dmi_memory_module_speed(data[0x06], module->speed); dmi_memory_module_types(WORD(data + 0x07), " ", module->type, sizeof(module->type)); dmi_memory_module_size(data[0x09], module->installed_size, sizeof(module->installed_size)); dmi_memory_module_size(data[0x0A], module->enabled_size, sizeof(module->enabled_size)); dmi_memory_module_error(data[0x0B], "\t\t", module->error_status); break; case 7: /* 3.3.8 Cache Information */ if (h->length < 0x0F) break; dmi->cache_count++; if (dmi->cache_count > MAX_DMI_CACHE_ITEMS) break; strlcpy(dmi->cache[dmi->cache_count - 1].socket_designation, dmi_string(h, data[0x04]), sizeof(dmi->cache[dmi->cache_count - 1].socket_designation)); snprintf(dmi->cache[dmi->cache_count - 1].configuration, sizeof(dmi->cache[dmi->cache_count - 1].configuration), "%s, %s, %u", WORD(data + 0x05) & 0x0080 ? "Enabled" : "Disabled", WORD(data + 0x05) & 0x0008 ? "Socketed" : "Not Socketed", (WORD(data + 0x05) & 0x0007) + 1); strlcpy(dmi->cache[dmi->cache_count - 1].mode, dmi_cache_mode((WORD(data + 0x05) >> 8) & 0x0003), sizeof(dmi->cache[dmi->cache_count - 1].mode)); strlcpy(dmi->cache[dmi->cache_count - 1].location, dmi_cache_location((WORD(data + 0x05) >> 5) & 0x0003), sizeof(dmi->cache[dmi->cache_count - 1].location)); dmi->cache[dmi->cache_count - 1].installed_size = dmi_cache_size(WORD(data + 0x09)); dmi->cache[dmi->cache_count - 1].max_size = dmi_cache_size(WORD(data + 0x07)); dmi_cache_types(WORD(data + 0x0B), " ", dmi->cache[dmi->cache_count - 1].supported_sram_types); dmi_cache_types(WORD(data + 0x0D), " ", dmi->cache[dmi->cache_count - 1].installed_sram_types); if (h->length < 0x13) break; dmi->cache[dmi->cache_count - 1].speed = data[0x0F]; /* ns */ strlcpy(dmi->cache[dmi->cache_count - 1].error_correction_type, dmi_cache_ec_type(data[0x10]), sizeof(dmi->cache[dmi->cache_count - 1].error_correction_type)); strlcpy(dmi->cache[dmi->cache_count - 1].system_type, dmi_cache_type(data[0x11]), sizeof(dmi->cache[dmi->cache_count - 1].system_type)); strlcpy(dmi->cache[dmi->cache_count - 1].associativity, dmi_cache_associativity(data[0x12]), sizeof(dmi->cache[dmi->cache_count - 1].associativity)); break; case 10: /* 3.3.11 On Board Devices Information */ dmi_on_board_devices(h, dmi); break; case 11: /* 3.3.12 OEM Strings */ if (h->length < 0x05) break; dmi_oem_strings(h, "\t", dmi); break; case 12: /* 3.3.13 System Configuration Options */ if (h->length < 0x05) break; dmi_system_configuration_options(h, "\t", dmi); break; case 17: /* 3.3.18 Memory Device */ if (h->length < 0x15) break; dmi->memory_count++; if (dmi->memory_count > MAX_DMI_MEMORY_ITEMS) break; s_memory *mem = &dmi->memory[dmi->memory_count - 1]; dmi->memory[dmi->memory_count - 1].filled = true; dmi_memory_array_error_handle(WORD(data + 0x06), mem->error); dmi_memory_device_width(WORD(data + 0x08), mem->total_width); dmi_memory_device_width(WORD(data + 0x0A), mem->data_width); dmi_memory_device_size(WORD(data + 0x0C), mem->size); strlcpy(mem->form_factor, dmi_memory_device_form_factor(data[0x0E]), sizeof(mem->form_factor)); dmi_memory_device_set(data[0x0F], mem->device_set); strlcpy(mem->device_locator, dmi_string(h, data[0x10]), sizeof(mem->device_locator)); strlcpy(mem->bank_locator, dmi_string(h, data[0x11]), sizeof(mem->bank_locator)); strlcpy(mem->type, dmi_memory_device_type(data[0x12]), sizeof(mem->type)); dmi_memory_device_type_detail(WORD(data + 0x13), mem->type_detail, sizeof(mem->type_detail)); if (h->length < 0x17) break; dmi_memory_device_speed(WORD(data + 0x15), mem->speed); if (h->length < 0x1B) break; strlcpy(mem->manufacturer, dmi_string(h, data[0x17]), sizeof(mem->manufacturer)); strlcpy(mem->serial, dmi_string(h, data[0x18]), sizeof(mem->serial)); strlcpy(mem->asset_tag, dmi_string(h, data[0x19]), sizeof(mem->asset_tag)); strlcpy(mem->part_number, dmi_string(h, data[0x1A]), sizeof(mem->part_number)); break; case 22: /* 3.3.23 Portable Battery */ if (h->length < 0x10) break; dmi->battery.filled = true; strlcpy(dmi->battery.location, dmi_string(h, data[0x04]), sizeof(dmi->battery.location)); strlcpy(dmi->battery.manufacturer, dmi_string(h, data[0x05]), sizeof(dmi->battery.manufacturer)); if (data[0x06] || h->length < 0x1A) strlcpy(dmi->battery.manufacture_date, dmi_string(h, data[0x06]), sizeof(dmi->battery.manufacture_date)); if (data[0x07] || h->length < 0x1A) strlcpy(dmi->battery.serial, dmi_string(h, data[0x07]), sizeof(dmi->battery.serial)); strlcpy(dmi->battery.name, dmi_string(h, data[0x08]), sizeof(dmi->battery.name)); if (data[0x09] != 0x02 || h->length < 0x1A) strlcpy(dmi->battery.chemistry, dmi_battery_chemistry(data[0x09]), sizeof(dmi->battery.chemistry)); if (h->length < 0x1A) dmi_battery_capacity(WORD(data + 0x0A), 1, dmi->battery.design_capacity); else dmi_battery_capacity(WORD(data + 0x0A), data[0x15], dmi->battery.design_capacity); dmi_battery_voltage(WORD(data + 0x0C), dmi->battery.design_voltage); strlcpy(dmi->battery.sbds, dmi_string(h, data[0x0E]), sizeof(dmi->battery.sbds)); dmi_battery_maximum_error(data[0x0F], dmi->battery.maximum_error); if (h->length < 0x1A) break; if (data[0x07] == 0) sprintf(dmi->battery.sbds_serial, "%04X", WORD(data + 0x10)); if (data[0x06] == 0) sprintf(dmi->battery.sbds_manufacture_date, "%u-%02u-%02u", 1980 + (WORD(data + 0x12) >> 9), (WORD(data + 0x12) >> 5) & 0x0F, WORD(data + 0x12) & 0x1F); if (data[0x09] == 0x02) strlcpy(dmi->battery.sbds_chemistry, dmi_string(h, data[0x14]), sizeof(dmi->battery.sbds_chemistry)); // sprintf(dmi->battery.oem_info,"0x%08X",DWORD(h, data+0x16)); break; case 23: /* 3.3.24 System Reset */ if (h->length < 0x0D) break; dmi->system.system_reset.filled = true; dmi->system.system_reset.status = data[0x04] & (1 << 0); dmi->system.system_reset.watchdog = data[0x04] & (1 << 5); if (!(data[0x04] & (1 << 5))) break; strlcpy(dmi->system.system_reset.boot_option, dmi_system_reset_boot_option((data[0x04] >> 1) & 0x3), sizeof dmi->system.system_reset.boot_option); strlcpy(dmi->system.system_reset.boot_option_on_limit, dmi_system_reset_boot_option((data[0x04] >> 3) & 0x3), sizeof dmi->system.system_reset.boot_option_on_limit); dmi_system_reset_count(WORD(data + 0x05), dmi->system.system_reset.reset_count); dmi_system_reset_count(WORD(data + 0x07), dmi->system.system_reset.reset_limit); dmi_system_reset_timer(WORD(data + 0x09), dmi->system.system_reset.timer_interval); dmi_system_reset_timer(WORD(data + 0x0B), dmi->system.system_reset.timeout); break; case 24: /* 3.3.25 Hardware Security */ if (h->length < 0x05) break; dmi->hardware_security.filled = true; strlcpy(dmi->hardware_security.power_on_passwd_status, dmi_hardware_security_status(data[0x04] >> 6), sizeof dmi->hardware_security.power_on_passwd_status); strlcpy(dmi->hardware_security.keyboard_passwd_status, dmi_hardware_security_status((data[0x04] >> 4) & 0x3), sizeof dmi->hardware_security.keyboard_passwd_status); strlcpy(dmi->hardware_security.administrator_passwd_status, dmi_hardware_security_status((data[0x04] >> 2) & 0x3), sizeof dmi->hardware_security.administrator_passwd_status); strlcpy(dmi->hardware_security.front_panel_reset_status, dmi_hardware_security_status(data[0x04] & 0x3), sizeof dmi->hardware_security.front_panel_reset_status); break; case 32: /* 3.3.33 System Boot Information */ if (h->length < 0x0B) break; dmi_system_boot_status(data[0x0A], dmi->system.system_boot_status); case 38: /* 3.3.39 IPMI Device Information */ if (h->length < 0x10) break; dmi->ipmi.filled = true; snprintf(dmi->ipmi.interface_type, sizeof(dmi->ipmi.interface_type), "%s", dmi_ipmi_interface_type(data[0x04])); dmi->ipmi.major_specification_version = data[0x05] >> 4; dmi->ipmi.minor_specification_version = data[0x05] & 0x0F; dmi->ipmi.I2C_slave_address = data[0x06] >> 1; if (data[0x07] != 0xFF) dmi->ipmi.nv_address = data[0x07]; else dmi->ipmi.nv_address = 0; /* Not Present */ dmi_ipmi_base_address(data[0x04], data + 0x08, &dmi->ipmi); if (h->length < 0x12) break; if (data[0x11] != 0x00) { dmi->ipmi.irq = data[0x11]; } break; } } void parse_dmitable(s_dmi * dmi) { int i = 0; uint8_t *data = NULL; uint8_t buf[dmi->dmitable.len]; memcpy(buf, (int *)dmi->dmitable.base, sizeof(uint8_t) * dmi->dmitable.len); data = buf; dmi->memory_count = 0; while (i < dmi->dmitable.num && data + 4 <= buf + dmi->dmitable.len) { /* 4 is the length of an SMBIOS structure header */ uint8_t *next; struct dmi_header h; to_dmi_header(&h, data); /* * If a short entry is found (less than 4 bytes), not only it * is invalid, but we cannot reliably locate the next entry. * Better stop at this point, and let the user know his/her * table is broken. */ if (h.length < 4) { printf ("Invalid entry length (%u). DMI table is broken! Stop.\n\n", (unsigned int)h.length); break; } /* loo for the next handle */ next = data + h.length; while (next - buf + 1 < dmi->dmitable.len && (next[0] != 0 || next[1] != 0)) next++; next += 2; if (next - buf <= dmi->dmitable.len) { dmi_decode(&h, dmi->dmitable.ver, dmi); } data = next; i++; } }