// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM #include "src/code-stubs.h" #include "src/api-arguments.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/isolate.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/runtime/runtime.h" #include "src/arm/code-stubs-arm.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { __ lsl(r5, r0, Operand(kPointerSizeLog2)); __ str(r1, MemOperand(sp, r5)); __ Push(r1); __ Push(r2); __ add(r0, r0, Operand(3)); __ TailCallRuntime(Runtime::kNewArray); } void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) { Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry; descriptor->Initialize(r0, deopt_handler, -1, JS_FUNCTION_STUB_MODE); } void FastFunctionBindStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry; descriptor->Initialize(r0, deopt_handler, -1, JS_FUNCTION_STUB_MODE); } static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond); static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict); static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs); void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss) { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); int param_count = descriptor.GetRegisterParameterCount(); { // Call the runtime system in a fresh internal frame. FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); DCHECK(param_count == 0 || r0.is(descriptor.GetRegisterParameter(param_count - 1))); // Push arguments for (int i = 0; i < param_count; ++i) { __ push(descriptor.GetRegisterParameter(i)); } __ CallExternalReference(miss, param_count); } __ Ret(); } void DoubleToIStub::Generate(MacroAssembler* masm) { Label out_of_range, only_low, negate, done; Register input_reg = source(); Register result_reg = destination(); DCHECK(is_truncating()); int double_offset = offset(); // Account for saved regs if input is sp. if (input_reg.is(sp)) double_offset += 3 * kPointerSize; Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); Register scratch_low = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); Register scratch_high = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low); LowDwVfpRegister double_scratch = kScratchDoubleReg; __ Push(scratch_high, scratch_low, scratch); if (!skip_fastpath()) { // Load double input. __ vldr(double_scratch, MemOperand(input_reg, double_offset)); __ vmov(scratch_low, scratch_high, double_scratch); // Do fast-path convert from double to int. __ vcvt_s32_f64(double_scratch.low(), double_scratch); __ vmov(result_reg, double_scratch.low()); // If result is not saturated (0x7fffffff or 0x80000000), we are done. __ sub(scratch, result_reg, Operand(1)); __ cmp(scratch, Operand(0x7ffffffe)); __ b(lt, &done); } else { // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate. if (double_offset == 0) { __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit()); } else { __ ldr(scratch_low, MemOperand(input_reg, double_offset)); __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize)); } } __ Ubfx(scratch, scratch_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). __ cmp(scratch, Operand(83)); __ b(ge, &out_of_range); // If we reach this code, 31 <= exponent <= 83. // So, we don't have to handle cases where 0 <= exponent <= 20 for // which we would need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ rsb(scratch, scratch, Operand(51), SetCC); __ b(ls, &only_low); // 21 <= exponent <= 51, shift scratch_low and scratch_high // to generate the result. __ mov(scratch_low, Operand(scratch_low, LSR, scratch)); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ rsb(scratch, scratch, Operand(32)); __ Ubfx(result_reg, scratch_high, 0, HeapNumber::kMantissaBitsInTopWord); // Set the implicit 1 before the mantissa part in scratch_high. __ orr(result_reg, result_reg, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch)); __ b(&negate); __ bind(&out_of_range); __ mov(result_reg, Operand::Zero()); __ b(&done); __ bind(&only_low); // 52 <= exponent <= 83, shift only scratch_low. // On entry, scratch contains: 52 - exponent. __ rsb(scratch, scratch, Operand::Zero()); __ mov(result_reg, Operand(scratch_low, LSL, scratch)); __ bind(&negate); // If input was positive, scratch_high ASR 31 equals 0 and // scratch_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1. // New result = (result eor 0xffffffff) + 1 = 0 - result. __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31)); __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31)); __ bind(&done); __ Pop(scratch_high, scratch_low, scratch); __ Ret(); } // Handle the case where the lhs and rhs are the same object. // Equality is almost reflexive (everything but NaN), so this is a test // for "identity and not NaN". static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond) { Label not_identical; Label heap_number, return_equal; __ cmp(r0, r1); __ b(ne, ¬_identical); // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. // They are both equal and they are not both Smis so both of them are not // Smis. If it's not a heap number, then return equal. if (cond == lt || cond == gt) { // Call runtime on identical JSObjects. __ CompareObjectType(r0, r4, r4, FIRST_JS_RECEIVER_TYPE); __ b(ge, slow); // Call runtime on identical symbols since we need to throw a TypeError. __ cmp(r4, Operand(SYMBOL_TYPE)); __ b(eq, slow); // Call runtime on identical SIMD values since we must throw a TypeError. __ cmp(r4, Operand(SIMD128_VALUE_TYPE)); __ b(eq, slow); } else { __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); __ b(eq, &heap_number); // Comparing JS objects with <=, >= is complicated. if (cond != eq) { __ cmp(r4, Operand(FIRST_JS_RECEIVER_TYPE)); __ b(ge, slow); // Call runtime on identical symbols since we need to throw a TypeError. __ cmp(r4, Operand(SYMBOL_TYPE)); __ b(eq, slow); // Call runtime on identical SIMD values since we must throw a TypeError. __ cmp(r4, Operand(SIMD128_VALUE_TYPE)); __ b(eq, slow); // Normally here we fall through to return_equal, but undefined is // special: (undefined == undefined) == true, but // (undefined <= undefined) == false! See ECMAScript 11.8.5. if (cond == le || cond == ge) { __ cmp(r4, Operand(ODDBALL_TYPE)); __ b(ne, &return_equal); __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ cmp(r0, r2); __ b(ne, &return_equal); if (cond == le) { // undefined <= undefined should fail. __ mov(r0, Operand(GREATER)); } else { // undefined >= undefined should fail. __ mov(r0, Operand(LESS)); } __ Ret(); } } } __ bind(&return_equal); if (cond == lt) { __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. } else if (cond == gt) { __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. } else { __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. } __ Ret(); // For less and greater we don't have to check for NaN since the result of // x < x is false regardless. For the others here is some code to check // for NaN. if (cond != lt && cond != gt) { __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if it's // not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // Read top bits of double representation (second word of value). __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); // Test that exponent bits are all set. __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // NaNs have all-one exponents so they sign extend to -1. __ cmp(r3, Operand(-1)); __ b(ne, &return_equal); // Shift out flag and all exponent bits, retaining only mantissa. __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); // Or with all low-bits of mantissa. __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); __ orr(r0, r3, Operand(r2), SetCC); // For equal we already have the right value in r0: Return zero (equal) // if all bits in mantissa are zero (it's an Infinity) and non-zero if // not (it's a NaN). For <= and >= we need to load r0 with the failing // value if it's a NaN. if (cond != eq) { // All-zero means Infinity means equal. __ Ret(eq); if (cond == le) { __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. } else { __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. } } __ Ret(); } // No fall through here. __ bind(¬_identical); } // See comment at call site. static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict) { DCHECK((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); Label rhs_is_smi; __ JumpIfSmi(rhs, &rhs_is_smi); // Lhs is a Smi. Check whether the rhs is a heap number. __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); if (strict) { // If rhs is not a number and lhs is a Smi then strict equality cannot // succeed. Return non-equal // If rhs is r0 then there is already a non zero value in it. if (!rhs.is(r0)) { __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); } __ Ret(ne); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ b(ne, slow); } // Lhs is a smi, rhs is a number. // Convert lhs to a double in d7. __ SmiToDouble(d7, lhs); // Load the double from rhs, tagged HeapNumber r0, to d6. __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); // We now have both loaded as doubles but we can skip the lhs nan check // since it's a smi. __ jmp(lhs_not_nan); __ bind(&rhs_is_smi); // Rhs is a smi. Check whether the non-smi lhs is a heap number. __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); if (strict) { // If lhs is not a number and rhs is a smi then strict equality cannot // succeed. Return non-equal. // If lhs is r0 then there is already a non zero value in it. if (!lhs.is(r0)) { __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); } __ Ret(ne); } else { // Smi compared non-strictly with a non-smi non-heap-number. Call // the runtime. __ b(ne, slow); } // Rhs is a smi, lhs is a heap number. // Load the double from lhs, tagged HeapNumber r1, to d7. __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); // Convert rhs to a double in d6 . __ SmiToDouble(d6, rhs); // Fall through to both_loaded_as_doubles. } // See comment at call site. static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs) { DCHECK((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); // If either operand is a JS object or an oddball value, then they are // not equal since their pointers are different. // There is no test for undetectability in strict equality. STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Label first_non_object; // Get the type of the first operand into r2 and compare it with // FIRST_JS_RECEIVER_TYPE. __ CompareObjectType(rhs, r2, r2, FIRST_JS_RECEIVER_TYPE); __ b(lt, &first_non_object); // Return non-zero (r0 is not zero) Label return_not_equal; __ bind(&return_not_equal); __ Ret(); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ cmp(r2, Operand(ODDBALL_TYPE)); __ b(eq, &return_not_equal); __ CompareObjectType(lhs, r3, r3, FIRST_JS_RECEIVER_TYPE); __ b(ge, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ cmp(r3, Operand(ODDBALL_TYPE)); __ b(eq, &return_not_equal); // Now that we have the types we might as well check for // internalized-internalized. STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ orr(r2, r2, Operand(r3)); __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ b(eq, &return_not_equal); } // See comment at call site. static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* not_heap_numbers, Label* slow) { DCHECK((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); __ b(ne, not_heap_numbers); __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ cmp(r2, r3); __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. // Both are heap numbers. Load them up then jump to the code we have // for that. __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); __ jmp(both_loaded_as_doubles); } // Fast negative check for internalized-to-internalized equality or receiver // equality. Also handles the undetectable receiver to null/undefined // comparison. static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, Register lhs, Register rhs, Label* possible_strings, Label* runtime_call) { DCHECK((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); // r2 is object type of rhs. Label object_test, return_equal, return_unequal, undetectable; STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ tst(r2, Operand(kIsNotStringMask)); __ b(ne, &object_test); __ tst(r2, Operand(kIsNotInternalizedMask)); __ b(ne, possible_strings); __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); __ b(ge, runtime_call); __ tst(r3, Operand(kIsNotInternalizedMask)); __ b(ne, possible_strings); // Both are internalized. We already checked they weren't the same pointer so // they are not equal. Return non-equal by returning the non-zero object // pointer in r0. __ Ret(); __ bind(&object_test); __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ ldrb(r4, FieldMemOperand(r2, Map::kBitFieldOffset)); __ ldrb(r5, FieldMemOperand(r3, Map::kBitFieldOffset)); __ tst(r4, Operand(1 << Map::kIsUndetectable)); __ b(ne, &undetectable); __ tst(r5, Operand(1 << Map::kIsUndetectable)); __ b(ne, &return_unequal); __ CompareInstanceType(r2, r2, FIRST_JS_RECEIVER_TYPE); __ b(lt, runtime_call); __ CompareInstanceType(r3, r3, FIRST_JS_RECEIVER_TYPE); __ b(lt, runtime_call); __ bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in r0. __ Ret(); __ bind(&undetectable); __ tst(r5, Operand(1 << Map::kIsUndetectable)); __ b(eq, &return_unequal); // If both sides are JSReceivers, then the result is false according to // the HTML specification, which says that only comparisons with null or // undefined are affected by special casing for document.all. __ CompareInstanceType(r2, r2, ODDBALL_TYPE); __ b(eq, &return_equal); __ CompareInstanceType(r3, r3, ODDBALL_TYPE); __ b(ne, &return_unequal); __ bind(&return_equal); __ mov(r0, Operand(EQUAL)); __ Ret(); } static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input, Register scratch, CompareICState::State expected, Label* fail) { Label ok; if (expected == CompareICState::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareICState::NUMBER) { __ JumpIfSmi(input, &ok); __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); } // We could be strict about internalized/non-internalized here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } // On entry r1 and r2 are the values to be compared. // On exit r0 is 0, positive or negative to indicate the result of // the comparison. void CompareICStub::GenerateGeneric(MacroAssembler* masm) { Register lhs = r1; Register rhs = r0; Condition cc = GetCondition(); Label miss; CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss); CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss); Label slow; // Call builtin. Label not_smis, both_loaded_as_doubles, lhs_not_nan; Label not_two_smis, smi_done; __ orr(r2, r1, r0); __ JumpIfNotSmi(r2, ¬_two_smis); __ mov(r1, Operand(r1, ASR, 1)); __ sub(r0, r1, Operand(r0, ASR, 1)); __ Ret(); __ bind(¬_two_smis); // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Handle the case where the objects are identical. Either returns the answer // or goes to slow. Only falls through if the objects were not identical. EmitIdenticalObjectComparison(masm, &slow, cc); // If either is a Smi (we know that not both are), then they can only // be strictly equal if the other is a HeapNumber. STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero); __ and_(r2, lhs, Operand(rhs)); __ JumpIfNotSmi(r2, ¬_smis); // One operand is a smi. EmitSmiNonsmiComparison generates code that can: // 1) Return the answer. // 2) Go to slow. // 3) Fall through to both_loaded_as_doubles. // 4) Jump to lhs_not_nan. // In cases 3 and 4 we have found out we were dealing with a number-number // comparison. The double values of the numbers have been loaded into d7 (lhs) // and d6 (rhs). EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); __ bind(&both_loaded_as_doubles); // The arguments have been converted to doubles and stored in d6 and d7. __ bind(&lhs_not_nan); Label no_nan; __ VFPCompareAndSetFlags(d7, d6); Label nan; __ b(vs, &nan); __ mov(r0, Operand(EQUAL), LeaveCC, eq); __ mov(r0, Operand(LESS), LeaveCC, lt); __ mov(r0, Operand(GREATER), LeaveCC, gt); __ Ret(); __ bind(&nan); // If one of the sides was a NaN then the v flag is set. Load r0 with // whatever it takes to make the comparison fail, since comparisons with NaN // always fail. if (cc == lt || cc == le) { __ mov(r0, Operand(GREATER)); } else { __ mov(r0, Operand(LESS)); } __ Ret(); __ bind(¬_smis); // At this point we know we are dealing with two different objects, // and neither of them is a Smi. The objects are in rhs_ and lhs_. if (strict()) { // This returns non-equal for some object types, or falls through if it // was not lucky. EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); } Label check_for_internalized_strings; Label flat_string_check; // Check for heap-number-heap-number comparison. Can jump to slow case, // or load both doubles into r0, r1, r2, r3 and jump to the code that handles // that case. If the inputs are not doubles then jumps to // check_for_internalized_strings. // In this case r2 will contain the type of rhs_. Never falls through. EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles, &check_for_internalized_strings, &flat_string_check); __ bind(&check_for_internalized_strings); // In the strict case the EmitStrictTwoHeapObjectCompare already took care of // internalized strings. if (cc == eq && !strict()) { // Returns an answer for two internalized strings or two detectable objects. // Otherwise jumps to string case or not both strings case. // Assumes that r2 is the type of rhs_ on entry. EmitCheckForInternalizedStringsOrObjects( masm, lhs, rhs, &flat_string_check, &slow); } // Check for both being sequential one-byte strings, // and inline if that is the case. __ bind(&flat_string_check); __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow); __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2, r3); if (cc == eq) { StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4, r5); } // Never falls through to here. __ bind(&slow); if (cc == eq) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(lhs, rhs); __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual); } // Turn true into 0 and false into some non-zero value. STATIC_ASSERT(EQUAL == 0); __ LoadRoot(r1, Heap::kTrueValueRootIndex); __ sub(r0, r0, r1); __ Ret(); } else { __ Push(lhs, rhs); int ncr; // NaN compare result if (cc == lt || cc == le) { ncr = GREATER; } else { DCHECK(cc == gt || cc == ge); // remaining cases ncr = LESS; } __ mov(r0, Operand(Smi::FromInt(ncr))); __ push(r0); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ TailCallRuntime(Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ stm(db_w, sp, kCallerSaved | lr.bit()); const Register scratch = r1; if (save_doubles()) { __ SaveFPRegs(sp, scratch); } const int argument_count = 1; const int fp_argument_count = 0; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction( ExternalReference::store_buffer_overflow_function(isolate()), argument_count); if (save_doubles()) { __ RestoreFPRegs(sp, scratch); } __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0). } void MathPowStub::Generate(MacroAssembler* masm) { const Register exponent = MathPowTaggedDescriptor::exponent(); DCHECK(exponent.is(r2)); const LowDwVfpRegister double_base = d0; const LowDwVfpRegister double_exponent = d1; const LowDwVfpRegister double_result = d2; const LowDwVfpRegister double_scratch = d3; const SwVfpRegister single_scratch = s6; const Register scratch = r9; const Register scratch2 = r4; Label call_runtime, done, int_exponent; if (exponent_type() == TAGGED) { // Base is already in double_base. __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ vldr(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type() != INTEGER) { // Detect integer exponents stored as double. __ TryDoubleToInt32Exact(scratch, double_exponent, double_scratch); __ b(eq, &int_exponent); __ push(lr); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(lr); __ MovFromFloatResult(double_result); __ b(&done); } // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. if (exponent_type() == INTEGER) { __ mov(scratch, exponent); } else { // Exponent has previously been stored into scratch as untagged integer. __ mov(exponent, scratch); } __ vmov(double_scratch, double_base); // Back up base. __ vmov(double_result, 1.0, scratch2); // Get absolute value of exponent. __ cmp(scratch, Operand::Zero()); __ rsb(scratch, scratch, Operand::Zero(), LeaveCC, mi); Label while_true; __ bind(&while_true); __ mov(scratch, Operand(scratch, LSR, 1), SetCC); __ vmul(double_result, double_result, double_scratch, cs); __ vmul(double_scratch, double_scratch, double_scratch, ne); __ b(ne, &while_true); __ cmp(exponent, Operand::Zero()); __ b(ge, &done); __ vmov(double_scratch, 1.0, scratch); __ vdiv(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ VFPCompareAndSetFlags(double_result, 0.0); __ b(ne, &done); // double_exponent may not containe the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ vmov(single_scratch, exponent); __ vcvt_f64_s32(double_exponent, single_scratch); // Returning or bailing out. __ push(lr); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(lr); __ MovFromFloatResult(double_result); __ bind(&done); __ Ret(); } bool CEntryStub::NeedsImmovableCode() { return true; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); CreateWeakCellStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); StoreFastElementStub::GenerateAheadOfTime(isolate); } void CodeStub::GenerateFPStubs(Isolate* isolate) { // Generate if not already in cache. SaveFPRegsMode mode = kSaveFPRegs; CEntryStub(isolate, 1, mode).GetCode(); StoreBufferOverflowStub(isolate, mode).GetCode(); isolate->set_fp_stubs_generated(true); } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // Called from JavaScript; parameters are on stack as if calling JS function. // r0: number of arguments including receiver // r1: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_in_register(): // r2: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); __ mov(r5, Operand(r1)); if (argv_in_register()) { // Move argv into the correct register. __ mov(r1, Operand(r2)); } else { // Compute the argv pointer in a callee-saved register. __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2)); __ sub(r1, r1, Operand(kPointerSize)); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame(save_doubles(), 0, is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // Store a copy of argc in callee-saved registers for later. __ mov(r4, Operand(r0)); // r0, r4: number of arguments including receiver (C callee-saved) // r1: pointer to the first argument (C callee-saved) // r5: pointer to builtin function (C callee-saved) int frame_alignment = MacroAssembler::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; #if V8_HOST_ARCH_ARM if (FLAG_debug_code) { if (frame_alignment > kPointerSize) { Label alignment_as_expected; DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); __ tst(sp, Operand(frame_alignment_mask)); __ b(eq, &alignment_as_expected); // Don't use Check here, as it will call Runtime_Abort re-entering here. __ stop("Unexpected alignment"); __ bind(&alignment_as_expected); } } #endif // Call C built-in. int result_stack_size; if (result_size() <= 2) { // r0 = argc, r1 = argv, r2 = isolate __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); result_stack_size = 0; } else { DCHECK_EQ(3, result_size()); // Allocate additional space for the result. result_stack_size = ((result_size() * kPointerSize) + frame_alignment_mask) & ~frame_alignment_mask; __ sub(sp, sp, Operand(result_stack_size)); // r0 = hidden result argument, r1 = argc, r2 = argv, r3 = isolate. __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); __ mov(r2, Operand(r1)); __ mov(r1, Operand(r0)); __ mov(r0, Operand(sp)); } // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. // Compute the return address in lr to return to after the jump below. Pc is // already at '+ 8' from the current instruction but return is after three // instructions so add another 4 to pc to get the return address. { // Prevent literal pool emission before return address. Assembler::BlockConstPoolScope block_const_pool(masm); __ add(lr, pc, Operand(4)); __ str(lr, MemOperand(sp, result_stack_size)); __ Call(r5); } if (result_size() > 2) { DCHECK_EQ(3, result_size()); // Read result values stored on stack. __ ldr(r2, MemOperand(sp, 2 * kPointerSize)); __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); __ ldr(r0, MemOperand(sp, 0 * kPointerSize)); } // Result returned in r0, r1:r0 or r2:r1:r0 - do not destroy these registers! // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r0, Heap::kExceptionRootIndex); __ b(eq, &exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, isolate()); __ mov(r3, Operand(pending_exception_address)); __ ldr(r3, MemOperand(r3)); __ CompareRoot(r3, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ b(eq, &okay); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // r0:r1: result // sp: stack pointer // fp: frame pointer Register argc; if (argv_in_register()) { // We don't want to pop arguments so set argc to no_reg. argc = no_reg; } else { // Callee-saved register r4 still holds argc. argc = r4; } __ LeaveExitFrame(save_doubles(), argc, true); __ mov(pc, lr); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address( Isolate::kPendingHandlerContextAddress, isolate()); ExternalReference pending_handler_code_address( Isolate::kPendingHandlerCodeAddress, isolate()); ExternalReference pending_handler_offset_address( Isolate::kPendingHandlerOffsetAddress, isolate()); ExternalReference pending_handler_fp_address( Isolate::kPendingHandlerFPAddress, isolate()); ExternalReference pending_handler_sp_address( Isolate::kPendingHandlerSPAddress, isolate()); // Ask the runtime for help to determine the handler. This will set r0 to // contain the current pending exception, don't clobber it. ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, isolate()); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, r0); __ mov(r0, Operand(0)); __ mov(r1, Operand(0)); __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ mov(cp, Operand(pending_handler_context_address)); __ ldr(cp, MemOperand(cp)); __ mov(sp, Operand(pending_handler_sp_address)); __ ldr(sp, MemOperand(sp)); __ mov(fp, Operand(pending_handler_fp_address)); __ ldr(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. __ cmp(cp, Operand(0)); __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); // Compute the handler entry address and jump to it. ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ mov(r1, Operand(pending_handler_code_address)); __ ldr(r1, MemOperand(r1)); __ mov(r2, Operand(pending_handler_offset_address)); __ ldr(r2, MemOperand(r2)); __ add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start if (FLAG_enable_embedded_constant_pool) { __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r1); } __ add(pc, r1, r2); } void JSEntryStub::Generate(MacroAssembler* masm) { // r0: code entry // r1: function // r2: receiver // r3: argc // [sp+0]: argv Label invoke, handler_entry, exit; ProfileEntryHookStub::MaybeCallEntryHook(masm); // Called from C, so do not pop argc and args on exit (preserve sp) // No need to save register-passed args // Save callee-saved registers (incl. cp and fp), sp, and lr __ stm(db_w, sp, kCalleeSaved | lr.bit()); // Save callee-saved vfp registers. __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); // Set up the reserved register for 0.0. __ vmov(kDoubleRegZero, 0.0); // Get address of argv, see stm above. // r0: code entry // r1: function // r2: receiver // r3: argc // Set up argv in r4. int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize; __ ldr(r4, MemOperand(sp, offset_to_argv)); // Push a frame with special values setup to mark it as an entry frame. // r0: code entry // r1: function // r2: receiver // r3: argc // r4: argv int marker = type(); if (FLAG_enable_embedded_constant_pool) { __ mov(r8, Operand::Zero()); } __ mov(r7, Operand(Smi::FromInt(marker))); __ mov(r6, Operand(Smi::FromInt(marker))); __ mov(r5, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); __ ldr(r5, MemOperand(r5)); __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used. __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | (FLAG_enable_embedded_constant_pool ? r8.bit() : 0) | ip.bit()); // Set up frame pointer for the frame to be pushed. __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); __ mov(r5, Operand(ExternalReference(js_entry_sp))); __ ldr(r6, MemOperand(r5)); __ cmp(r6, Operand::Zero()); __ b(ne, &non_outermost_js); __ str(fp, MemOperand(r5)); __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); Label cont; __ b(&cont); __ bind(&non_outermost_js); __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); __ bind(&cont); __ push(ip); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); // Block literal pool emission whilst taking the position of the handler // entry. This avoids making the assumption that literal pools are always // emitted after an instruction is emitted, rather than before. { Assembler::BlockConstPoolScope block_const_pool(masm); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushStackHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); } __ str(r0, MemOperand(ip)); __ LoadRoot(r0, Heap::kExceptionRootIndex); __ b(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); // Must preserve r0-r4, r5-r6 are available. __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the bl(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Expected registers by Builtins::JSEntryTrampoline // r0: code entry // r1: function // r2: receiver // r3: argc // r4: argv if (type() == StackFrame::ENTRY_CONSTRUCT) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate()); __ mov(ip, Operand(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); __ mov(ip, Operand(entry)); } __ ldr(ip, MemOperand(ip)); // deref address __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); // Branch and link to JSEntryTrampoline. __ Call(ip); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // r0 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(r5); __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); __ b(ne, &non_outermost_js_2); __ mov(r6, Operand::Zero()); __ mov(r5, Operand(ExternalReference(js_entry_sp))); __ str(r6, MemOperand(r5)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(r3); __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); __ str(r3, MemOperand(ip)); // Reset the stack to the callee saved registers. __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // Restore callee-saved registers and return. #ifdef DEBUG if (FLAG_debug_code) { __ mov(lr, Operand(pc)); } #endif // Restore callee-saved vfp registers. __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); } void FunctionPrototypeStub::Generate(MacroAssembler* masm) { Label miss; Register receiver = LoadDescriptor::ReceiverRegister(); // Ensure that the vector and slot registers won't be clobbered before // calling the miss handler. DCHECK(!AreAliased(r4, r5, LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister())); NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r4, r5, &miss); __ bind(&miss); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); } void LoadIndexedStringStub::Generate(MacroAssembler* masm) { // Return address is in lr. Label miss; Register receiver = LoadDescriptor::ReceiverRegister(); Register index = LoadDescriptor::NameRegister(); Register scratch = r5; Register result = r0; DCHECK(!scratch.is(receiver) && !scratch.is(index)); DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) && result.is(LoadWithVectorDescriptor::SlotRegister())); // StringCharAtGenerator doesn't use the result register until it's passed // the different miss possibilities. If it did, we would have a conflict // when FLAG_vector_ics is true. StringCharAtGenerator char_at_generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. &miss, // When index out of range. RECEIVER_IS_STRING); char_at_generator.GenerateFast(masm); __ Ret(); StubRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper); __ bind(&miss); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // sp[0]: last_match_info (expected JSArray) // sp[4]: previous index // sp[8]: subject string // sp[12]: JSRegExp object const int kLastMatchInfoOffset = 0 * kPointerSize; const int kPreviousIndexOffset = 1 * kPointerSize; const int kSubjectOffset = 2 * kPointerSize; const int kJSRegExpOffset = 3 * kPointerSize; Label runtime; // Allocation of registers for this function. These are in callee save // registers and will be preserved by the call to the native RegExp code, as // this code is called using the normal C calling convention. When calling // directly from generated code the native RegExp code will not do a GC and // therefore the content of these registers are safe to use after the call. Register subject = r4; Register regexp_data = r5; Register last_match_info_elements = no_reg; // will be r6; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate()); __ mov(r0, Operand(address_of_regexp_stack_memory_size)); __ ldr(r0, MemOperand(r0, 0)); __ cmp(r0, Operand::Zero()); __ b(eq, &runtime); // Check that the first argument is a JSRegExp object. __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); __ JumpIfSmi(r0, &runtime); __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); __ b(ne, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ SmiTst(regexp_data); __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); } // regexp_data: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); __ b(ne, &runtime); // regexp_data: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ ldr(r2, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // Or number_of_captures * 2 <= offsets vector size - 2 // Multiplying by 2 comes for free since r2 is smi-tagged. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); __ b(hi, &runtime); // Reset offset for possibly sliced string. __ mov(r9, Operand::Zero()); __ ldr(subject, MemOperand(sp, kSubjectOffset)); __ JumpIfSmi(subject, &runtime); __ mov(r3, subject); // Make a copy of the original subject string. // subject: subject string // r3: subject string // regexp_data: RegExp data (FixedArray) // Handle subject string according to its encoding and representation: // (1) Sequential string? If yes, go to (4). // (2) Sequential or cons? If not, go to (5). // (3) Cons string. If the string is flat, replace subject with first string // and go to (1). Otherwise bail out to runtime. // (4) Sequential string. Load regexp code according to encoding. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (5) Long external string? If not, go to (7). // (6) External string. Make it, offset-wise, look like a sequential string. // Go to (4). // (7) Short external string or not a string? If yes, bail out to runtime. // (8) Sliced string. Replace subject with parent. Go to (1). Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */, not_seq_nor_cons /* 5 */, not_long_external /* 7 */; __ bind(&check_underlying); __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); // (1) Sequential string? If yes, go to (4). __ and_(r1, r0, Operand(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask), SetCC); STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); __ b(eq, &seq_string); // Go to (4). // (2) Sequential or cons? If not, go to (5). STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ cmp(r1, Operand(kExternalStringTag)); __ b(ge, ¬_seq_nor_cons); // Go to (5). // (3) Cons string. Check that it's flat. // Replace subject with first string and reload instance type. __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); __ CompareRoot(r0, Heap::kempty_stringRootIndex); __ b(ne, &runtime); __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); __ jmp(&check_underlying); // (4) Sequential string. Load regexp code according to encoding. __ bind(&seq_string); // subject: sequential subject string (or look-alike, external string) // r3: original subject string // Load previous index and check range before r3 is overwritten. We have to // use r3 instead of subject here because subject might have been only made // to look like a sequential string when it actually is an external string. __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); __ JumpIfNotSmi(r1, &runtime); __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset)); __ cmp(r3, Operand(r1)); __ b(ls, &runtime); __ SmiUntag(r1); STATIC_ASSERT(4 == kOneByteStringTag); STATIC_ASSERT(kTwoByteStringTag == 0); __ and_(r0, r0, Operand(kStringEncodingMask)); __ mov(r3, Operand(r0, ASR, 2), SetCC); __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset), ne); __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); // (E) Carry on. String handling is done. // r6: irregexp code // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(r6, &runtime); // r1: previous index // r3: encoding of subject string (1 if one_byte, 0 if two_byte); // r6: code // subject: Subject string // regexp_data: RegExp data (FixedArray) // All checks done. Now push arguments for native regexp code. __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2); // Isolates: note we add an additional parameter here (isolate pointer). const int kRegExpExecuteArguments = 9; const int kParameterRegisters = 4; __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); // Stack pointer now points to cell where return address is to be written. // Arguments are before that on the stack or in registers. // Argument 9 (sp[20]): Pass current isolate address. __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); __ str(r0, MemOperand(sp, 5 * kPointerSize)); // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript. __ mov(r0, Operand(1)); __ str(r0, MemOperand(sp, 4 * kPointerSize)); // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area. __ mov(r0, Operand(address_of_regexp_stack_memory_address)); __ ldr(r0, MemOperand(r0, 0)); __ mov(r2, Operand(address_of_regexp_stack_memory_size)); __ ldr(r2, MemOperand(r2, 0)); __ add(r0, r0, Operand(r2)); __ str(r0, MemOperand(sp, 3 * kPointerSize)); // Argument 6: Set the number of capture registers to zero to force global // regexps to behave as non-global. This does not affect non-global regexps. __ mov(r0, Operand::Zero()); __ str(r0, MemOperand(sp, 2 * kPointerSize)); // Argument 5 (sp[4]): static offsets vector buffer. __ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector( isolate()))); __ str(r0, MemOperand(sp, 1 * kPointerSize)); // For arguments 4 and 3 get string length, calculate start of string data and // calculate the shift of the index (0 for one-byte and 1 for two-byte). __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); __ eor(r3, r3, Operand(1)); // Load the length from the original subject string from the previous stack // frame. Therefore we have to use fp, which points exactly to two pointer // sizes below the previous sp. (Because creating a new stack frame pushes // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); // If slice offset is not 0, load the length from the original sliced string. // Argument 4, r3: End of string data // Argument 3, r2: Start of string data // Prepare start and end index of the input. __ add(r9, r7, Operand(r9, LSL, r3)); __ add(r2, r9, Operand(r1, LSL, r3)); __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset)); __ SmiUntag(r7); __ add(r3, r9, Operand(r7, LSL, r3)); // Argument 2 (r1): Previous index. // Already there // Argument 1 (r0): Subject string. __ mov(r0, subject); // Locate the code entry and call it. __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag)); DirectCEntryStub stub(isolate()); stub.GenerateCall(masm, r6); __ LeaveExitFrame(false, no_reg, true); last_match_info_elements = r6; // r0: result // subject: subject string (callee saved) // regexp_data: RegExp data (callee saved) // last_match_info_elements: Last match info elements (callee saved) // Check the result. Label success; __ cmp(r0, Operand(1)); // We expect exactly one result since we force the called regexp to behave // as non-global. __ b(eq, &success); Label failure; __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); __ b(eq, &failure); __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); // If not exception it can only be retry. Handle that in the runtime system. __ b(ne, &runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. __ mov(r1, Operand(isolate()->factory()->the_hole_value())); __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ ldr(r0, MemOperand(r2, 0)); __ cmp(r0, r1); __ b(eq, &runtime); // For exception, throw the exception again. __ TailCallRuntime(Runtime::kRegExpExecReThrow); __ bind(&failure); // For failure and exception return null. __ mov(r0, Operand(isolate()->factory()->null_value())); __ add(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // Process the result from the native regexp code. __ bind(&success); __ ldr(r1, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. // Multiplying by 2 comes for free since r1 is smi-tagged. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ add(r1, r1, Operand(2)); // r1 was a smi. // Check that the last match info is a FixedArray. __ ldr(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset)); __ JumpIfSmi(last_match_info_elements, &runtime); // Check that the object has fast elements. __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex); __ b(ne, &runtime); // Check that the last match info has space for the capture registers and the // additional information. __ ldr(r0, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); __ add(r2, r1, Operand(RegExpMatchInfo::kLastMatchOverhead)); __ cmp(r2, Operand::SmiUntag(r0)); __ b(gt, &runtime); // r1: number of capture registers // r4: subject string // Store the capture count. __ SmiTag(r2, r1); __ str(r2, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kNumberOfCapturesOffset)); // Store last subject and last input. __ str(subject, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kLastSubjectOffset)); __ mov(r2, subject); __ RecordWriteField(last_match_info_elements, RegExpMatchInfo::kLastSubjectOffset, subject, r3, kLRHasNotBeenSaved, kDontSaveFPRegs); __ mov(subject, r2); __ str(subject, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kLastInputOffset)); __ RecordWriteField(last_match_info_elements, RegExpMatchInfo::kLastInputOffset, subject, r3, kLRHasNotBeenSaved, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate()); __ mov(r2, Operand(address_of_static_offsets_vector)); // r1: number of capture registers // r2: offsets vector Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wrapping after zero. __ add(r0, last_match_info_elements, Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag)); __ bind(&next_capture); __ sub(r1, r1, Operand(1), SetCC); __ b(mi, &done); // Read the value from the static offsets vector buffer. __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); // Store the smi value in the last match info. __ SmiTag(r3); __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ mov(r0, last_match_info_elements); __ add(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec); // Deferred code for string handling. // (5) Long external string? If not, go to (7). __ bind(¬_seq_nor_cons); // Compare flags are still set. __ b(gt, ¬_long_external); // Go to (7). // (6) External string. Make it, offset-wise, look like a sequential string. __ bind(&external_string); __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ tst(r0, Operand(kIsIndirectStringMask)); __ Assert(eq, kExternalStringExpectedButNotFound); } __ ldr(subject, FieldMemOperand(subject, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ sub(subject, subject, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ jmp(&seq_string); // Go to (4). // (7) Short external string or not a string? If yes, bail out to runtime. __ bind(¬_long_external); STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask)); __ b(ne, &runtime); // (8) Sliced string. Replace subject with parent. Go to (4). // Load offset into r9 and replace subject string with parent. __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset)); __ SmiUntag(r9); __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); __ jmp(&check_underlying); // Go to (4). #endif // V8_INTERPRETED_REGEXP } static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) { // r0 : number of arguments to the construct function // r1 : the function to call // r2 : feedback vector // r3 : slot in feedback vector (Smi) FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Number-of-arguments register must be smi-tagged to call out. __ SmiTag(r0); __ Push(r3, r2, r1, r0); __ Push(cp); __ CallStub(stub); __ Pop(cp); __ Pop(r3, r2, r1, r0); __ SmiUntag(r0); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a feedback vector slot. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // r0 : number of arguments to the construct function // r1 : the function to call // r2 : feedback vector // r3 : slot in feedback vector (Smi) Label initialize, done, miss, megamorphic, not_array_function; DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->megamorphic_symbol()); DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()), masm->isolate()->heap()->uninitialized_symbol()); // Load the cache state into r5. __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3)); __ ldr(r5, FieldMemOperand(r5, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. // We don't know if r5 is a WeakCell or a Symbol, but it's harmless to read at // this position in a symbol (see static asserts in type-feedback-vector.h). Label check_allocation_site; Register feedback_map = r6; Register weak_value = r9; __ ldr(weak_value, FieldMemOperand(r5, WeakCell::kValueOffset)); __ cmp(r1, weak_value); __ b(eq, &done); __ CompareRoot(r5, Heap::kmegamorphic_symbolRootIndex); __ b(eq, &done); __ ldr(feedback_map, FieldMemOperand(r5, HeapObject::kMapOffset)); __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex); __ b(ne, &check_allocation_site); // If the weak cell is cleared, we have a new chance to become monomorphic. __ JumpIfSmi(weak_value, &initialize); __ jmp(&megamorphic); __ bind(&check_allocation_site); // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex); __ b(ne, &miss); // Make sure the function is the Array() function __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r5); __ cmp(r1, r5); __ b(ne, &megamorphic); __ jmp(&done); __ bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ CompareRoot(r5, Heap::kuninitialized_symbolRootIndex); __ b(eq, &initialize); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ bind(&megamorphic); __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3)); __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex); __ str(ip, FieldMemOperand(r5, FixedArray::kHeaderSize)); __ jmp(&done); // An uninitialized cache is patched with the function __ bind(&initialize); // Make sure the function is the Array() function __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r5); __ cmp(r1, r5); __ b(ne, ¬_array_function); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the // slot. CreateAllocationSiteStub create_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &create_stub); __ b(&done); __ bind(¬_array_function); CreateWeakCellStub weak_cell_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &weak_cell_stub); __ bind(&done); // Increment the call count for all function calls. __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3)); __ add(r5, r5, Operand(FixedArray::kHeaderSize + kPointerSize)); __ ldr(r4, FieldMemOperand(r5, 0)); __ add(r4, r4, Operand(Smi::FromInt(1))); __ str(r4, FieldMemOperand(r5, 0)); } void CallConstructStub::Generate(MacroAssembler* masm) { // r0 : number of arguments // r1 : the function to call // r2 : feedback vector // r3 : slot in feedback vector (Smi, for RecordCallTarget) Label non_function; // Check that the function is not a smi. __ JumpIfSmi(r1, &non_function); // Check that the function is a JSFunction. __ CompareObjectType(r1, r5, r5, JS_FUNCTION_TYPE); __ b(ne, &non_function); GenerateRecordCallTarget(masm); __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3)); Label feedback_register_initialized; // Put the AllocationSite from the feedback vector into r2, or undefined. __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize)); __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset)); __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); __ b(eq, &feedback_register_initialized); __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ bind(&feedback_register_initialized); __ AssertUndefinedOrAllocationSite(r2, r5); // Pass function as new target. __ mov(r3, r1); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset)); __ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ bind(&non_function); __ mov(r3, r1); __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } // Note: feedback_vector and slot are clobbered after the call. static void IncrementCallCount(MacroAssembler* masm, Register feedback_vector, Register slot) { __ add(feedback_vector, feedback_vector, Operand::PointerOffsetFromSmiKey(slot)); __ add(feedback_vector, feedback_vector, Operand(FixedArray::kHeaderSize + kPointerSize)); __ ldr(slot, FieldMemOperand(feedback_vector, 0)); __ add(slot, slot, Operand(Smi::FromInt(1))); __ str(slot, FieldMemOperand(feedback_vector, 0)); } void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) { // r0 - number of arguments // r1 - function // r3 - slot id // r2 - vector // r4 - allocation site (loaded from vector[slot]) __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r5); __ cmp(r1, r5); __ b(ne, miss); // Increment the call count for monomorphic function calls. IncrementCallCount(masm, r2, r3); __ mov(r2, r4); __ mov(r3, r1); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void CallICStub::Generate(MacroAssembler* masm) { // r0 - number of arguments // r1 - function // r3 - slot id (Smi) // r2 - vector Label extra_checks_or_miss, call, call_function, call_count_incremented; // The checks. First, does r1 match the recorded monomorphic target? __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); // We don't know that we have a weak cell. We might have a private symbol // or an AllocationSite, but the memory is safe to examine. // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to // FixedArray. // WeakCell::kValueOffset - contains a JSFunction or Smi(0) // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not // computed, meaning that it can't appear to be a pointer. If the low bit is // 0, then hash is computed, but the 0 bit prevents the field from appearing // to be a pointer. STATIC_ASSERT(WeakCell::kSize >= kPointerSize); STATIC_ASSERT(AllocationSite::kTransitionInfoOffset == WeakCell::kValueOffset && WeakCell::kValueOffset == Symbol::kHashFieldSlot); __ ldr(r5, FieldMemOperand(r4, WeakCell::kValueOffset)); __ cmp(r1, r5); __ b(ne, &extra_checks_or_miss); // The compare above could have been a SMI/SMI comparison. Guard against this // convincing us that we have a monomorphic JSFunction. __ JumpIfSmi(r1, &extra_checks_or_miss); __ bind(&call_function); // Increment the call count for monomorphic function calls. IncrementCallCount(masm, r2, r3); __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(), tail_call_mode()), RelocInfo::CODE_TARGET); __ bind(&extra_checks_or_miss); Label uninitialized, miss, not_allocation_site; __ CompareRoot(r4, Heap::kmegamorphic_symbolRootIndex); __ b(eq, &call); // Verify that r4 contains an AllocationSite __ ldr(r5, FieldMemOperand(r4, HeapObject::kMapOffset)); __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); __ b(ne, ¬_allocation_site); // We have an allocation site. HandleArrayCase(masm, &miss); __ bind(¬_allocation_site); // The following cases attempt to handle MISS cases without going to the // runtime. if (FLAG_trace_ic) { __ jmp(&miss); } __ CompareRoot(r4, Heap::kuninitialized_symbolRootIndex); __ b(eq, &uninitialized); // We are going megamorphic. If the feedback is a JSFunction, it is fine // to handle it here. More complex cases are dealt with in the runtime. __ AssertNotSmi(r4); __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE); __ b(ne, &miss); __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex); __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize)); __ bind(&call); // Increment the call count for megamorphic function calls. IncrementCallCount(masm, r2, r3); __ bind(&call_count_incremented); __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()), RelocInfo::CODE_TARGET); __ bind(&uninitialized); // We are going monomorphic, provided we actually have a JSFunction. __ JumpIfSmi(r1, &miss); // Goto miss case if we do not have a function. __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); __ b(ne, &miss); // Make sure the function is not the Array() function, which requires special // behavior on MISS. __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r4); __ cmp(r1, r4); __ b(eq, &miss); // Make sure the function belongs to the same native context. __ ldr(r4, FieldMemOperand(r1, JSFunction::kContextOffset)); __ ldr(r4, ContextMemOperand(r4, Context::NATIVE_CONTEXT_INDEX)); __ ldr(ip, NativeContextMemOperand()); __ cmp(r4, ip); __ b(ne, &miss); // Store the function. Use a stub since we need a frame for allocation. // r2 - vector // r3 - slot // r1 - function { FrameScope scope(masm, StackFrame::INTERNAL); CreateWeakCellStub create_stub(masm->isolate()); __ SmiTag(r0); __ Push(r0, r2, r3, cp, r1); __ CallStub(&create_stub); __ Pop(r2, r3, cp, r1); __ Pop(r0); __ SmiUntag(r0); } __ jmp(&call_function); // We are here because tracing is on or we encountered a MISS case we can't // handle here. __ bind(&miss); GenerateMiss(masm); __ jmp(&call_count_incremented); } void CallICStub::GenerateMiss(MacroAssembler* masm) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Preserve the number of arguments as Smi. __ SmiTag(r0); // Push the receiver and the function and feedback info. __ Push(r0, r1, r2, r3); // Call the entry. __ CallRuntime(Runtime::kCallIC_Miss); // Move result to edi and exit the internal frame. __ mov(r1, r0); // Restore number of arguments. __ Pop(r0); __ SmiUntag(r0); } // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { // If the receiver is a smi trigger the non-string case. if (check_mode_ == RECEIVER_IS_UNKNOWN) { __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ tst(result_, Operand(kIsNotStringMask)); __ b(ne, receiver_not_string_); } // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); __ cmp(ip, Operand(index_)); __ b(ls, index_out_of_range_); __ SmiUntag(index_); StringCharLoadGenerator::Generate(masm, object_, index_, result_, &call_runtime_); __ SmiTag(result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, EmbedMode embed_mode, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); if (embed_mode == PART_OF_IC_HANDLER) { __ Push(LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister(), object_, index_); } else { // index_ is consumed by runtime conversion function. __ Push(object_, index_); } __ CallRuntime(Runtime::kNumberToSmi); // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ Move(index_, r0); if (embed_mode == PART_OF_IC_HANDLER) { __ Pop(LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister(), object_); } else { __ pop(object_); } // Reload the instance type. __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ jmp(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ SmiTag(index_); __ Push(object_, index_); __ CallRuntime(Runtime::kStringCharCodeAtRT); __ Move(result_, r0); call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiShiftSize == 0); DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1)); __ tst(code_, Operand(kSmiTagMask | ((~String::kMaxOneByteCharCodeU) << kSmiTagSize))); __ b(ne, &slow_case_); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); // At this point code register contains smi tagged one-byte char code. __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_)); __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); __ b(eq, &slow_case_); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kStringCharFromCode); __ Move(result_, r0); call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); } enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 }; void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, String::Encoding encoding) { if (FLAG_debug_code) { // Check that destination is word aligned. __ tst(dest, Operand(kPointerAlignmentMask)); __ Check(eq, kDestinationOfCopyNotAligned); } // Assumes word reads and writes are little endian. // Nothing to do for zero characters. Label done; if (encoding == String::TWO_BYTE_ENCODING) { __ add(count, count, Operand(count), SetCC); } Register limit = count; // Read until dest equals this. __ add(limit, dest, Operand(count)); Label loop_entry, loop; // Copy bytes from src to dest until dest hits limit. __ b(&loop_entry); __ bind(&loop); __ ldrb(scratch, MemOperand(src, 1, PostIndex), lt); __ strb(scratch, MemOperand(dest, 1, PostIndex)); __ bind(&loop_entry); __ cmp(dest, Operand(limit)); __ b(lt, &loop); __ bind(&done); } void StringHelper::GenerateFlatOneByteStringEquals( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ ldr(length, FieldMemOperand(left, String::kLengthOffset)); __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ cmp(length, scratch2); __ b(eq, &check_zero_length); __ bind(&strings_not_equal); __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL))); __ Ret(); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ cmp(length, Operand::Zero()); __ b(ne, &compare_chars); __ mov(r0, Operand(Smi::FromInt(EQUAL))); __ Ret(); // Compare characters. __ bind(&compare_chars); GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3, &strings_not_equal); // Characters are equal. __ mov(r0, Operand(Smi::FromInt(EQUAL))); __ Ret(); } void StringHelper::GenerateCompareFlatOneByteStrings( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { Label result_not_equal, compare_lengths; // Find minimum length and length difference. __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ sub(scratch3, scratch1, Operand(scratch2), SetCC); Register length_delta = scratch3; __ mov(scratch1, scratch2, LeaveCC, gt); Register min_length = scratch1; STATIC_ASSERT(kSmiTag == 0); __ cmp(min_length, Operand::Zero()); __ b(eq, &compare_lengths); // Compare loop. GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, scratch4, &result_not_equal); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); // Use length_delta as result if it's zero. __ mov(r0, Operand(length_delta), SetCC); __ bind(&result_not_equal); // Conditionally update the result based either on length_delta or // the last comparion performed in the loop above. __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); __ Ret(); } void StringHelper::GenerateOneByteCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Register scratch2, Label* chars_not_equal) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ add(scratch1, length, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ add(left, left, Operand(scratch1)); __ add(right, right, Operand(scratch1)); __ rsb(length, length, Operand::Zero()); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ ldrb(scratch1, MemOperand(left, index)); __ ldrb(scratch2, MemOperand(right, index)); __ cmp(scratch1, scratch2); __ b(ne, chars_not_equal); __ add(index, index, Operand(1), SetCC); __ b(ne, &loop); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r1 : left // -- r0 : right // -- lr : return address // ----------------------------------- // Load r2 with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ Move(r2, isolate()->factory()->undefined_value()); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ tst(r2, Operand(kSmiTagMask)); __ Assert(ne, kExpectedAllocationSite); __ push(r2); __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex); __ cmp(r2, ip); __ pop(r2); __ Assert(eq, kExpectedAllocationSite); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(isolate(), state()); __ TailCallStub(&stub); } void CompareICStub::GenerateBooleans(MacroAssembler* masm) { DCHECK_EQ(CompareICState::BOOLEAN, state()); Label miss; __ CheckMap(r1, r2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); __ CheckMap(r0, r3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); if (!Token::IsEqualityOp(op())) { __ ldr(r1, FieldMemOperand(r1, Oddball::kToNumberOffset)); __ AssertSmi(r1); __ ldr(r0, FieldMemOperand(r0, Oddball::kToNumberOffset)); __ AssertSmi(r0); } __ sub(r0, r1, r0); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateSmis(MacroAssembler* masm) { DCHECK(state() == CompareICState::SMI); Label miss; __ orr(r2, r1, r0); __ JumpIfNotSmi(r2, &miss); if (GetCondition() == eq) { // For equality we do not care about the sign of the result. __ sub(r0, r0, r1, SetCC); } else { // Untag before subtracting to avoid handling overflow. __ SmiUntag(r1); __ sub(r0, r1, Operand::SmiUntag(r0)); } __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateNumbers(MacroAssembler* masm) { DCHECK(state() == CompareICState::NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; if (left() == CompareICState::SMI) { __ JumpIfNotSmi(r1, &miss); } if (right() == CompareICState::SMI) { __ JumpIfNotSmi(r0, &miss); } // Inlining the double comparison and falling back to the general compare // stub if NaN is involved. // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(r0, &right_smi); __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, DONT_DO_SMI_CHECK); __ sub(r2, r0, Operand(kHeapObjectTag)); __ vldr(d1, r2, HeapNumber::kValueOffset); __ b(&left); __ bind(&right_smi); __ SmiToDouble(d1, r0); __ bind(&left); __ JumpIfSmi(r1, &left_smi); __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, DONT_DO_SMI_CHECK); __ sub(r2, r1, Operand(kHeapObjectTag)); __ vldr(d0, r2, HeapNumber::kValueOffset); __ b(&done); __ bind(&left_smi); __ SmiToDouble(d0, r1); __ bind(&done); // Compare operands. __ VFPCompareAndSetFlags(d0, d1); // Don't base result on status bits when a NaN is involved. __ b(vs, &unordered); // Return a result of -1, 0, or 1, based on status bits. __ mov(r0, Operand(EQUAL), LeaveCC, eq); __ mov(r0, Operand(LESS), LeaveCC, lt); __ mov(r0, Operand(GREATER), LeaveCC, gt); __ Ret(); __ bind(&unordered); __ bind(&generic_stub); CompareICStub stub(isolate(), op(), CompareICState::GENERIC, CompareICState::GENERIC, CompareICState::GENERIC); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op())) { __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); __ b(ne, &miss); __ JumpIfSmi(r1, &unordered); __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE); __ b(ne, &maybe_undefined2); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op())) { __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); __ b(eq, &unordered); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::INTERNALIZED_STRING); Label miss; // Registers containing left and right operands respectively. Register left = r1; Register right = r0; Register tmp1 = r2; Register tmp2 = r3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are internalized strings. __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ orr(tmp1, tmp1, Operand(tmp2)); __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ b(ne, &miss); // Internalized strings are compared by identity. __ cmp(left, right); // Make sure r0 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(r0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { DCHECK(state() == CompareICState::UNIQUE_NAME); DCHECK(GetCondition() == eq); Label miss; // Registers containing left and right operands respectively. Register left = r1; Register right = r0; Register tmp1 = r2; Register tmp2 = r3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(tmp1, &miss); __ JumpIfNotUniqueNameInstanceType(tmp2, &miss); // Unique names are compared by identity. __ cmp(left, right); // Make sure r0 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(r0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::STRING); Label miss; bool equality = Token::IsEqualityOp(op()); // Registers containing left and right operands respectively. Register left = r1; Register right = r0; Register tmp1 = r2; Register tmp2 = r3; Register tmp3 = r4; Register tmp4 = r5; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ orr(tmp3, tmp1, tmp2); __ tst(tmp3, Operand(kIsNotStringMask)); __ b(ne, &miss); // Fast check for identical strings. __ cmp(left, right); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); __ Ret(eq); // Handle not identical strings. // Check that both strings are internalized strings. If they are, we're done // because we already know they are not identical. We know they are both // strings. if (equality) { DCHECK(GetCondition() == eq); STATIC_ASSERT(kInternalizedTag == 0); __ orr(tmp3, tmp1, Operand(tmp2)); __ tst(tmp3, Operand(kIsNotInternalizedMask)); // Make sure r0 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(r0)); __ Ret(eq); } // Check that both strings are sequential one-byte. Label runtime; __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4, &runtime); // Compare flat one-byte strings. Returns when done. if (equality) { StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2, tmp3); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, tmp2, tmp3, tmp4); } // Handle more complex cases in runtime. __ bind(&runtime); if (equality) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(left, right); __ CallRuntime(Runtime::kStringEqual); } __ LoadRoot(r1, Heap::kTrueValueRootIndex); __ sub(r0, r0, r1); __ Ret(); } else { __ Push(left, right); __ TailCallRuntime(Runtime::kStringCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateReceivers(MacroAssembler* masm) { DCHECK_EQ(CompareICState::RECEIVER, state()); Label miss; __ and_(r2, r1, Operand(r0)); __ JumpIfSmi(r2, &miss); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); __ CompareObjectType(r0, r2, r2, FIRST_JS_RECEIVER_TYPE); __ b(lt, &miss); __ CompareObjectType(r1, r2, r2, FIRST_JS_RECEIVER_TYPE); __ b(lt, &miss); DCHECK(GetCondition() == eq); __ sub(r0, r0, Operand(r1)); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) { Label miss; Handle<WeakCell> cell = Map::WeakCellForMap(known_map_); __ and_(r2, r1, Operand(r0)); __ JumpIfSmi(r2, &miss); __ GetWeakValue(r4, cell); __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); __ cmp(r2, r4); __ b(ne, &miss); __ cmp(r3, r4); __ b(ne, &miss); if (Token::IsEqualityOp(op())) { __ sub(r0, r0, Operand(r1)); __ Ret(); } else { if (op() == Token::LT || op() == Token::LTE) { __ mov(r2, Operand(Smi::FromInt(GREATER))); } else { __ mov(r2, Operand(Smi::FromInt(LESS))); } __ Push(r1, r0, r2); __ TailCallRuntime(Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r1, r0); __ Push(lr, r1, r0); __ mov(ip, Operand(Smi::FromInt(op()))); __ push(ip); __ CallRuntime(Runtime::kCompareIC_Miss); // Compute the entry point of the rewritten stub. __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Restore registers. __ pop(lr); __ Pop(r1, r0); } __ Jump(r2); } void DirectCEntryStub::Generate(MacroAssembler* masm) { // Place the return address on the stack, making the call // GC safe. The RegExp backend also relies on this. __ str(lr, MemOperand(sp, 0)); __ blx(ip); // Call the C++ function. __ ldr(pc, MemOperand(sp, 0)); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { intptr_t code = reinterpret_cast<intptr_t>(GetCode().location()); __ Move(ip, target); __ mov(lr, Operand(code, RelocInfo::CODE_TARGET)); __ blx(lr); // Call the stub. } void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle<Name> name, Register scratch0) { DCHECK(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch0; // Capacity is smi 2^n. __ ldr(index, FieldMemOperand(properties, kCapacityOffset)); __ sub(index, index, Operand(1)); __ and_(index, index, Operand( Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)))); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ add(index, index, Operand(index, LSL, 1)); // index *= 3. Register entity_name = scratch0; // Having undefined at this place means the name is not contained. STATIC_ASSERT(kSmiTagSize == 1); Register tmp = properties; __ add(tmp, properties, Operand(index, LSL, 1)); __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); DCHECK(!tmp.is(entity_name)); __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); __ cmp(entity_name, tmp); __ b(eq, done); // Load the hole ready for use below: __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); // Stop if found the property. __ cmp(entity_name, Operand(Handle<Name>(name))); __ b(eq, miss); Label good; __ cmp(entity_name, tmp); __ b(eq, &good); // Check if the entry name is not a unique name. __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ ldrb(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entity_name, miss); __ bind(&good); // Restore the properties. __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); } const int spill_mask = (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() | r2.bit() | r1.bit() | r0.bit()); __ stm(db_w, sp, spill_mask); __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ mov(r1, Operand(Handle<Name>(name))); NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); __ CallStub(&stub); __ cmp(r0, Operand::Zero()); __ ldm(ia_w, sp, spill_mask); __ b(eq, done); __ b(ne, miss); } // Probe the name dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found. Jump to // the |miss| label otherwise. // If lookup was successful |scratch2| will be equal to elements + 4 * index. void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register scratch1, Register scratch2) { DCHECK(!elements.is(scratch1)); DCHECK(!elements.is(scratch2)); DCHECK(!name.is(scratch1)); DCHECK(!name.is(scratch2)); __ AssertName(name); // Compute the capacity mask. __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset)); __ SmiUntag(scratch1); __ sub(scratch1, scratch1, Operand(1)); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. DCHECK(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ add(scratch2, scratch2, Operand( NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); // scratch2 = scratch2 * 3. __ add(scratch2, scratch2, Operand(scratch2, LSL, 1)); // Check if the key is identical to the name. __ add(scratch2, elements, Operand(scratch2, LSL, 2)); __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset)); __ cmp(name, Operand(ip)); __ b(eq, done); } const int spill_mask = (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() | r2.bit() | r1.bit() | r0.bit()) & ~(scratch1.bit() | scratch2.bit()); __ stm(db_w, sp, spill_mask); if (name.is(r0)) { DCHECK(!elements.is(r1)); __ Move(r1, name); __ Move(r0, elements); } else { __ Move(r0, elements); __ Move(r1, name); } NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); __ CallStub(&stub); __ cmp(r0, Operand::Zero()); __ mov(scratch2, Operand(r2)); __ ldm(ia_w, sp, spill_mask); __ b(ne, done); __ b(eq, miss); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Registers: // result: NameDictionary to probe // r1: key // dictionary: NameDictionary to probe. // index: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Register result = r0; Register dictionary = r0; Register key = r1; Register index = r2; Register mask = r3; Register hash = r4; Register undefined = r5; Register entry_key = r6; Label in_dictionary, maybe_in_dictionary, not_in_dictionary; __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset)); __ SmiUntag(mask); __ sub(mask, mask, Operand(1)); __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. // Capacity is smi 2^n. if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. DCHECK(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ add(index, hash, Operand( NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } else { __ mov(index, Operand(hash)); } __ and_(index, mask, Operand(index, LSR, Name::kHashShift)); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ add(index, index, Operand(index, LSL, 1)); // index *= 3. STATIC_ASSERT(kSmiTagSize == 1); __ add(index, dictionary, Operand(index, LSL, 2)); __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); // Having undefined at this place means the name is not contained. __ cmp(entry_key, Operand(undefined)); __ b(eq, ¬_in_dictionary); // Stop if found the property. __ cmp(entry_key, Operand(key)); __ b(eq, &in_dictionary); if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { // Check if the entry name is not a unique name. __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); __ ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode() == POSITIVE_LOOKUP) { __ mov(result, Operand::Zero()); __ Ret(); } __ bind(&in_dictionary); __ mov(result, Operand(1)); __ Ret(); __ bind(¬_in_dictionary); __ mov(result, Operand::Zero()); __ Ret(); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); stub1.GetCode(); // Hydrogen code stubs need stub2 at snapshot time. StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); stub2.GetCode(); } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two instructions are generated with labels so as to get the // offset fixed up correctly by the bind(Label*) call. We patch it back and // forth between a compare instructions (a nop in this position) and the // real branch when we start and stop incremental heap marking. // See RecordWriteStub::Patch for details. { // Block literal pool emission, as the position of these two instructions // is assumed by the patching code. Assembler::BlockConstPoolScope block_const_pool(masm); __ b(&skip_to_incremental_noncompacting); __ b(&skip_to_incremental_compacting); } if (remembered_set_action() == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } __ Ret(); __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12)); DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12)); PatchBranchIntoNop(masm, 0); PatchBranchIntoNop(masm, Assembler::kInstrSize); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action() == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(), &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ Ret(); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); Register address = r0.is(regs_.address()) ? regs_.scratch0() : regs_.address(); DCHECK(!address.is(regs_.object())); DCHECK(!address.is(r0)); __ Move(address, regs_.address()); __ Move(r0, regs_.object()); __ Move(r1, address); __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::incremental_marking_record_write_function(isolate()), argument_count); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_scratch; // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&on_black); // Get the value from the slot. __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, eq, &ensure_not_white); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq, &need_incremental); __ bind(&ensure_not_white); } // We need extra registers for this, so we push the object and the address // register temporarily. __ Push(regs_.object(), regs_.address()); __ JumpIfWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. regs_.address(), // Scratch. &need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(isolate(), 1, kSaveFPRegs); __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrameConstants::kArgumentsLengthOffset; __ ldr(r1, MemOperand(fp, parameter_count_offset)); if (function_mode() == JS_FUNCTION_STUB_MODE) { __ add(r1, r1, Operand(1)); } masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ mov(r1, Operand(r1, LSL, kPointerSizeLog2)); __ add(sp, sp, r1); __ Ret(); } void CallICTrampolineStub::Generate(MacroAssembler* masm) { __ EmitLoadTypeFeedbackVector(r2); CallICStub stub(isolate(), state()); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } static void HandleArrayCases(MacroAssembler* masm, Register feedback, Register receiver_map, Register scratch1, Register scratch2, bool is_polymorphic, Label* miss) { // feedback initially contains the feedback array Label next_loop, prepare_next; Label start_polymorphic; Register cached_map = scratch1; __ ldr(cached_map, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0))); __ ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset)); __ cmp(receiver_map, cached_map); __ b(ne, &start_polymorphic); // found, now call handler. Register handler = feedback; __ ldr(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1))); __ add(pc, handler, Operand(Code::kHeaderSize - kHeapObjectTag)); Register length = scratch2; __ bind(&start_polymorphic); __ ldr(length, FieldMemOperand(feedback, FixedArray::kLengthOffset)); if (!is_polymorphic) { // If the IC could be monomorphic we have to make sure we don't go past the // end of the feedback array. __ cmp(length, Operand(Smi::FromInt(2))); __ b(eq, miss); } Register too_far = length; Register pointer_reg = feedback; // +-----+------+------+-----+-----+ ... ----+ // | map | len | wm0 | h0 | wm1 | hN | // +-----+------+------+-----+-----+ ... ----+ // 0 1 2 len-1 // ^ ^ // | | // pointer_reg too_far // aka feedback scratch2 // also need receiver_map // use cached_map (scratch1) to look in the weak map values. __ add(too_far, feedback, Operand::PointerOffsetFromSmiKey(length)); __ add(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(pointer_reg, feedback, Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag)); __ bind(&next_loop); __ ldr(cached_map, MemOperand(pointer_reg)); __ ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset)); __ cmp(receiver_map, cached_map); __ b(ne, &prepare_next); __ ldr(handler, MemOperand(pointer_reg, kPointerSize)); __ add(pc, handler, Operand(Code::kHeaderSize - kHeapObjectTag)); __ bind(&prepare_next); __ add(pointer_reg, pointer_reg, Operand(kPointerSize * 2)); __ cmp(pointer_reg, too_far); __ b(lt, &next_loop); // We exhausted our array of map handler pairs. __ jmp(miss); } static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver, Register receiver_map, Register feedback, Register vector, Register slot, Register scratch, Label* compare_map, Label* load_smi_map, Label* try_array) { __ JumpIfSmi(receiver, load_smi_map); __ ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ bind(compare_map); Register cached_map = scratch; // Move the weak map into the weak_cell register. __ ldr(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset)); __ cmp(cached_map, receiver_map); __ b(ne, try_array); Register handler = feedback; __ add(handler, vector, Operand::PointerOffsetFromSmiKey(slot)); __ ldr(handler, FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize)); __ add(pc, handler, Operand(Code::kHeaderSize - kHeapObjectTag)); } void KeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) { __ EmitLoadTypeFeedbackVector(StoreWithVectorDescriptor::VectorRegister()); KeyedStoreICStub stub(isolate(), state()); stub.GenerateForTrampoline(masm); } void KeyedStoreICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); } void KeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) { GenerateImpl(masm, true); } static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback, Register receiver_map, Register scratch1, Register scratch2, Label* miss) { // feedback initially contains the feedback array Label next_loop, prepare_next; Label start_polymorphic; Label transition_call; Register cached_map = scratch1; Register too_far = scratch2; Register pointer_reg = feedback; __ ldr(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset)); // +-----+------+------+-----+-----+-----+ ... ----+ // | map | len | wm0 | wt0 | h0 | wm1 | hN | // +-----+------+------+-----+-----+ ----+ ... ----+ // 0 1 2 len-1 // ^ ^ // | | // pointer_reg too_far // aka feedback scratch2 // also need receiver_map // use cached_map (scratch1) to look in the weak map values. __ add(too_far, feedback, Operand::PointerOffsetFromSmiKey(too_far)); __ add(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(pointer_reg, feedback, Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag)); __ bind(&next_loop); __ ldr(cached_map, MemOperand(pointer_reg)); __ ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset)); __ cmp(receiver_map, cached_map); __ b(ne, &prepare_next); // Is it a transitioning store? __ ldr(too_far, MemOperand(pointer_reg, kPointerSize)); __ CompareRoot(too_far, Heap::kUndefinedValueRootIndex); __ b(ne, &transition_call); __ ldr(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2)); __ add(pc, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); __ bind(&transition_call); __ ldr(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset)); __ JumpIfSmi(too_far, miss); __ ldr(receiver_map, MemOperand(pointer_reg, kPointerSize * 2)); // Load the map into the correct register. DCHECK(feedback.is(StoreTransitionDescriptor::MapRegister())); __ mov(feedback, too_far); __ add(pc, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag)); __ bind(&prepare_next); __ add(pointer_reg, pointer_reg, Operand(kPointerSize * 3)); __ cmp(pointer_reg, too_far); __ b(lt, &next_loop); // We exhausted our array of map handler pairs. __ jmp(miss); } void KeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { Register receiver = StoreWithVectorDescriptor::ReceiverRegister(); // r1 Register key = StoreWithVectorDescriptor::NameRegister(); // r2 Register vector = StoreWithVectorDescriptor::VectorRegister(); // r3 Register slot = StoreWithVectorDescriptor::SlotRegister(); // r4 DCHECK(StoreWithVectorDescriptor::ValueRegister().is(r0)); // r0 Register feedback = r5; Register receiver_map = r6; Register scratch1 = r9; __ add(feedback, vector, Operand::PointerOffsetFromSmiKey(slot)); __ ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize)); // Try to quickly handle the monomorphic case without knowing for sure // if we have a weak cell in feedback. We do know it's safe to look // at WeakCell::kValueOffset. Label try_array, load_smi_map, compare_map; Label not_array, miss; HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot, scratch1, &compare_map, &load_smi_map, &try_array); __ bind(&try_array); // Is it a fixed array? __ ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset)); __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex); __ b(ne, ¬_array); // We have a polymorphic element handler. Label polymorphic, try_poly_name; __ bind(&polymorphic); // We are using register r8, which is used for the embedded constant pool // when FLAG_enable_embedded_constant_pool is true. DCHECK(!FLAG_enable_embedded_constant_pool); Register scratch2 = r8; HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2, &miss); __ bind(¬_array); // Is it generic? __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex); __ b(ne, &try_poly_name); Handle<Code> megamorphic_stub = KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState()); __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET); __ bind(&try_poly_name); // We might have a name in feedback, and a fixed array in the next slot. __ cmp(key, feedback); __ b(ne, &miss); // If the name comparison succeeded, we know we have a fixed array with // at least one map/handler pair. __ add(feedback, vector, Operand::PointerOffsetFromSmiKey(slot)); __ ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize)); HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false, &miss); __ bind(&miss); KeyedStoreIC::GenerateMiss(masm); __ bind(&load_smi_map); __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); __ jmp(&compare_map); } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { ProfileEntryHookStub stub(masm->isolate()); PredictableCodeSizeScope predictable(masm); predictable.ExpectSize(masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize); __ push(lr); __ CallStub(&stub); __ pop(lr); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // The entry hook is a "push lr" instruction, followed by a call. const int32_t kReturnAddressDistanceFromFunctionStart = 3 * Assembler::kInstrSize; // This should contain all kCallerSaved registers. const RegList kSavedRegs = 1 << 0 | // r0 1 << 1 | // r1 1 << 2 | // r2 1 << 3 | // r3 1 << 5 | // r5 1 << 9; // r9 // We also save lr, so the count here is one higher than the mask indicates. const int32_t kNumSavedRegs = 7; DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved); // Save all caller-save registers as this may be called from anywhere. __ stm(db_w, sp, kSavedRegs | lr.bit()); // Compute the function's address for the first argument. __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart)); // The caller's return address is above the saved temporaries. // Grab that for the second argument to the hook. __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize)); // Align the stack if necessary. int frame_alignment = masm->ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { __ mov(r5, sp); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); __ and_(sp, sp, Operand(-frame_alignment)); } #if V8_HOST_ARCH_ARM int32_t entry_hook = reinterpret_cast<int32_t>(isolate()->function_entry_hook()); __ mov(ip, Operand(entry_hook)); #else // Under the simulator we need to indirect the entry hook through a // trampoline function at a known address. // It additionally takes an isolate as a third parameter __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); __ mov(ip, Operand(ExternalReference(&dispatcher, ExternalReference::BUILTIN_CALL, isolate()))); #endif __ Call(ip); // Restore the stack pointer if needed. if (frame_alignment > kPointerSize) { __ mov(sp, r5); } // Also pop pc to get Ret(0). __ ldm(ia_w, sp, kSavedRegs | pc.bit()); } template<class T> static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmp(r3, Operand(kind)); T stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) // r3 - kind (if mode != DISABLE_ALLOCATION_SITES) // r0 - number of arguments // r1 - constructor? // sp[0] - last argument Label normal_sequence; if (mode == DONT_OVERRIDE) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // is the low bit set? If so, we are holey and that is good. __ tst(r3, Operand(1)); __ b(ne, &normal_sequence); } // look at the first argument __ ldr(r5, MemOperand(sp, 0)); __ cmp(r5, Operand::Zero()); __ b(eq, &normal_sequence); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry (only if we have an allocation site in the slot). __ add(r3, r3, Operand(1)); if (FLAG_debug_code) { __ ldr(r5, FieldMemOperand(r2, 0)); __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); __ Assert(eq, kExpectedAllocationSite); } // Save the resulting elements kind in type info. We can't just store r3 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmp(r3, Operand(kind)); ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template<class T> static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( isolate); ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( isolate); ArrayNArgumentsConstructorStub stub(isolate); stub.GetCode(); ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { Label not_zero_case, not_one_case; __ tst(r0, r0); __ b(ne, ¬_zero_case); CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); __ bind(¬_zero_case); __ cmp(r0, Operand(1)); __ b(gt, ¬_one_case); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); ArrayNArgumentsConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argc (only if argument_count() == ANY) // -- r1 : constructor // -- r2 : AllocationSite or undefined // -- r3 : new target // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ tst(r4, Operand(kSmiTagMask)); __ Assert(ne, kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(r4, r4, r5, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); // We should either have undefined in r2 or a valid AllocationSite __ AssertUndefinedOrAllocationSite(r2, r4); } // Enter the context of the Array function. __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); Label subclassing; __ cmp(r3, r1); __ b(ne, &subclassing); Label no_info; // Get the elements kind and case on that. __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); __ b(eq, &no_info); __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); __ SmiUntag(r3); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); __ bind(&subclassing); __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); __ add(r0, r0, Operand(3)); __ Push(r3, r2); __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); } void InternalArrayConstructorStub::GenerateCase( MacroAssembler* masm, ElementsKind kind) { __ cmp(r0, Operand(1)); InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0, lo); ArrayNArgumentsConstructorStub stubN(isolate()); __ TailCallStub(&stubN, hi); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ ldr(r3, MemOperand(sp, 0)); __ cmp(r3, Operand::Zero()); InternalArraySingleArgumentConstructorStub stub1_holey(isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey, ne); } InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argc // -- r1 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ tst(r3, Operand(kSmiTagMask)); __ Assert(ne, kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(r3, r3, r4, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following bit field extraction takes care of that anyway. __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField<Map::ElementsKindBits>(r3); if (FLAG_debug_code) { Label done; __ cmp(r3, Operand(FAST_ELEMENTS)); __ b(eq, &done); __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS)); __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmp(r3, Operand(FAST_ELEMENTS)); __ b(eq, &fast_elements_case); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } void FastNewObjectStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r1 : target // -- r3 : new target // -- cp : context // -- lr : return address // ----------------------------------- __ AssertFunction(r1); __ AssertReceiver(r3); // Verify that the new target is a JSFunction. Label new_object; __ CompareObjectType(r3, r2, r2, JS_FUNCTION_TYPE); __ b(ne, &new_object); // Load the initial map and verify that it's in fact a map. __ ldr(r2, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(r2, &new_object); __ CompareObjectType(r2, r0, r0, MAP_TYPE); __ b(ne, &new_object); // Fall back to runtime if the target differs from the new target's // initial map constructor. __ ldr(r0, FieldMemOperand(r2, Map::kConstructorOrBackPointerOffset)); __ cmp(r0, r1); __ b(ne, &new_object); // Allocate the JSObject on the heap. Label allocate, done_allocate; __ ldrb(r4, FieldMemOperand(r2, Map::kInstanceSizeOffset)); __ Allocate(r4, r0, r5, r6, &allocate, SIZE_IN_WORDS); __ bind(&done_allocate); // Initialize the JSObject fields. __ str(r2, FieldMemOperand(r0, JSObject::kMapOffset)); __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize); __ add(r1, r0, Operand(JSObject::kHeaderSize - kHeapObjectTag)); // ----------- S t a t e ------------- // -- r0 : result (tagged) // -- r1 : result fields (untagged) // -- r5 : result end (untagged) // -- r2 : initial map // -- cp : context // -- lr : return address // ----------------------------------- // Perform in-object slack tracking if requested. Label slack_tracking; STATIC_ASSERT(Map::kNoSlackTracking == 0); __ LoadRoot(r6, Heap::kUndefinedValueRootIndex); __ ldr(r3, FieldMemOperand(r2, Map::kBitField3Offset)); __ tst(r3, Operand(Map::ConstructionCounter::kMask)); __ b(ne, &slack_tracking); { // Initialize all in-object fields with undefined. __ InitializeFieldsWithFiller(r1, r5, r6); __ Ret(); } __ bind(&slack_tracking); { // Decrease generous allocation count. STATIC_ASSERT(Map::ConstructionCounter::kNext == 32); __ sub(r3, r3, Operand(1 << Map::ConstructionCounter::kShift)); __ str(r3, FieldMemOperand(r2, Map::kBitField3Offset)); // Initialize the in-object fields with undefined. __ ldrb(r4, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset)); __ sub(r4, r5, Operand(r4, LSL, kPointerSizeLog2)); __ InitializeFieldsWithFiller(r1, r4, r6); // Initialize the remaining (reserved) fields with one pointer filler map. __ LoadRoot(r6, Heap::kOnePointerFillerMapRootIndex); __ InitializeFieldsWithFiller(r1, r5, r6); // Check if we can finalize the instance size. STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1); __ tst(r3, Operand(Map::ConstructionCounter::kMask)); __ Ret(ne); // Finalize the instance size. { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r0, r2); __ CallRuntime(Runtime::kFinalizeInstanceSize); __ Pop(r0); } __ Ret(); } // Fall back to %AllocateInNewSpace. __ bind(&allocate); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); __ mov(r4, Operand(r4, LSL, kPointerSizeLog2 + 1)); __ Push(r2, r4); __ CallRuntime(Runtime::kAllocateInNewSpace); __ Pop(r2); } __ ldrb(r5, FieldMemOperand(r2, Map::kInstanceSizeOffset)); __ add(r5, r0, Operand(r5, LSL, kPointerSizeLog2)); STATIC_ASSERT(kHeapObjectTag == 1); __ sub(r5, r5, Operand(kHeapObjectTag)); __ b(&done_allocate); // Fall back to %NewObject. __ bind(&new_object); __ Push(r1, r3); __ TailCallRuntime(Runtime::kNewObject); } void FastNewRestParameterStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r1 : function // -- cp : context // -- fp : frame pointer // -- lr : return address // ----------------------------------- __ AssertFunction(r1); // Make r2 point to the JavaScript frame. __ mov(r2, fp); if (skip_stub_frame()) { // For Ignition we need to skip the handler/stub frame to reach the // JavaScript frame for the function. __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset)); } if (FLAG_debug_code) { Label ok; __ ldr(ip, MemOperand(r2, StandardFrameConstants::kFunctionOffset)); __ cmp(ip, r1); __ b(eq, &ok); __ Abort(kInvalidFrameForFastNewRestArgumentsStub); __ bind(&ok); } // Check if we have rest parameters (only possible if we have an // arguments adaptor frame below the function frame). Label no_rest_parameters; __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset)); __ ldr(ip, MemOperand(r2, CommonFrameConstants::kContextOrFrameTypeOffset)); __ cmp(ip, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(ne, &no_rest_parameters); // Check if the arguments adaptor frame contains more arguments than // specified by the function's internal formal parameter count. Label rest_parameters; __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); __ sub(r0, r0, r3, SetCC); __ b(gt, &rest_parameters); // Return an empty rest parameter array. __ bind(&no_rest_parameters); { // ----------- S t a t e ------------- // -- cp : context // -- lr : return address // ----------------------------------- // Allocate an empty rest parameter array. Label allocate, done_allocate; __ Allocate(JSArray::kSize, r0, r1, r2, &allocate, NO_ALLOCATION_FLAGS); __ bind(&done_allocate); // Setup the rest parameter array in r0. __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r1); __ str(r1, FieldMemOperand(r0, JSArray::kMapOffset)); __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); __ str(r1, FieldMemOperand(r0, JSArray::kPropertiesOffset)); __ str(r1, FieldMemOperand(r0, JSArray::kElementsOffset)); __ mov(r1, Operand(0)); __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset)); STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize); __ Ret(); // Fall back to %AllocateInNewSpace. __ bind(&allocate); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(Smi::FromInt(JSArray::kSize)); __ CallRuntime(Runtime::kAllocateInNewSpace); } __ jmp(&done_allocate); } __ bind(&rest_parameters); { // Compute the pointer to the first rest parameter (skippping the receiver). __ add(r2, r2, Operand(r0, LSL, kPointerSizeLog2 - 1)); __ add(r2, r2, Operand(StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize)); // ----------- S t a t e ------------- // -- cp : context // -- r0 : number of rest parameters (tagged) // -- r1 : function // -- r2 : pointer to first rest parameters // -- lr : return address // ----------------------------------- // Allocate space for the rest parameter array plus the backing store. Label allocate, done_allocate; __ mov(r6, Operand(JSArray::kSize + FixedArray::kHeaderSize)); __ add(r6, r6, Operand(r0, LSL, kPointerSizeLog2 - 1)); __ Allocate(r6, r3, r4, r5, &allocate, NO_ALLOCATION_FLAGS); __ bind(&done_allocate); // Setup the elements array in r3. __ LoadRoot(r1, Heap::kFixedArrayMapRootIndex); __ str(r1, FieldMemOperand(r3, FixedArray::kMapOffset)); __ str(r0, FieldMemOperand(r3, FixedArray::kLengthOffset)); __ add(r4, r3, Operand(FixedArray::kHeaderSize)); { Label loop, done_loop; __ add(r1, r4, Operand(r0, LSL, kPointerSizeLog2 - 1)); __ bind(&loop); __ cmp(r4, r1); __ b(eq, &done_loop); __ ldr(ip, MemOperand(r2, 1 * kPointerSize, NegPostIndex)); __ str(ip, FieldMemOperand(r4, 0 * kPointerSize)); __ add(r4, r4, Operand(1 * kPointerSize)); __ b(&loop); __ bind(&done_loop); } // Setup the rest parameter array in r4. __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r1); __ str(r1, FieldMemOperand(r4, JSArray::kMapOffset)); __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); __ str(r1, FieldMemOperand(r4, JSArray::kPropertiesOffset)); __ str(r3, FieldMemOperand(r4, JSArray::kElementsOffset)); __ str(r0, FieldMemOperand(r4, JSArray::kLengthOffset)); STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize); __ mov(r0, r4); __ Ret(); // Fall back to %AllocateInNewSpace (if not too big). Label too_big_for_new_space; __ bind(&allocate); __ cmp(r6, Operand(kMaxRegularHeapObjectSize)); __ b(gt, &too_big_for_new_space); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r6); __ Push(r0, r2, r6); __ CallRuntime(Runtime::kAllocateInNewSpace); __ mov(r3, r0); __ Pop(r0, r2); } __ jmp(&done_allocate); // Fall back to %NewRestParameter. __ bind(&too_big_for_new_space); __ push(r1); __ TailCallRuntime(Runtime::kNewRestParameter); } } void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r1 : function // -- cp : context // -- fp : frame pointer // -- lr : return address // ----------------------------------- __ AssertFunction(r1); // Make r9 point to the JavaScript frame. __ mov(r9, fp); if (skip_stub_frame()) { // For Ignition we need to skip the handler/stub frame to reach the // JavaScript frame for the function. __ ldr(r9, MemOperand(r9, StandardFrameConstants::kCallerFPOffset)); } if (FLAG_debug_code) { Label ok; __ ldr(ip, MemOperand(r9, StandardFrameConstants::kFunctionOffset)); __ cmp(ip, r1); __ b(eq, &ok); __ Abort(kInvalidFrameForFastNewRestArgumentsStub); __ bind(&ok); } // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub. __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset)); __ add(r3, r9, Operand(r2, LSL, kPointerSizeLog2 - 1)); __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); // r1 : function // r2 : number of parameters (tagged) // r3 : parameters pointer // r9 : JavaScript frame pointer // Registers used over whole function: // r5 : arguments count (tagged) // r6 : mapped parameter count (tagged) // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ ldr(r4, MemOperand(r9, StandardFrameConstants::kCallerFPOffset)); __ ldr(r0, MemOperand(r4, CommonFrameConstants::kContextOrFrameTypeOffset)); __ cmp(r0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(eq, &adaptor_frame); // No adaptor, parameter count = argument count. __ mov(r5, r2); __ mov(r6, r2); __ b(&try_allocate); // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ ldr(r5, MemOperand(r4, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ add(r4, r4, Operand(r5, LSL, 1)); __ add(r3, r4, Operand(StandardFrameConstants::kCallerSPOffset)); // r5 = argument count (tagged) // r6 = parameter count (tagged) // Compute the mapped parameter count = min(r6, r5) in r6. __ mov(r6, r2); __ cmp(r6, Operand(r5)); __ mov(r6, Operand(r5), LeaveCC, gt); __ bind(&try_allocate); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; // If there are no mapped parameters, we do not need the parameter_map. __ cmp(r6, Operand(Smi::kZero)); __ mov(r9, Operand::Zero(), LeaveCC, eq); __ mov(r9, Operand(r6, LSL, 1), LeaveCC, ne); __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne); // 2. Backing store. __ add(r9, r9, Operand(r5, LSL, 1)); __ add(r9, r9, Operand(FixedArray::kHeaderSize)); // 3. Arguments object. __ add(r9, r9, Operand(JSSloppyArgumentsObject::kSize)); // Do the allocation of all three objects in one go. __ Allocate(r9, r0, r9, r4, &runtime, NO_ALLOCATION_FLAGS); // r0 = address of new object(s) (tagged) // r2 = argument count (smi-tagged) // Get the arguments boilerplate from the current native context into r4. const int kNormalOffset = Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX); const int kAliasedOffset = Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX); __ ldr(r4, NativeContextMemOperand()); __ cmp(r6, Operand::Zero()); __ ldr(r4, MemOperand(r4, kNormalOffset), eq); __ ldr(r4, MemOperand(r4, kAliasedOffset), ne); // r0 = address of new object (tagged) // r2 = argument count (smi-tagged) // r4 = address of arguments map (tagged) // r6 = mapped parameter count (tagged) __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset)); __ LoadRoot(r9, Heap::kEmptyFixedArrayRootIndex); __ str(r9, FieldMemOperand(r0, JSObject::kPropertiesOffset)); __ str(r9, FieldMemOperand(r0, JSObject::kElementsOffset)); // Set up the callee in-object property. __ AssertNotSmi(r1); __ str(r1, FieldMemOperand(r0, JSSloppyArgumentsObject::kCalleeOffset)); // Use the length (smi tagged) and set that as an in-object property too. __ AssertSmi(r5); __ str(r5, FieldMemOperand(r0, JSSloppyArgumentsObject::kLengthOffset)); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, r4 will point there, otherwise // it will point to the backing store. __ add(r4, r0, Operand(JSSloppyArgumentsObject::kSize)); __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); // r0 = address of new object (tagged) // r2 = argument count (tagged) // r4 = address of parameter map or backing store (tagged) // r6 = mapped parameter count (tagged) // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map; __ cmp(r6, Operand(Smi::kZero)); // Move backing store address to r1, because it is // expected there when filling in the unmapped arguments. __ mov(r1, r4, LeaveCC, eq); __ b(eq, &skip_parameter_map); __ LoadRoot(r5, Heap::kSloppyArgumentsElementsMapRootIndex); __ str(r5, FieldMemOperand(r4, FixedArray::kMapOffset)); __ add(r5, r6, Operand(Smi::FromInt(2))); __ str(r5, FieldMemOperand(r4, FixedArray::kLengthOffset)); __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize)); __ add(r5, r4, Operand(r6, LSL, 1)); __ add(r5, r5, Operand(kParameterMapHeaderSize)); __ str(r5, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize)); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; __ mov(r5, r6); __ add(r9, r2, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); __ sub(r9, r9, Operand(r6)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ add(r1, r4, Operand(r5, LSL, 1)); __ add(r1, r1, Operand(kParameterMapHeaderSize)); // r1 = address of backing store (tagged) // r4 = address of parameter map (tagged), which is also the address of new // object + Heap::kSloppyArgumentsObjectSize (tagged) // r0 = temporary scratch (a.o., for address calculation) // r5 = loop variable (tagged) // ip = the hole value __ jmp(¶meters_test); __ bind(¶meters_loop); __ sub(r5, r5, Operand(Smi::FromInt(1))); __ mov(r0, Operand(r5, LSL, 1)); __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag)); __ str(r9, MemOperand(r4, r0)); __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); __ str(ip, MemOperand(r1, r0)); __ add(r9, r9, Operand(Smi::FromInt(1))); __ bind(¶meters_test); __ cmp(r5, Operand(Smi::kZero)); __ b(ne, ¶meters_loop); // Restore r0 = new object (tagged) and r5 = argument count (tagged). __ sub(r0, r4, Operand(JSSloppyArgumentsObject::kSize)); __ ldr(r5, FieldMemOperand(r0, JSSloppyArgumentsObject::kLengthOffset)); __ bind(&skip_parameter_map); // r0 = address of new object (tagged) // r1 = address of backing store (tagged) // r5 = argument count (tagged) // r6 = mapped parameter count (tagged) // r9 = scratch // Copy arguments header and remaining slots (if there are any). __ LoadRoot(r9, Heap::kFixedArrayMapRootIndex); __ str(r9, FieldMemOperand(r1, FixedArray::kMapOffset)); __ str(r5, FieldMemOperand(r1, FixedArray::kLengthOffset)); Label arguments_loop, arguments_test; __ sub(r3, r3, Operand(r6, LSL, 1)); __ jmp(&arguments_test); __ bind(&arguments_loop); __ sub(r3, r3, Operand(kPointerSize)); __ ldr(r4, MemOperand(r3, 0)); __ add(r9, r1, Operand(r6, LSL, 1)); __ str(r4, FieldMemOperand(r9, FixedArray::kHeaderSize)); __ add(r6, r6, Operand(Smi::FromInt(1))); __ bind(&arguments_test); __ cmp(r6, Operand(r5)); __ b(lt, &arguments_loop); // Return. __ Ret(); // Do the runtime call to allocate the arguments object. // r0 = address of new object (tagged) // r5 = argument count (tagged) __ bind(&runtime); __ Push(r1, r3, r5); __ TailCallRuntime(Runtime::kNewSloppyArguments); } void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r1 : function // -- cp : context // -- fp : frame pointer // -- lr : return address // ----------------------------------- __ AssertFunction(r1); // Make r2 point to the JavaScript frame. __ mov(r2, fp); if (skip_stub_frame()) { // For Ignition we need to skip the handler/stub frame to reach the // JavaScript frame for the function. __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset)); } if (FLAG_debug_code) { Label ok; __ ldr(ip, MemOperand(r2, StandardFrameConstants::kFunctionOffset)); __ cmp(ip, r1); __ b(eq, &ok); __ Abort(kInvalidFrameForFastNewRestArgumentsStub); __ bind(&ok); } // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ ldr(r3, MemOperand(r2, StandardFrameConstants::kCallerFPOffset)); __ ldr(ip, MemOperand(r3, CommonFrameConstants::kContextOrFrameTypeOffset)); __ cmp(ip, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(eq, &arguments_adaptor); { __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r0, FieldMemOperand( r4, SharedFunctionInfo::kFormalParameterCountOffset)); __ add(r2, r2, Operand(r0, LSL, kPointerSizeLog2 - 1)); __ add(r2, r2, Operand(StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize)); } __ b(&arguments_done); __ bind(&arguments_adaptor); { __ ldr(r0, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ add(r2, r3, Operand(r0, LSL, kPointerSizeLog2 - 1)); __ add(r2, r2, Operand(StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize)); } __ bind(&arguments_done); // ----------- S t a t e ------------- // -- cp : context // -- r0 : number of rest parameters (tagged) // -- r1 : function // -- r2 : pointer to first rest parameters // -- lr : return address // ----------------------------------- // Allocate space for the strict arguments object plus the backing store. Label allocate, done_allocate; __ mov(r6, Operand(JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize)); __ add(r6, r6, Operand(r0, LSL, kPointerSizeLog2 - 1)); __ Allocate(r6, r3, r4, r5, &allocate, NO_ALLOCATION_FLAGS); __ bind(&done_allocate); // Setup the elements array in r3. __ LoadRoot(r1, Heap::kFixedArrayMapRootIndex); __ str(r1, FieldMemOperand(r3, FixedArray::kMapOffset)); __ str(r0, FieldMemOperand(r3, FixedArray::kLengthOffset)); __ add(r4, r3, Operand(FixedArray::kHeaderSize)); { Label loop, done_loop; __ add(r1, r4, Operand(r0, LSL, kPointerSizeLog2 - 1)); __ bind(&loop); __ cmp(r4, r1); __ b(eq, &done_loop); __ ldr(ip, MemOperand(r2, 1 * kPointerSize, NegPostIndex)); __ str(ip, FieldMemOperand(r4, 0 * kPointerSize)); __ add(r4, r4, Operand(1 * kPointerSize)); __ b(&loop); __ bind(&done_loop); } // Setup the strict arguments object in r4. __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, r1); __ str(r1, FieldMemOperand(r4, JSStrictArgumentsObject::kMapOffset)); __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); __ str(r1, FieldMemOperand(r4, JSStrictArgumentsObject::kPropertiesOffset)); __ str(r3, FieldMemOperand(r4, JSStrictArgumentsObject::kElementsOffset)); __ str(r0, FieldMemOperand(r4, JSStrictArgumentsObject::kLengthOffset)); STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize); __ mov(r0, r4); __ Ret(); // Fall back to %AllocateInNewSpace (if not too big). Label too_big_for_new_space; __ bind(&allocate); __ cmp(r6, Operand(kMaxRegularHeapObjectSize)); __ b(gt, &too_big_for_new_space); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r6); __ Push(r0, r2, r6); __ CallRuntime(Runtime::kAllocateInNewSpace); __ mov(r3, r0); __ Pop(r0, r2); } __ b(&done_allocate); // Fall back to %NewStrictArguments. __ bind(&too_big_for_new_space); __ push(r1); __ TailCallRuntime(Runtime::kNewStrictArguments); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Restores context. stack_space // - space to be unwound on exit (includes the call JS arguments space and // the additional space allocated for the fast call). static void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, MemOperand* stack_space_operand, MemOperand return_value_operand, MemOperand* context_restore_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); DCHECK(function_address.is(r1) || function_address.is(r2)); Label profiler_disabled; Label end_profiler_check; __ mov(r9, Operand(ExternalReference::is_profiling_address(isolate))); __ ldrb(r9, MemOperand(r9, 0)); __ cmp(r9, Operand(0)); __ b(eq, &profiler_disabled); // Additional parameter is the address of the actual callback. __ mov(r3, Operand(thunk_ref)); __ jmp(&end_profiler_check); __ bind(&profiler_disabled); __ Move(r3, function_address); __ bind(&end_profiler_check); // Allocate HandleScope in callee-save registers. __ mov(r9, Operand(next_address)); __ ldr(r4, MemOperand(r9, kNextOffset)); __ ldr(r5, MemOperand(r9, kLimitOffset)); __ ldr(r6, MemOperand(r9, kLevelOffset)); __ add(r6, r6, Operand(1)); __ str(r6, MemOperand(r9, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, r0); __ mov(r0, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 1); __ PopSafepointRegisters(); } // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub(isolate); stub.GenerateCall(masm, r3); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, r0); __ mov(r0, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 1); __ PopSafepointRegisters(); } Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // load value from ReturnValue __ ldr(r0, return_value_operand); __ bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ str(r4, MemOperand(r9, kNextOffset)); if (__ emit_debug_code()) { __ ldr(r1, MemOperand(r9, kLevelOffset)); __ cmp(r1, r6); __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall); } __ sub(r6, r6, Operand(1)); __ str(r6, MemOperand(r9, kLevelOffset)); __ ldr(ip, MemOperand(r9, kLimitOffset)); __ cmp(r5, ip); __ b(ne, &delete_allocated_handles); // Leave the API exit frame. __ bind(&leave_exit_frame); bool restore_context = context_restore_operand != NULL; if (restore_context) { __ ldr(cp, *context_restore_operand); } // LeaveExitFrame expects unwind space to be in a register. if (stack_space_operand != NULL) { __ ldr(r4, *stack_space_operand); } else { __ mov(r4, Operand(stack_space)); } __ LeaveExitFrame(false, r4, !restore_context, stack_space_operand != NULL); // Check if the function scheduled an exception. __ LoadRoot(r4, Heap::kTheHoleValueRootIndex); __ mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate))); __ ldr(r5, MemOperand(ip)); __ cmp(r4, r5); __ b(ne, &promote_scheduled_exception); __ mov(pc, lr); // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ bind(&delete_allocated_handles); __ str(r5, MemOperand(r9, kLimitOffset)); __ mov(r4, r0); __ PrepareCallCFunction(1, r5); __ mov(r0, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate), 1); __ mov(r0, r4); __ jmp(&leave_exit_frame); } void CallApiCallbackStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : callee // -- r4 : call_data // -- r2 : holder // -- r1 : api_function_address // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1)* 4] : first argument // -- sp[argc * 4] : receiver // ----------------------------------- Register callee = r0; Register call_data = r4; Register holder = r2; Register api_function_address = r1; Register context = cp; typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kNewTargetIndex == 7); STATIC_ASSERT(FCA::kArgsLength == 8); // new target __ PushRoot(Heap::kUndefinedValueRootIndex); // context save __ push(context); if (!is_lazy()) { // load context from callee __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); } // callee __ push(callee); // call data __ push(call_data); Register scratch = call_data; if (!call_data_undefined()) { __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); } // return value __ push(scratch); // return value default __ push(scratch); // isolate __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate()))); __ push(scratch); // holder __ push(holder); // Prepare arguments. __ mov(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 3; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); DCHECK(!api_function_address.is(r0) && !scratch.is(r0)); // r0 = FunctionCallbackInfo& // Arguments is after the return address. __ add(r0, sp, Operand(1 * kPointerSize)); // FunctionCallbackInfo::implicit_args_ __ str(scratch, MemOperand(r0, 0 * kPointerSize)); // FunctionCallbackInfo::values_ __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); __ str(ip, MemOperand(r0, 1 * kPointerSize)); // FunctionCallbackInfo::length_ = argc __ mov(ip, Operand(argc())); __ str(ip, MemOperand(r0, 2 * kPointerSize)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(masm->isolate()); AllowExternalCallThatCantCauseGC scope(masm); MemOperand context_restore_operand( fp, (2 + FCA::kContextSaveIndex) * kPointerSize); // Stores return the first js argument int return_value_offset = 0; if (is_store()) { return_value_offset = 2 + FCA::kArgsLength; } else { return_value_offset = 2 + FCA::kReturnValueOffset; } MemOperand return_value_operand(fp, return_value_offset * kPointerSize); int stack_space = 0; MemOperand length_operand = MemOperand(sp, 3 * kPointerSize); MemOperand* stack_space_operand = &length_operand; stack_space = argc() + FCA::kArgsLength + 1; stack_space_operand = NULL; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, stack_space_operand, return_value_operand, &context_restore_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = r4; DCHECK(!AreAliased(receiver, holder, callback, scratch)); Register api_function_address = r2; __ push(receiver); // Push data from AccessorInfo. __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); __ push(scratch); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Push(scratch, scratch); __ mov(scratch, Operand(ExternalReference::isolate_address(isolate()))); __ Push(scratch, holder); __ Push(Smi::kZero); // should_throw_on_error -> false __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); __ push(scratch); // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Load address of v8::PropertyAccessorInfo::args_ array and name handle. __ mov(r0, sp); // r0 = Handle<Name> __ add(r1, r0, Operand(1 * kPointerSize)); // r1 = v8::PCI::args_ const int kApiStackSpace = 1; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. __ str(r1, MemOperand(sp, 1 * kPointerSize)); __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = v8::PropertyCallbackInfo& ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); __ ldr(api_function_address, FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); // +3 is to skip prolog, return address and name handle. MemOperand return_value_operand( fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, NULL, return_value_operand, NULL); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM