// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <limits.h> // For LONG_MIN, LONG_MAX. #if V8_TARGET_ARCH_ARM #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/register-configuration.h" #include "src/runtime/runtime.h" #include "src/arm/macro-assembler-arm.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size, CodeObjectRequired create_code_object) : Assembler(arg_isolate, buffer, size), generating_stub_(false), has_frame_(false) { if (create_code_object == CodeObjectRequired::kYes) { code_object_ = Handle<Object>::New(isolate()->heap()->undefined_value(), isolate()); } } void MacroAssembler::Jump(Register target, Condition cond) { bx(target, cond); } void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond) { DCHECK(RelocInfo::IsCodeTarget(rmode)); mov(pc, Operand(target, rmode), LeaveCC, cond); } void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond) { DCHECK(!RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast<intptr_t>(target), rmode, cond); } void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond) { DCHECK(RelocInfo::IsCodeTarget(rmode)); // 'code' is always generated ARM code, never THUMB code AllowDeferredHandleDereference embedding_raw_address; Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond); } int MacroAssembler::CallSize(Register target, Condition cond) { return kInstrSize; } void MacroAssembler::Call(Register target, Condition cond) { // Block constant pool for the call instruction sequence. BlockConstPoolScope block_const_pool(this); Label start; bind(&start); blx(target, cond); DCHECK_EQ(CallSize(target, cond), SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize( Address target, RelocInfo::Mode rmode, Condition cond) { Instr mov_instr = cond | MOV | LeaveCC; Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode); return kInstrSize + mov_operand.instructions_required(this, mov_instr) * kInstrSize; } int MacroAssembler::CallStubSize( CodeStub* stub, TypeFeedbackId ast_id, Condition cond) { return CallSize(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond); } void MacroAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, TargetAddressStorageMode mode) { // Block constant pool for the call instruction sequence. BlockConstPoolScope block_const_pool(this); Label start; bind(&start); bool old_predictable_code_size = predictable_code_size(); if (mode == NEVER_INLINE_TARGET_ADDRESS) { set_predictable_code_size(true); } #ifdef DEBUG // Check the expected size before generating code to ensure we assume the same // constant pool availability (e.g., whether constant pool is full or not). int expected_size = CallSize(target, rmode, cond); #endif // Call sequence on V7 or later may be : // movw ip, #... @ call address low 16 // movt ip, #... @ call address high 16 // blx ip // @ return address // Or for pre-V7 or values that may be back-patched // to avoid ICache flushes: // ldr ip, [pc, #...] @ call address // blx ip // @ return address mov(ip, Operand(reinterpret_cast<int32_t>(target), rmode)); blx(ip, cond); DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); if (mode == NEVER_INLINE_TARGET_ADDRESS) { set_predictable_code_size(old_predictable_code_size); } } int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond) { AllowDeferredHandleDereference using_raw_address; return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond); } void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond, TargetAddressStorageMode mode) { Label start; bind(&start); DCHECK(RelocInfo::IsCodeTarget(rmode)); if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { SetRecordedAstId(ast_id); rmode = RelocInfo::CODE_TARGET_WITH_ID; } // 'code' is always generated ARM code, never THUMB code AllowDeferredHandleDereference embedding_raw_address; Call(reinterpret_cast<Address>(code.location()), rmode, cond, mode); } void MacroAssembler::CallDeoptimizer(Address target) { BlockConstPoolScope block_const_pool(this); uintptr_t target_raw = reinterpret_cast<uintptr_t>(target); // We use blx, like a call, but it does not return here. The link register is // used by the deoptimizer to work out what called it. if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatureScope scope(this, ARMv7); movw(ip, target_raw & 0xffff); movt(ip, (target_raw >> 16) & 0xffff); blx(ip); } else { // We need to load a literal, but we can't use the usual constant pool // because we call this from a patcher, and cannot afford the guard // instruction and other administrative overhead. ldr(ip, MemOperand(pc, (2 * kInstrSize) - kPcLoadDelta)); blx(ip); dd(target_raw); } } int MacroAssembler::CallDeoptimizerSize() { // ARMv7+: // movw ip, ... // movt ip, ... // blx ip @ This never returns. // // ARMv6: // ldr ip, =address // blx ip @ This never returns. // .word address return 3 * kInstrSize; } void MacroAssembler::Ret(Condition cond) { bx(lr, cond); } void MacroAssembler::Drop(int count, Condition cond) { if (count > 0) { add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond); } } void MacroAssembler::Drop(Register count, Condition cond) { add(sp, sp, Operand(count, LSL, kPointerSizeLog2), LeaveCC, cond); } void MacroAssembler::Ret(int drop, Condition cond) { Drop(drop, cond); Ret(cond); } void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch, Condition cond) { if (scratch.is(no_reg)) { eor(reg1, reg1, Operand(reg2), LeaveCC, cond); eor(reg2, reg2, Operand(reg1), LeaveCC, cond); eor(reg1, reg1, Operand(reg2), LeaveCC, cond); } else { mov(scratch, reg1, LeaveCC, cond); mov(reg1, reg2, LeaveCC, cond); mov(reg2, scratch, LeaveCC, cond); } } void MacroAssembler::Call(Label* target) { bl(target); } void MacroAssembler::Push(Handle<Object> handle) { mov(ip, Operand(handle)); push(ip); } void MacroAssembler::Move(Register dst, Handle<Object> value) { mov(dst, Operand(value)); } void MacroAssembler::Move(Register dst, Register src, Condition cond) { if (!dst.is(src)) { mov(dst, src, LeaveCC, cond); } } void MacroAssembler::Move(SwVfpRegister dst, SwVfpRegister src, Condition cond) { if (!dst.is(src)) { vmov(dst, src, cond); } } void MacroAssembler::Move(DwVfpRegister dst, DwVfpRegister src, Condition cond) { if (!dst.is(src)) { vmov(dst, src, cond); } } void MacroAssembler::Mls(Register dst, Register src1, Register src2, Register srcA, Condition cond) { if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatureScope scope(this, ARMv7); mls(dst, src1, src2, srcA, cond); } else { DCHECK(!srcA.is(ip)); mul(ip, src1, src2, LeaveCC, cond); sub(dst, srcA, ip, LeaveCC, cond); } } void MacroAssembler::And(Register dst, Register src1, const Operand& src2, Condition cond) { if (!src2.is_reg() && !src2.must_output_reloc_info(this) && src2.immediate() == 0) { mov(dst, Operand::Zero(), LeaveCC, cond); } else if (!(src2.instructions_required(this) == 1) && !src2.must_output_reloc_info(this) && CpuFeatures::IsSupported(ARMv7) && base::bits::IsPowerOfTwo32(src2.immediate() + 1)) { CpuFeatureScope scope(this, ARMv7); ubfx(dst, src1, 0, WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond); } else { and_(dst, src1, src2, LeaveCC, cond); } } void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width, Condition cond) { DCHECK(lsb < 32); if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); and_(dst, src1, Operand(mask), LeaveCC, cond); if (lsb != 0) { mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond); } } else { CpuFeatureScope scope(this, ARMv7); ubfx(dst, src1, lsb, width, cond); } } void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width, Condition cond) { DCHECK(lsb < 32); if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); and_(dst, src1, Operand(mask), LeaveCC, cond); int shift_up = 32 - lsb - width; int shift_down = lsb + shift_up; if (shift_up != 0) { mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond); } if (shift_down != 0) { mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond); } } else { CpuFeatureScope scope(this, ARMv7); sbfx(dst, src1, lsb, width, cond); } } void MacroAssembler::Bfi(Register dst, Register src, Register scratch, int lsb, int width, Condition cond) { DCHECK(0 <= lsb && lsb < 32); DCHECK(0 <= width && width < 32); DCHECK(lsb + width < 32); DCHECK(!scratch.is(dst)); if (width == 0) return; if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); bic(dst, dst, Operand(mask)); and_(scratch, src, Operand((1 << width) - 1)); mov(scratch, Operand(scratch, LSL, lsb)); orr(dst, dst, scratch); } else { CpuFeatureScope scope(this, ARMv7); bfi(dst, src, lsb, width, cond); } } void MacroAssembler::Bfc(Register dst, Register src, int lsb, int width, Condition cond) { DCHECK(lsb < 32); if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); bic(dst, src, Operand(mask)); } else { CpuFeatureScope scope(this, ARMv7); Move(dst, src, cond); bfc(dst, lsb, width, cond); } } void MacroAssembler::Load(Register dst, const MemOperand& src, Representation r) { DCHECK(!r.IsDouble()); if (r.IsInteger8()) { ldrsb(dst, src); } else if (r.IsUInteger8()) { ldrb(dst, src); } else if (r.IsInteger16()) { ldrsh(dst, src); } else if (r.IsUInteger16()) { ldrh(dst, src); } else { ldr(dst, src); } } void MacroAssembler::Store(Register src, const MemOperand& dst, Representation r) { DCHECK(!r.IsDouble()); if (r.IsInteger8() || r.IsUInteger8()) { strb(src, dst); } else if (r.IsInteger16() || r.IsUInteger16()) { strh(src, dst); } else { if (r.IsHeapObject()) { AssertNotSmi(src); } else if (r.IsSmi()) { AssertSmi(src); } str(src, dst); } } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index, Condition cond) { ldr(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), cond); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index, Condition cond) { DCHECK(Heap::RootCanBeWrittenAfterInitialization(index)); str(source, MemOperand(kRootRegister, index << kPointerSizeLog2), cond); } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cond, Label* branch) { DCHECK(cond == eq || cond == ne); CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cond, branch); } void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register dst, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); add(dst, object, Operand(offset - kHeapObjectTag)); if (emit_debug_code()) { Label ok; tst(dst, Operand((1 << kPointerSizeLog2) - 1)); b(eq, &ok); stop("Unaligned cell in write barrier"); bind(&ok); } RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action, OMIT_SMI_CHECK, pointers_to_here_check_for_value); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Operand(bit_cast<int32_t>(kZapValue + 4))); mov(dst, Operand(bit_cast<int32_t>(kZapValue + 8))); } } // Will clobber 4 registers: object, map, dst, ip. The // register 'object' contains a heap object pointer. void MacroAssembler::RecordWriteForMap(Register object, Register map, Register dst, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode) { if (emit_debug_code()) { ldr(dst, FieldMemOperand(map, HeapObject::kMapOffset)); cmp(dst, Operand(isolate()->factory()->meta_map())); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } if (!FLAG_incremental_marking) { return; } if (emit_debug_code()) { ldr(ip, FieldMemOperand(object, HeapObject::kMapOffset)); cmp(ip, map); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } Label done; // A single check of the map's pages interesting flag suffices, since it is // only set during incremental collection, and then it's also guaranteed that // the from object's page's interesting flag is also set. This optimization // relies on the fact that maps can never be in new space. CheckPageFlag(map, map, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); add(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag)); if (emit_debug_code()) { Label ok; tst(dst, Operand((1 << kPointerSizeLog2) - 1)); b(eq, &ok); stop("Unaligned cell in write barrier"); bind(&ok); } // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { push(lr); } RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET, fp_mode); CallStub(&stub); if (lr_status == kLRHasNotBeenSaved) { pop(lr); } bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(dst, Operand(bit_cast<int32_t>(kZapValue + 12))); mov(map, Operand(bit_cast<int32_t>(kZapValue + 16))); } } // Will clobber 4 registers: object, address, scratch, ip. The // register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWrite( Register object, Register address, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { DCHECK(!object.is(value)); if (emit_debug_code()) { ldr(ip, MemOperand(address)); cmp(ip, value); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } if (remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) { return; } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); } CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { push(lr); } RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, fp_mode); CallStub(&stub); if (lr_status == kLRHasNotBeenSaved) { pop(lr); } bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, value); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(address, Operand(bit_cast<int32_t>(kZapValue + 12))); mov(value, Operand(bit_cast<int32_t>(kZapValue + 16))); } } void MacroAssembler::RecordWriteCodeEntryField(Register js_function, Register code_entry, Register scratch) { const int offset = JSFunction::kCodeEntryOffset; // Since a code entry (value) is always in old space, we don't need to update // remembered set. If incremental marking is off, there is nothing for us to // do. if (!FLAG_incremental_marking) return; DCHECK(js_function.is(r1)); DCHECK(code_entry.is(r4)); DCHECK(scratch.is(r5)); AssertNotSmi(js_function); if (emit_debug_code()) { add(scratch, js_function, Operand(offset - kHeapObjectTag)); ldr(ip, MemOperand(scratch)); cmp(ip, code_entry); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; CheckPageFlag(code_entry, scratch, MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); CheckPageFlag(js_function, scratch, MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); const Register dst = scratch; add(dst, js_function, Operand(offset - kHeapObjectTag)); push(code_entry); // Save caller-saved registers, which includes js_function. DCHECK((kCallerSaved & js_function.bit()) != 0); DCHECK_EQ(kCallerSaved & code_entry.bit(), 0u); stm(db_w, sp, (kCallerSaved | lr.bit())); int argument_count = 3; PrepareCallCFunction(argument_count, code_entry); mov(r0, js_function); mov(r1, dst); mov(r2, Operand(ExternalReference::isolate_address(isolate()))); { AllowExternalCallThatCantCauseGC scope(this); CallCFunction( ExternalReference::incremental_marking_record_write_code_entry_function( isolate()), argument_count); } // Restore caller-saved registers (including js_function and code_entry). ldm(ia_w, sp, (kCallerSaved | lr.bit())); pop(code_entry); bind(&done); } void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. Register address, Register scratch, SaveFPRegsMode fp_mode, RememberedSetFinalAction and_then) { Label done; if (emit_debug_code()) { Label ok; JumpIfNotInNewSpace(object, scratch, &ok); stop("Remembered set pointer is in new space"); bind(&ok); } // Load store buffer top. ExternalReference store_buffer = ExternalReference::store_buffer_top(isolate()); mov(ip, Operand(store_buffer)); ldr(scratch, MemOperand(ip)); // Store pointer to buffer and increment buffer top. str(address, MemOperand(scratch, kPointerSize, PostIndex)); // Write back new top of buffer. str(scratch, MemOperand(ip)); // Call stub on end of buffer. // Check for end of buffer. tst(scratch, Operand(StoreBuffer::kStoreBufferMask)); if (and_then == kFallThroughAtEnd) { b(ne, &done); } else { DCHECK(and_then == kReturnAtEnd); Ret(ne); } push(lr); StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode); CallStub(&store_buffer_overflow); pop(lr); bind(&done); if (and_then == kReturnAtEnd) { Ret(); } } void MacroAssembler::PushCommonFrame(Register marker_reg) { if (marker_reg.is_valid()) { if (FLAG_enable_embedded_constant_pool) { if (marker_reg.code() > pp.code()) { stm(db_w, sp, pp.bit() | fp.bit() | lr.bit()); add(fp, sp, Operand(kPointerSize)); Push(marker_reg); } else { stm(db_w, sp, marker_reg.bit() | pp.bit() | fp.bit() | lr.bit()); add(fp, sp, Operand(2 * kPointerSize)); } } else { if (marker_reg.code() > fp.code()) { stm(db_w, sp, fp.bit() | lr.bit()); mov(fp, Operand(sp)); Push(marker_reg); } else { stm(db_w, sp, marker_reg.bit() | fp.bit() | lr.bit()); add(fp, sp, Operand(kPointerSize)); } } } else { stm(db_w, sp, (FLAG_enable_embedded_constant_pool ? pp.bit() : 0) | fp.bit() | lr.bit()); add(fp, sp, Operand(FLAG_enable_embedded_constant_pool ? kPointerSize : 0)); } } void MacroAssembler::PopCommonFrame(Register marker_reg) { if (marker_reg.is_valid()) { if (FLAG_enable_embedded_constant_pool) { if (marker_reg.code() > pp.code()) { pop(marker_reg); ldm(ia_w, sp, pp.bit() | fp.bit() | lr.bit()); } else { ldm(ia_w, sp, marker_reg.bit() | pp.bit() | fp.bit() | lr.bit()); } } else { if (marker_reg.code() > fp.code()) { pop(marker_reg); ldm(ia_w, sp, fp.bit() | lr.bit()); } else { ldm(ia_w, sp, marker_reg.bit() | fp.bit() | lr.bit()); } } } else { ldm(ia_w, sp, (FLAG_enable_embedded_constant_pool ? pp.bit() : 0) | fp.bit() | lr.bit()); } } void MacroAssembler::PushStandardFrame(Register function_reg) { DCHECK(!function_reg.is_valid() || function_reg.code() < cp.code()); stm(db_w, sp, (function_reg.is_valid() ? function_reg.bit() : 0) | cp.bit() | (FLAG_enable_embedded_constant_pool ? pp.bit() : 0) | fp.bit() | lr.bit()); int offset = -StandardFrameConstants::kContextOffset; offset += function_reg.is_valid() ? kPointerSize : 0; add(fp, sp, Operand(offset)); } // Push and pop all registers that can hold pointers. void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of contiguous register values starting with r0. // except when FLAG_enable_embedded_constant_pool, which omits pp. DCHECK(kSafepointSavedRegisters == (FLAG_enable_embedded_constant_pool ? ((1 << (kNumSafepointSavedRegisters + 1)) - 1) & ~pp.bit() : (1 << kNumSafepointSavedRegisters) - 1)); // Safepoints expect a block of kNumSafepointRegisters values on the // stack, so adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; DCHECK(num_unsaved >= 0); sub(sp, sp, Operand(num_unsaved * kPointerSize)); stm(db_w, sp, kSafepointSavedRegisters); } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; ldm(ia_w, sp, kSafepointSavedRegisters); add(sp, sp, Operand(num_unsaved * kPointerSize)); } void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { str(src, SafepointRegisterSlot(dst)); } void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { ldr(dst, SafepointRegisterSlot(src)); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the highest encoding, // which means that lowest encodings are closest to the stack pointer. if (FLAG_enable_embedded_constant_pool && reg_code > pp.code()) { // RegList omits pp. reg_code -= 1; } DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); return reg_code; } MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); } MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { // Number of d-regs not known at snapshot time. DCHECK(!serializer_enabled()); // General purpose registers are pushed last on the stack. const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); int doubles_size = config->num_allocatable_double_registers() * kDoubleSize; int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; return MemOperand(sp, doubles_size + register_offset); } void MacroAssembler::Ldrd(Register dst1, Register dst2, const MemOperand& src, Condition cond) { DCHECK(src.rm().is(no_reg)); DCHECK(!dst1.is(lr)); // r14. // V8 does not use this addressing mode, so the fallback code // below doesn't support it yet. DCHECK((src.am() != PreIndex) && (src.am() != NegPreIndex)); // Generate two ldr instructions if ldrd is not applicable. if ((dst1.code() % 2 == 0) && (dst1.code() + 1 == dst2.code())) { ldrd(dst1, dst2, src, cond); } else { if ((src.am() == Offset) || (src.am() == NegOffset)) { MemOperand src2(src); src2.set_offset(src2.offset() + 4); if (dst1.is(src.rn())) { ldr(dst2, src2, cond); ldr(dst1, src, cond); } else { ldr(dst1, src, cond); ldr(dst2, src2, cond); } } else { // PostIndex or NegPostIndex. DCHECK((src.am() == PostIndex) || (src.am() == NegPostIndex)); if (dst1.is(src.rn())) { ldr(dst2, MemOperand(src.rn(), 4, Offset), cond); ldr(dst1, src, cond); } else { MemOperand src2(src); src2.set_offset(src2.offset() - 4); ldr(dst1, MemOperand(src.rn(), 4, PostIndex), cond); ldr(dst2, src2, cond); } } } } void MacroAssembler::Strd(Register src1, Register src2, const MemOperand& dst, Condition cond) { DCHECK(dst.rm().is(no_reg)); DCHECK(!src1.is(lr)); // r14. // V8 does not use this addressing mode, so the fallback code // below doesn't support it yet. DCHECK((dst.am() != PreIndex) && (dst.am() != NegPreIndex)); // Generate two str instructions if strd is not applicable. if ((src1.code() % 2 == 0) && (src1.code() + 1 == src2.code())) { strd(src1, src2, dst, cond); } else { MemOperand dst2(dst); if ((dst.am() == Offset) || (dst.am() == NegOffset)) { dst2.set_offset(dst2.offset() + 4); str(src1, dst, cond); str(src2, dst2, cond); } else { // PostIndex or NegPostIndex. DCHECK((dst.am() == PostIndex) || (dst.am() == NegPostIndex)); dst2.set_offset(dst2.offset() - 4); str(src1, MemOperand(dst.rn(), 4, PostIndex), cond); str(src2, dst2, cond); } } } void MacroAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Subtracting 0.0 preserves all inputs except for signalling NaNs, which // become quiet NaNs. We use vsub rather than vadd because vsub preserves -0.0 // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0. vsub(dst, src, kDoubleRegZero, cond); } void MacroAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void MacroAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, const double src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void MacroAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, const SwVfpRegister src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void MacroAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, const DwVfpRegister src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, const double src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void MacroAssembler::Vmov(const DwVfpRegister dst, const double imm, const Register scratch) { int64_t imm_bits = bit_cast<int64_t>(imm); // Handle special values first. if (imm_bits == bit_cast<int64_t>(0.0)) { vmov(dst, kDoubleRegZero); } else if (imm_bits == bit_cast<int64_t>(-0.0)) { vneg(dst, kDoubleRegZero); } else { vmov(dst, imm, scratch); } } void MacroAssembler::VmovHigh(Register dst, DwVfpRegister src) { if (src.code() < 16) { const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); vmov(dst, loc.high()); } else { vmov(dst, VmovIndexHi, src); } } void MacroAssembler::VmovHigh(DwVfpRegister dst, Register src) { if (dst.code() < 16) { const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); vmov(loc.high(), src); } else { vmov(dst, VmovIndexHi, src); } } void MacroAssembler::VmovLow(Register dst, DwVfpRegister src) { if (src.code() < 16) { const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); vmov(dst, loc.low()); } else { vmov(dst, VmovIndexLo, src); } } void MacroAssembler::VmovLow(DwVfpRegister dst, Register src) { if (dst.code() < 16) { const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); vmov(loc.low(), src); } else { vmov(dst, VmovIndexLo, src); } } void MacroAssembler::VmovExtended(Register dst, int src_code) { DCHECK_LE(32, src_code); DCHECK_GT(64, src_code); if (src_code & 0x1) { VmovHigh(dst, DwVfpRegister::from_code(src_code / 2)); } else { VmovLow(dst, DwVfpRegister::from_code(src_code / 2)); } } void MacroAssembler::VmovExtended(int dst_code, Register src) { DCHECK_LE(32, dst_code); DCHECK_GT(64, dst_code); if (dst_code & 0x1) { VmovHigh(DwVfpRegister::from_code(dst_code / 2), src); } else { VmovLow(DwVfpRegister::from_code(dst_code / 2), src); } } void MacroAssembler::VmovExtended(int dst_code, int src_code, Register scratch) { if (src_code < 32 && dst_code < 32) { // src and dst are both s-registers. vmov(SwVfpRegister::from_code(dst_code), SwVfpRegister::from_code(src_code)); } else if (src_code < 32) { // src is an s-register. vmov(scratch, SwVfpRegister::from_code(src_code)); VmovExtended(dst_code, scratch); } else if (dst_code < 32) { // dst is an s-register. VmovExtended(scratch, src_code); vmov(SwVfpRegister::from_code(dst_code), scratch); } else { // Neither src or dst are s-registers. DCHECK_GT(64, src_code); DCHECK_GT(64, dst_code); VmovExtended(scratch, src_code); VmovExtended(dst_code, scratch); } } void MacroAssembler::VmovExtended(int dst_code, const MemOperand& src, Register scratch) { if (dst_code >= 32) { ldr(scratch, src); VmovExtended(dst_code, scratch); } else { vldr(SwVfpRegister::from_code(dst_code), src); } } void MacroAssembler::VmovExtended(const MemOperand& dst, int src_code, Register scratch) { if (src_code >= 32) { VmovExtended(scratch, src_code); str(scratch, dst); } else { vstr(SwVfpRegister::from_code(src_code), dst); } } void MacroAssembler::LslPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift) { DCHECK(!AreAliased(dst_high, src_low)); DCHECK(!AreAliased(dst_high, shift)); Label less_than_32; Label done; rsb(scratch, shift, Operand(32), SetCC); b(gt, &less_than_32); // If shift >= 32 and_(scratch, shift, Operand(0x1f)); lsl(dst_high, src_low, Operand(scratch)); mov(dst_low, Operand(0)); jmp(&done); bind(&less_than_32); // If shift < 32 lsl(dst_high, src_high, Operand(shift)); orr(dst_high, dst_high, Operand(src_low, LSR, scratch)); lsl(dst_low, src_low, Operand(shift)); bind(&done); } void MacroAssembler::LslPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { DCHECK(!AreAliased(dst_high, src_low)); Label less_than_32; Label done; if (shift == 0) { Move(dst_high, src_high); Move(dst_low, src_low); } else if (shift == 32) { Move(dst_high, src_low); Move(dst_low, Operand(0)); } else if (shift >= 32) { shift &= 0x1f; lsl(dst_high, src_low, Operand(shift)); mov(dst_low, Operand(0)); } else { lsl(dst_high, src_high, Operand(shift)); orr(dst_high, dst_high, Operand(src_low, LSR, 32 - shift)); lsl(dst_low, src_low, Operand(shift)); } } void MacroAssembler::LsrPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift) { DCHECK(!AreAliased(dst_low, src_high)); DCHECK(!AreAliased(dst_low, shift)); Label less_than_32; Label done; rsb(scratch, shift, Operand(32), SetCC); b(gt, &less_than_32); // If shift >= 32 and_(scratch, shift, Operand(0x1f)); lsr(dst_low, src_high, Operand(scratch)); mov(dst_high, Operand(0)); jmp(&done); bind(&less_than_32); // If shift < 32 lsr(dst_low, src_low, Operand(shift)); orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); lsr(dst_high, src_high, Operand(shift)); bind(&done); } void MacroAssembler::LsrPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { DCHECK(!AreAliased(dst_low, src_high)); Label less_than_32; Label done; if (shift == 32) { mov(dst_low, src_high); mov(dst_high, Operand(0)); } else if (shift > 32) { shift &= 0x1f; lsr(dst_low, src_high, Operand(shift)); mov(dst_high, Operand(0)); } else if (shift == 0) { Move(dst_low, src_low); Move(dst_high, src_high); } else { lsr(dst_low, src_low, Operand(shift)); orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); lsr(dst_high, src_high, Operand(shift)); } } void MacroAssembler::AsrPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift) { DCHECK(!AreAliased(dst_low, src_high)); DCHECK(!AreAliased(dst_low, shift)); Label less_than_32; Label done; rsb(scratch, shift, Operand(32), SetCC); b(gt, &less_than_32); // If shift >= 32 and_(scratch, shift, Operand(0x1f)); asr(dst_low, src_high, Operand(scratch)); asr(dst_high, src_high, Operand(31)); jmp(&done); bind(&less_than_32); // If shift < 32 lsr(dst_low, src_low, Operand(shift)); orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); asr(dst_high, src_high, Operand(shift)); bind(&done); } void MacroAssembler::AsrPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { DCHECK(!AreAliased(dst_low, src_high)); Label less_than_32; Label done; if (shift == 32) { mov(dst_low, src_high); asr(dst_high, src_high, Operand(31)); } else if (shift > 32) { shift &= 0x1f; asr(dst_low, src_high, Operand(shift)); asr(dst_high, src_high, Operand(31)); } else if (shift == 0) { Move(dst_low, src_low); Move(dst_high, src_high); } else { lsr(dst_low, src_low, Operand(shift)); orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); asr(dst_high, src_high, Operand(shift)); } } void MacroAssembler::LoadConstantPoolPointerRegisterFromCodeTargetAddress( Register code_target_address) { DCHECK(FLAG_enable_embedded_constant_pool); ldr(pp, MemOperand(code_target_address, Code::kConstantPoolOffset - Code::kHeaderSize)); add(pp, pp, code_target_address); } void MacroAssembler::LoadConstantPoolPointerRegister() { DCHECK(FLAG_enable_embedded_constant_pool); int entry_offset = pc_offset() + Instruction::kPCReadOffset; sub(ip, pc, Operand(entry_offset)); LoadConstantPoolPointerRegisterFromCodeTargetAddress(ip); } void MacroAssembler::StubPrologue(StackFrame::Type type) { mov(ip, Operand(Smi::FromInt(type))); PushCommonFrame(ip); if (FLAG_enable_embedded_constant_pool) { LoadConstantPoolPointerRegister(); set_constant_pool_available(true); } } void MacroAssembler::Prologue(bool code_pre_aging) { { PredictableCodeSizeScope predictible_code_size_scope( this, kNoCodeAgeSequenceLength); // The following three instructions must remain together and unmodified // for code aging to work properly. if (code_pre_aging) { // Pre-age the code. Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); add(r0, pc, Operand(-8)); ldr(pc, MemOperand(pc, -4)); emit_code_stub_address(stub); } else { PushStandardFrame(r1); nop(ip.code()); } } if (FLAG_enable_embedded_constant_pool) { LoadConstantPoolPointerRegister(); set_constant_pool_available(true); } } void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) { ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); ldr(vector, FieldMemOperand(vector, JSFunction::kLiteralsOffset)); ldr(vector, FieldMemOperand(vector, LiteralsArray::kFeedbackVectorOffset)); } void MacroAssembler::EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // r0-r3: preserved mov(ip, Operand(Smi::FromInt(type))); PushCommonFrame(ip); if (FLAG_enable_embedded_constant_pool && load_constant_pool_pointer_reg) { LoadConstantPoolPointerRegister(); } if (type == StackFrame::INTERNAL) { mov(ip, Operand(CodeObject())); push(ip); } } int MacroAssembler::LeaveFrame(StackFrame::Type type) { // r0: preserved // r1: preserved // r2: preserved // Drop the execution stack down to the frame pointer and restore // the caller frame pointer, return address and constant pool pointer // (if FLAG_enable_embedded_constant_pool). int frame_ends; if (FLAG_enable_embedded_constant_pool) { add(sp, fp, Operand(StandardFrameConstants::kConstantPoolOffset)); frame_ends = pc_offset(); ldm(ia_w, sp, pp.bit() | fp.bit() | lr.bit()); } else { mov(sp, fp); frame_ends = pc_offset(); ldm(ia_w, sp, fp.bit() | lr.bit()); } return frame_ends; } void MacroAssembler::EnterBuiltinFrame(Register context, Register target, Register argc) { Push(lr, fp, context, target); add(fp, sp, Operand(2 * kPointerSize)); Push(argc); } void MacroAssembler::LeaveBuiltinFrame(Register context, Register target, Register argc) { Pop(argc); Pop(lr, fp, context, target); } void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, StackFrame::Type frame_type) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the frame structure on the stack. DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); mov(ip, Operand(Smi::FromInt(frame_type))); PushCommonFrame(ip); // Reserve room for saved entry sp and code object. sub(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp)); if (emit_debug_code()) { mov(ip, Operand::Zero()); str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset)); } if (FLAG_enable_embedded_constant_pool) { str(pp, MemOperand(fp, ExitFrameConstants::kConstantPoolOffset)); } mov(ip, Operand(CodeObject())); str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset)); // Save the frame pointer and the context in top. mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); str(fp, MemOperand(ip)); mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); str(cp, MemOperand(ip)); // Optionally save all double registers. if (save_doubles) { SaveFPRegs(sp, ip); // Note that d0 will be accessible at // fp - ExitFrameConstants::kFrameSize - // DwVfpRegister::kMaxNumRegisters * kDoubleSize, // since the sp slot, code slot and constant pool slot (if // FLAG_enable_embedded_constant_pool) were pushed after the fp. } // Reserve place for the return address and stack space and align the frame // preparing for calling the runtime function. const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); sub(sp, sp, Operand((stack_space + 1) * kPointerSize)); if (frame_alignment > 0) { DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); and_(sp, sp, Operand(-frame_alignment)); } // Set the exit frame sp value to point just before the return address // location. add(ip, sp, Operand(kPointerSize)); str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset)); } void MacroAssembler::InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2) { SmiTag(scratch1, length); LoadRoot(scratch2, map_index); str(scratch1, FieldMemOperand(string, String::kLengthOffset)); mov(scratch1, Operand(String::kEmptyHashField)); str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); str(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); } int MacroAssembler::ActivationFrameAlignment() { #if V8_HOST_ARCH_ARM // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one ARM // platform for another ARM platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // V8_HOST_ARCH_ARM // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // V8_HOST_ARCH_ARM } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, bool restore_context, bool argument_count_is_length) { ConstantPoolUnavailableScope constant_pool_unavailable(this); // Optionally restore all double registers. if (save_doubles) { // Calculate the stack location of the saved doubles and restore them. const int offset = ExitFrameConstants::kFixedFrameSizeFromFp; sub(r3, fp, Operand(offset + DwVfpRegister::kMaxNumRegisters * kDoubleSize)); RestoreFPRegs(r3, ip); } // Clear top frame. mov(r3, Operand::Zero()); mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); str(r3, MemOperand(ip)); // Restore current context from top and clear it in debug mode. if (restore_context) { mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); ldr(cp, MemOperand(ip)); } #ifdef DEBUG mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); str(r3, MemOperand(ip)); #endif // Tear down the exit frame, pop the arguments, and return. if (FLAG_enable_embedded_constant_pool) { ldr(pp, MemOperand(fp, ExitFrameConstants::kConstantPoolOffset)); } mov(sp, Operand(fp)); ldm(ia_w, sp, fp.bit() | lr.bit()); if (argument_count.is_valid()) { if (argument_count_is_length) { add(sp, sp, argument_count); } else { add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2)); } } } void MacroAssembler::MovFromFloatResult(const DwVfpRegister dst) { if (use_eabi_hardfloat()) { Move(dst, d0); } else { vmov(dst, r0, r1); } } // On ARM this is just a synonym to make the purpose clear. void MacroAssembler::MovFromFloatParameter(DwVfpRegister dst) { MovFromFloatResult(dst); } void MacroAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1) { #if DEBUG if (callee_args_count.is_reg()) { DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, scratch1)); } else { DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); } #endif // Calculate the end of destination area where we will put the arguments // after we drop current frame. We add kPointerSize to count the receiver // argument which is not included into formal parameters count. Register dst_reg = scratch0; add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2)); add(dst_reg, dst_reg, Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); Register src_reg = caller_args_count_reg; // Calculate the end of source area. +kPointerSize is for the receiver. if (callee_args_count.is_reg()) { add(src_reg, sp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2)); add(src_reg, src_reg, Operand(kPointerSize)); } else { add(src_reg, sp, Operand((callee_args_count.immediate() + 1) * kPointerSize)); } if (FLAG_debug_code) { cmp(src_reg, dst_reg); Check(lo, kStackAccessBelowStackPointer); } // Restore caller's frame pointer and return address now as they will be // overwritten by the copying loop. ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Now copy callee arguments to the caller frame going backwards to avoid // callee arguments corruption (source and destination areas could overlap). // Both src_reg and dst_reg are pointing to the word after the one to copy, // so they must be pre-decremented in the loop. Register tmp_reg = scratch1; Label loop, entry; b(&entry); bind(&loop); ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex)); str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex)); bind(&entry); cmp(sp, src_reg); b(ne, &loop); // Leave current frame. mov(sp, dst_reg); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // r0: actual arguments count // r1: function (passed through to callee) // r2: expected arguments count // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. DCHECK(actual.is_immediate() || actual.reg().is(r0)); DCHECK(expected.is_immediate() || expected.reg().is(r2)); if (expected.is_immediate()) { DCHECK(actual.is_immediate()); mov(r0, Operand(actual.immediate())); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; mov(r2, Operand(expected.immediate())); } } } else { if (actual.is_immediate()) { mov(r0, Operand(actual.immediate())); cmp(expected.reg(), Operand(actual.immediate())); b(eq, ®ular_invoke); } else { cmp(expected.reg(), Operand(actual.reg())); b(eq, ®ular_invoke); } } if (!definitely_matches) { Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor)); Call(adaptor); call_wrapper.AfterCall(); if (!*definitely_mismatches) { b(done); } } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual) { Label skip_flooding; ExternalReference last_step_action = ExternalReference::debug_last_step_action_address(isolate()); STATIC_ASSERT(StepFrame > StepIn); mov(r4, Operand(last_step_action)); ldrsb(r4, MemOperand(r4)); cmp(r4, Operand(StepIn)); b(lt, &skip_flooding); { FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); if (expected.is_reg()) { SmiTag(expected.reg()); Push(expected.reg()); } if (actual.is_reg()) { SmiTag(actual.reg()); Push(actual.reg()); } if (new_target.is_valid()) { Push(new_target); } Push(fun); Push(fun); CallRuntime(Runtime::kDebugPrepareStepInIfStepping); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } if (actual.is_reg()) { Pop(actual.reg()); SmiUntag(actual.reg()); } if (expected.is_reg()) { Pop(expected.reg()); SmiUntag(expected.reg()); } } bind(&skip_flooding); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function.is(r1)); DCHECK_IMPLIES(new_target.is_valid(), new_target.is(r3)); if (call_wrapper.NeedsDebugStepCheck()) { FloodFunctionIfStepping(function, new_target, expected, actual); } // Clear the new.target register if not given. if (!new_target.is_valid()) { LoadRoot(r3, Heap::kUndefinedValueRootIndex); } Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, &done, &definitely_mismatches, flag, call_wrapper); if (!definitely_mismatches) { // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Register code = r4; ldr(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); Call(code); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); Jump(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeFunction(Register fun, Register new_target, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in r1. DCHECK(fun.is(r1)); Register expected_reg = r2; Register temp_reg = r4; ldr(temp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); ldr(expected_reg, FieldMemOperand(temp_reg, SharedFunctionInfo::kFormalParameterCountOffset)); SmiUntag(expected_reg); ParameterCount expected(expected_reg); InvokeFunctionCode(fun, new_target, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in r1. DCHECK(function.is(r1)); // Get the function and setup the context. ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); InvokeFunctionCode(r1, no_reg, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { Move(r1, function); InvokeFunction(r1, expected, actual, flag, call_wrapper); } void MacroAssembler::IsObjectJSStringType(Register object, Register scratch, Label* fail) { DCHECK(kNotStringTag != 0); ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); tst(scratch, Operand(kIsNotStringMask)); b(ne, fail); } void MacroAssembler::IsObjectNameType(Register object, Register scratch, Label* fail) { ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); cmp(scratch, Operand(LAST_NAME_TYPE)); b(hi, fail); } void MacroAssembler::DebugBreak() { mov(r0, Operand::Zero()); mov(r1, Operand(ExternalReference(Runtime::kHandleDebuggerStatement, isolate()))); CEntryStub ces(isolate(), 1); DCHECK(AllowThisStubCall(&ces)); Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT); } void MacroAssembler::PushStackHandler() { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); // Link the current handler as the next handler. mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); ldr(r5, MemOperand(r6)); push(r5); // Set this new handler as the current one. str(sp, MemOperand(r6)); } void MacroAssembler::PopStackHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(r1); mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); str(r1, MemOperand(ip)); } // Compute the hash code from the untagged key. This must be kept in sync with // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in // code-stub-hydrogen.cc void MacroAssembler::GetNumberHash(Register t0, Register scratch) { // First of all we assign the hash seed to scratch. LoadRoot(scratch, Heap::kHashSeedRootIndex); SmiUntag(scratch); // Xor original key with a seed. eor(t0, t0, Operand(scratch)); // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); mvn(scratch, Operand(t0)); add(t0, scratch, Operand(t0, LSL, 15)); // hash = hash ^ (hash >> 12); eor(t0, t0, Operand(t0, LSR, 12)); // hash = hash + (hash << 2); add(t0, t0, Operand(t0, LSL, 2)); // hash = hash ^ (hash >> 4); eor(t0, t0, Operand(t0, LSR, 4)); // hash = hash * 2057; mov(scratch, Operand(t0, LSL, 11)); add(t0, t0, Operand(t0, LSL, 3)); add(t0, t0, scratch); // hash = hash ^ (hash >> 16); eor(t0, t0, Operand(t0, LSR, 16)); bic(t0, t0, Operand(0xc0000000u)); } void MacroAssembler::Allocate(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { DCHECK(object_size <= kMaxRegularHeapObjectSize); DCHECK((flags & ALLOCATION_FOLDED) == 0); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Operand(0x7091)); mov(scratch1, Operand(0x7191)); mov(scratch2, Operand(0x7291)); } jmp(gc_required); return; } DCHECK(!AreAliased(result, scratch1, scratch2, ip)); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } DCHECK_EQ(0, object_size & kObjectAlignmentMask); // Check relative positions of allocation top and limit addresses. // The values must be adjacent in memory to allow the use of LDM. // Also, assert that the registers are numbered such that the values // are loaded in the correct order. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); DCHECK(result.code() < ip.code()); // Set up allocation top address register. Register top_address = scratch1; // This code stores a temporary value in ip. This is OK, as the code below // does not need ip for implicit literal generation. Register alloc_limit = ip; Register result_end = scratch2; mov(top_address, Operand(allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into alloc_limit. ldm(ia, top_address, result.bit() | alloc_limit.bit()); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. ldr(alloc_limit, MemOperand(top_address)); cmp(result, alloc_limit); Check(eq, kUnexpectedAllocationTop); } // Load allocation limit. Result already contains allocation top. ldr(alloc_limit, MemOperand(top_address, limit - top)); } if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment); and_(result_end, result, Operand(kDoubleAlignmentMask), SetCC); Label aligned; b(eq, &aligned); if ((flags & PRETENURE) != 0) { cmp(result, Operand(alloc_limit)); b(hs, gc_required); } mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); str(result_end, MemOperand(result, kDoubleSize / 2, PostIndex)); bind(&aligned); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. We must preserve the ip register at this // point, so we cannot just use add(). DCHECK(object_size > 0); Register source = result; int shift = 0; while (object_size != 0) { if (((object_size >> shift) & 0x03) == 0) { shift += 2; } else { int bits = object_size & (0xff << shift); object_size -= bits; shift += 8; Operand bits_operand(bits); DCHECK(bits_operand.instructions_required(this) == 1); add(result_end, source, bits_operand); source = result_end; } } cmp(result_end, Operand(alloc_limit)); b(hi, gc_required); if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) { // The top pointer is not updated for allocation folding dominators. str(result_end, MemOperand(top_address)); } // Tag object. add(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::Allocate(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { DCHECK((flags & ALLOCATION_FOLDED) == 0); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Operand(0x7091)); mov(scratch, Operand(0x7191)); mov(result_end, Operand(0x7291)); } jmp(gc_required); return; } // |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag // is not specified. Other registers must not overlap. DCHECK(!AreAliased(object_size, result, scratch, ip)); DCHECK(!AreAliased(result_end, result, scratch, ip)); DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end)); // Check relative positions of allocation top and limit addresses. // The values must be adjacent in memory to allow the use of LDM. // Also, assert that the registers are numbered such that the values // are loaded in the correct order. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); DCHECK(result.code() < ip.code()); // Set up allocation top address and allocation limit registers. Register top_address = scratch; // This code stores a temporary value in ip. This is OK, as the code below // does not need ip for implicit literal generation. Register alloc_limit = ip; mov(top_address, Operand(allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into alloc_limit. ldm(ia, top_address, result.bit() | alloc_limit.bit()); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. ldr(alloc_limit, MemOperand(top_address)); cmp(result, alloc_limit); Check(eq, kUnexpectedAllocationTop); } // Load allocation limit. Result already contains allocation top. ldr(alloc_limit, MemOperand(top_address, limit - top)); } if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. DCHECK(kPointerAlignment * 2 == kDoubleAlignment); and_(result_end, result, Operand(kDoubleAlignmentMask), SetCC); Label aligned; b(eq, &aligned); if ((flags & PRETENURE) != 0) { cmp(result, Operand(alloc_limit)); b(hs, gc_required); } mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); str(result_end, MemOperand(result, kDoubleSize / 2, PostIndex)); bind(&aligned); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. Object size may be in words so a shift is // required to get the number of bytes. if ((flags & SIZE_IN_WORDS) != 0) { add(result_end, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC); } else { add(result_end, result, Operand(object_size), SetCC); } cmp(result_end, Operand(alloc_limit)); b(hi, gc_required); // Update allocation top. result temporarily holds the new top. if (emit_debug_code()) { tst(result_end, Operand(kObjectAlignmentMask)); Check(eq, kUnalignedAllocationInNewSpace); } if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) { // The top pointer is not updated for allocation folding dominators. str(result_end, MemOperand(top_address)); } // Tag object. add(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::FastAllocate(Register object_size, Register result, Register result_end, Register scratch, AllocationFlags flags) { // |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag // is not specified. Other registers must not overlap. DCHECK(!AreAliased(object_size, result, scratch, ip)); DCHECK(!AreAliased(result_end, result, scratch, ip)); DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end)); ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); Register top_address = scratch; mov(top_address, Operand(allocation_top)); ldr(result, MemOperand(top_address)); if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. DCHECK(kPointerAlignment * 2 == kDoubleAlignment); and_(result_end, result, Operand(kDoubleAlignmentMask), SetCC); Label aligned; b(eq, &aligned); mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); str(result_end, MemOperand(result, kDoubleSize / 2, PostIndex)); bind(&aligned); } // Calculate new top using result. Object size may be in words so a shift is // required to get the number of bytes. if ((flags & SIZE_IN_WORDS) != 0) { add(result_end, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC); } else { add(result_end, result, Operand(object_size), SetCC); } // Update allocation top. result temporarily holds the new top. if (emit_debug_code()) { tst(result_end, Operand(kObjectAlignmentMask)); Check(eq, kUnalignedAllocationInNewSpace); } // The top pointer is not updated for allocation folding dominators. str(result_end, MemOperand(top_address)); add(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::FastAllocate(int object_size, Register result, Register scratch1, Register scratch2, AllocationFlags flags) { DCHECK(object_size <= kMaxRegularHeapObjectSize); DCHECK(!AreAliased(result, scratch1, scratch2, ip)); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } DCHECK_EQ(0, object_size & kObjectAlignmentMask); ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); // Set up allocation top address register. Register top_address = scratch1; Register result_end = scratch2; mov(top_address, Operand(allocation_top)); ldr(result, MemOperand(top_address)); if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment); and_(result_end, result, Operand(kDoubleAlignmentMask), SetCC); Label aligned; b(eq, &aligned); mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); str(result_end, MemOperand(result, kDoubleSize / 2, PostIndex)); bind(&aligned); } // Calculate new top using result. Object size may be in words so a shift is // required to get the number of bytes. We must preserve the ip register at // this point, so we cannot just use add(). DCHECK(object_size > 0); Register source = result; int shift = 0; while (object_size != 0) { if (((object_size >> shift) & 0x03) == 0) { shift += 2; } else { int bits = object_size & (0xff << shift); object_size -= bits; shift += 8; Operand bits_operand(bits); DCHECK(bits_operand.instructions_required(this) == 1); add(result_end, source, bits_operand); source = result_end; } } // The top pointer is not updated for allocation folding dominators. str(result_end, MemOperand(top_address)); add(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars. add(scratch1, scratch1, Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize)); and_(scratch1, scratch1, Operand(~kObjectAlignmentMask)); // Allocate two-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, NO_ALLOCATION_FLAGS); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); DCHECK(kCharSize == 1); add(scratch1, length, Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize)); and_(scratch1, scratch1, Operand(~kObjectAlignmentMask)); // Allocate one-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, NO_ALLOCATION_FLAGS); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::CompareObjectType(Register object, Register map, Register type_reg, InstanceType type) { const Register temp = type_reg.is(no_reg) ? ip : type_reg; ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(map, temp, type); } void MacroAssembler::CompareInstanceType(Register map, Register type_reg, InstanceType type) { // Registers map and type_reg can be ip. These two lines assert // that ip can be used with the two instructions (the constants // will never need ip). STATIC_ASSERT(Map::kInstanceTypeOffset < 4096); STATIC_ASSERT(LAST_TYPE < 256); ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); cmp(type_reg, Operand(type)); } void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) { DCHECK(!obj.is(ip)); LoadRoot(ip, index); cmp(obj, ip); } void MacroAssembler::CheckFastObjectElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); b(ls, fail); cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); b(hi, fail); } void MacroAssembler::CheckFastSmiElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); b(hi, fail); } void MacroAssembler::StoreNumberToDoubleElements( Register value_reg, Register key_reg, Register elements_reg, Register scratch1, LowDwVfpRegister double_scratch, Label* fail, int elements_offset) { DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1)); Label smi_value, store; // Handle smi values specially. JumpIfSmi(value_reg, &smi_value); // Ensure that the object is a heap number CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), fail, DONT_DO_SMI_CHECK); vldr(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset)); VFPCanonicalizeNaN(double_scratch); b(&store); bind(&smi_value); SmiToDouble(double_scratch, value_reg); bind(&store); add(scratch1, elements_reg, Operand::DoubleOffsetFromSmiKey(key_reg)); vstr(double_scratch, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - elements_offset)); } void MacroAssembler::CompareMap(Register obj, Register scratch, Handle<Map> map, Label* early_success) { ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); CompareMap(scratch, map, early_success); } void MacroAssembler::CompareMap(Register obj_map, Handle<Map> map, Label* early_success) { cmp(obj_map, Operand(map)); } void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } Label success; CompareMap(obj, scratch, map, &success); b(ne, fail); bind(&success); } void MacroAssembler::CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); LoadRoot(ip, index); cmp(scratch, ip); b(ne, fail); } void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1, Register scratch2, Handle<WeakCell> cell, Handle<Code> success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } ldr(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset)); CmpWeakValue(scratch1, cell, scratch2); Jump(success, RelocInfo::CODE_TARGET, eq); bind(&fail); } void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch) { mov(scratch, Operand(cell)); ldr(scratch, FieldMemOperand(scratch, WeakCell::kValueOffset)); cmp(value, scratch); } void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) { mov(value, Operand(cell)); ldr(value, FieldMemOperand(value, WeakCell::kValueOffset)); } void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss) { GetWeakValue(value, cell); JumpIfSmi(value, miss); } void MacroAssembler::GetMapConstructor(Register result, Register map, Register temp, Register temp2) { Label done, loop; ldr(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset)); bind(&loop); JumpIfSmi(result, &done); CompareObjectType(result, temp, temp2, MAP_TYPE); b(ne, &done); ldr(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset)); b(&loop); bind(&done); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss) { // Get the prototype or initial map from the function. ldr(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. LoadRoot(ip, Heap::kTheHoleValueRootIndex); cmp(result, ip); b(eq, miss); // If the function does not have an initial map, we're done. Label done; CompareObjectType(result, scratch, scratch, MAP_TYPE); b(ne, &done); // Get the prototype from the initial map. ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); // All done. bind(&done); } void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id, Condition cond) { DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond); } void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame_ || !stub->SometimesSetsUpAFrame(); } void MacroAssembler::SmiToDouble(LowDwVfpRegister value, Register smi) { if (CpuFeatures::IsSupported(VFPv3)) { CpuFeatureScope scope(this, VFPv3); vmov(value.low(), smi); vcvt_f64_s32(value, 1); } else { SmiUntag(ip, smi); vmov(value.low(), ip); vcvt_f64_s32(value, value.low()); } } void MacroAssembler::TestDoubleIsInt32(DwVfpRegister double_input, LowDwVfpRegister double_scratch) { DCHECK(!double_input.is(double_scratch)); vcvt_s32_f64(double_scratch.low(), double_input); vcvt_f64_s32(double_scratch, double_scratch.low()); VFPCompareAndSetFlags(double_input, double_scratch); } void MacroAssembler::TryDoubleToInt32Exact(Register result, DwVfpRegister double_input, LowDwVfpRegister double_scratch) { DCHECK(!double_input.is(double_scratch)); vcvt_s32_f64(double_scratch.low(), double_input); vmov(result, double_scratch.low()); vcvt_f64_s32(double_scratch, double_scratch.low()); VFPCompareAndSetFlags(double_input, double_scratch); } void MacroAssembler::TryInt32Floor(Register result, DwVfpRegister double_input, Register input_high, LowDwVfpRegister double_scratch, Label* done, Label* exact) { DCHECK(!result.is(input_high)); DCHECK(!double_input.is(double_scratch)); Label negative, exception; VmovHigh(input_high, double_input); // Test for NaN and infinities. Sbfx(result, input_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); cmp(result, Operand(-1)); b(eq, &exception); // Test for values that can be exactly represented as a // signed 32-bit integer. TryDoubleToInt32Exact(result, double_input, double_scratch); // If exact, return (result already fetched). b(eq, exact); cmp(input_high, Operand::Zero()); b(mi, &negative); // Input is in ]+0, +inf[. // If result equals 0x7fffffff input was out of range or // in ]0x7fffffff, 0x80000000[. We ignore this last case which // could fits into an int32, that means we always think input was // out of range and always go to exception. // If result < 0x7fffffff, go to done, result fetched. cmn(result, Operand(1)); b(mi, &exception); b(done); // Input is in ]-inf, -0[. // If x is a non integer negative number, // floor(x) <=> round_to_zero(x) - 1. bind(&negative); sub(result, result, Operand(1), SetCC); // If result is still negative, go to done, result fetched. // Else, we had an overflow and we fall through exception. b(mi, done); bind(&exception); } void MacroAssembler::TryInlineTruncateDoubleToI(Register result, DwVfpRegister double_input, Label* done) { LowDwVfpRegister double_scratch = kScratchDoubleReg; vcvt_s32_f64(double_scratch.low(), double_input); vmov(result, double_scratch.low()); // If result is not saturated (0x7fffffff or 0x80000000), we are done. sub(ip, result, Operand(1)); cmp(ip, Operand(0x7ffffffe)); b(lt, done); } void MacroAssembler::TruncateDoubleToI(Register result, DwVfpRegister double_input) { Label done; TryInlineTruncateDoubleToI(result, double_input, &done); // If we fell through then inline version didn't succeed - call stub instead. push(lr); sub(sp, sp, Operand(kDoubleSize)); // Put input on stack. vstr(double_input, MemOperand(sp, 0)); DoubleToIStub stub(isolate(), sp, result, 0, true, true); CallStub(&stub); add(sp, sp, Operand(kDoubleSize)); pop(lr); bind(&done); } void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { Label done; LowDwVfpRegister double_scratch = kScratchDoubleReg; DCHECK(!result.is(object)); vldr(double_scratch, MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag)); TryInlineTruncateDoubleToI(result, double_scratch, &done); // If we fell through then inline version didn't succeed - call stub instead. push(lr); DoubleToIStub stub(isolate(), object, result, HeapNumber::kValueOffset - kHeapObjectTag, true, true); CallStub(&stub); pop(lr); bind(&done); } void MacroAssembler::TruncateNumberToI(Register object, Register result, Register heap_number_map, Register scratch1, Label* not_number) { Label done; DCHECK(!result.is(object)); UntagAndJumpIfSmi(result, object, &done); JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); TruncateHeapNumberToI(result, object); bind(&done); } void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits) { if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size()) { CpuFeatureScope scope(this, ARMv7); ubfx(dst, src, kSmiTagSize, num_least_bits); } else { SmiUntag(dst, src); and_(dst, dst, Operand((1 << num_least_bits) - 1)); } } void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src, int num_least_bits) { and_(dst, src, Operand((1 << num_least_bits) - 1)); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // All parameters are on the stack. r0 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(num_arguments)); mov(r1, Operand(ExternalReference(f, isolate()))); CEntryStub stub(isolate(), 1, save_doubles); CallStub(&stub); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments) { mov(r0, Operand(num_arguments)); mov(r1, Operand(ext)); CEntryStub stub(isolate(), 1); CallStub(&stub); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(function->nargs)); } JumpToExternalReference(ExternalReference(fid, isolate())); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame) { #if defined(__thumb__) // Thumb mode builtin. DCHECK((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1); #endif mov(r1, Operand(builtin)); CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame); Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch1, Operand(value)); mov(scratch2, Operand(ExternalReference(counter))); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch2, Operand(ExternalReference(counter))); ldr(scratch1, MemOperand(scratch2)); add(scratch1, scratch1, Operand(value)); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch2, Operand(ExternalReference(counter))); ldr(scratch1, MemOperand(scratch2)); sub(scratch1, scratch1, Operand(value)); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::Assert(Condition cond, BailoutReason reason) { if (emit_debug_code()) Check(cond, reason); } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { DCHECK(!elements.is(ip)); Label ok; push(elements); ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); LoadRoot(ip, Heap::kFixedArrayMapRootIndex); cmp(elements, ip); b(eq, &ok); LoadRoot(ip, Heap::kFixedDoubleArrayMapRootIndex); cmp(elements, ip); b(eq, &ok); LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex); cmp(elements, ip); b(eq, &ok); Abort(kJSObjectWithFastElementsMapHasSlowElements); bind(&ok); pop(elements); } } void MacroAssembler::Check(Condition cond, BailoutReason reason) { Label L; b(cond, &L); Abort(reason); // will not return here bind(&L); } void MacroAssembler::Abort(BailoutReason reason) { Label abort_start; bind(&abort_start); #ifdef DEBUG const char* msg = GetBailoutReason(reason); if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } if (FLAG_trap_on_abort) { stop(msg); return; } #endif // Check if Abort() has already been initialized. DCHECK(isolate()->builtins()->Abort()->IsHeapObject()); Move(r1, Smi::FromInt(static_cast<int>(reason))); // Disable stub call restrictions to always allow calls to abort. if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET); } else { Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET); } // will not return here if (is_const_pool_blocked()) { // If the calling code cares about the exact number of // instructions generated, we insert padding here to keep the size // of the Abort macro constant. static const int kExpectedAbortInstructions = 7; int abort_instructions = InstructionsGeneratedSince(&abort_start); DCHECK(abort_instructions <= kExpectedAbortInstructions); while (abort_instructions++ < kExpectedAbortInstructions) { nop(); } } } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in esi). mov(dst, cp); } } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match) { DCHECK(IsFastElementsKind(expected_kind)); DCHECK(IsFastElementsKind(transitioned_kind)); // Check that the function's map is the same as the expected cached map. ldr(scratch, NativeContextMemOperand()); ldr(ip, ContextMemOperand(scratch, Context::ArrayMapIndex(expected_kind))); cmp(map_in_out, ip); b(ne, no_map_match); // Use the transitioned cached map. ldr(map_in_out, ContextMemOperand(scratch, Context::ArrayMapIndex(transitioned_kind))); } void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { ldr(dst, NativeContextMemOperand()); ldr(dst, ContextMemOperand(dst, index)); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch) { // Load the initial map. The global functions all have initial maps. ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); b(&ok); bind(&fail); Abort(kGlobalFunctionsMustHaveInitialMap); bind(&ok); } } void MacroAssembler::JumpIfNotPowerOfTwoOrZero( Register reg, Register scratch, Label* not_power_of_two_or_zero) { sub(scratch, reg, Operand(1), SetCC); b(mi, not_power_of_two_or_zero); tst(scratch, reg); b(ne, not_power_of_two_or_zero); } void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg( Register reg, Register scratch, Label* zero_and_neg, Label* not_power_of_two) { sub(scratch, reg, Operand(1), SetCC); b(mi, zero_and_neg); tst(scratch, reg); b(ne, not_power_of_two); } void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi) { STATIC_ASSERT(kSmiTag == 0); tst(reg1, Operand(kSmiTagMask)); tst(reg2, Operand(kSmiTagMask), eq); b(ne, on_not_both_smi); } void MacroAssembler::UntagAndJumpIfSmi( Register dst, Register src, Label* smi_case) { STATIC_ASSERT(kSmiTag == 0); SmiUntag(dst, src, SetCC); b(cc, smi_case); // Shifter carry is not set for a smi. } void MacroAssembler::UntagAndJumpIfNotSmi( Register dst, Register src, Label* non_smi_case) { STATIC_ASSERT(kSmiTag == 0); SmiUntag(dst, src, SetCC); b(cs, non_smi_case); // Shifter carry is set for a non-smi. } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { STATIC_ASSERT(kSmiTag == 0); tst(reg1, Operand(kSmiTagMask)); tst(reg2, Operand(kSmiTagMask), ne); b(eq, on_either_smi); } void MacroAssembler::AssertNotNumber(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, kOperandIsANumber); push(object); CompareObjectType(object, object, object, HEAP_NUMBER_TYPE); pop(object); Check(ne, kOperandIsANumber); } } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, kOperandIsASmi); } } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(eq, kOperandIsNotSmi); } } void MacroAssembler::AssertString(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, kOperandIsASmiAndNotAString); push(object); ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(object, object, FIRST_NONSTRING_TYPE); pop(object); Check(lo, kOperandIsNotAString); } } void MacroAssembler::AssertName(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, kOperandIsASmiAndNotAName); push(object); ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(object, object, LAST_NAME_TYPE); pop(object); Check(le, kOperandIsNotAName); } } void MacroAssembler::AssertFunction(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, kOperandIsASmiAndNotAFunction); push(object); CompareObjectType(object, object, object, JS_FUNCTION_TYPE); pop(object); Check(eq, kOperandIsNotAFunction); } } void MacroAssembler::AssertBoundFunction(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, kOperandIsASmiAndNotABoundFunction); push(object); CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); pop(object); Check(eq, kOperandIsNotABoundFunction); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, kOperandIsASmiAndNotAGeneratorObject); push(object); CompareObjectType(object, object, object, JS_GENERATOR_OBJECT_TYPE); pop(object); Check(eq, kOperandIsNotAGeneratorObject); } } void MacroAssembler::AssertReceiver(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, kOperandIsASmiAndNotAReceiver); push(object); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); CompareObjectType(object, object, object, FIRST_JS_RECEIVER_TYPE); pop(object); Check(hs, kOperandIsNotAReceiver); } } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); CompareRoot(object, Heap::kUndefinedValueRootIndex); b(eq, &done_checking); ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex); Assert(eq, kExpectedUndefinedOrCell); bind(&done_checking); } } void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) { if (emit_debug_code()) { CompareRoot(reg, index); Check(eq, kHeapNumberMapRegisterClobbered); } } void MacroAssembler::JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number) { ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); cmp(scratch, heap_number_map); b(ne, on_not_heap_number); } void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Test that both first and second are sequential one-byte strings. // Assume that they are non-smis. ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Check that neither is a smi. and_(scratch1, first, Operand(second)); JumpIfSmi(scratch1, failure); JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name) { STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); Label succeed; tst(reg, Operand(kIsNotStringMask | kIsNotInternalizedMask)); b(eq, &succeed); cmp(reg, Operand(SYMBOL_TYPE)); b(ne, not_unique_name); bind(&succeed); } // Allocates a heap number or jumps to the need_gc label if the young space // is full and a scavenge is needed. void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required, MutableMode mode) { // Allocate an object in the heap for the heap number and tag it as a heap // object. Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); Heap::RootListIndex map_index = mode == MUTABLE ? Heap::kMutableHeapNumberMapRootIndex : Heap::kHeapNumberMapRootIndex; AssertIsRoot(heap_number_map, map_index); // Store heap number map in the allocated object. str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); } void MacroAssembler::AllocateHeapNumberWithValue(Register result, DwVfpRegister value, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required) { AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required); sub(scratch1, result, Operand(kHeapObjectTag)); vstr(value, scratch1, HeapNumber::kValueOffset); } void MacroAssembler::AllocateJSValue(Register result, Register constructor, Register value, Register scratch1, Register scratch2, Label* gc_required) { DCHECK(!result.is(constructor)); DCHECK(!result.is(scratch1)); DCHECK(!result.is(scratch2)); DCHECK(!result.is(value)); // Allocate JSValue in new space. Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); // Initialize the JSValue. LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2); str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex); str(scratch1, FieldMemOperand(result, JSObject::kPropertiesOffset)); str(scratch1, FieldMemOperand(result, JSObject::kElementsOffset)); str(value, FieldMemOperand(result, JSValue::kValueOffset)); STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); } void MacroAssembler::InitializeFieldsWithFiller(Register current_address, Register end_address, Register filler) { Label loop, entry; b(&entry); bind(&loop); str(filler, MemOperand(current_address, kPointerSize, PostIndex)); bind(&entry); cmp(current_address, end_address); b(lo, &loop); } void MacroAssembler::CheckFor32DRegs(Register scratch) { mov(scratch, Operand(ExternalReference::cpu_features())); ldr(scratch, MemOperand(scratch)); tst(scratch, Operand(1u << VFP32DREGS)); } void MacroAssembler::SaveFPRegs(Register location, Register scratch) { CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); CheckFor32DRegs(scratch); vstm(db_w, location, d16, d31, ne); sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); vstm(db_w, location, d0, d15); } void MacroAssembler::RestoreFPRegs(Register location, Register scratch) { CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); CheckFor32DRegs(scratch); vldm(ia_w, location, d0, d15); vldm(ia_w, location, d16, d31, ne); add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); } template <typename T> void MacroAssembler::FloatMaxHelper(T result, T left, T right, Label* out_of_line) { // This trivial case is caught sooner, so that the out-of-line code can be // completely avoided. DCHECK(!left.is(right)); if (CpuFeatures::IsSupported(ARMv8)) { CpuFeatureScope scope(this, ARMv8); VFPCompareAndSetFlags(left, right); b(vs, out_of_line); vmaxnm(result, left, right); } else { Label done; VFPCompareAndSetFlags(left, right); b(vs, out_of_line); // Avoid a conditional instruction if the result register is unique. bool aliased_result_reg = result.is(left) || result.is(right); Move(result, right, aliased_result_reg ? mi : al); Move(result, left, gt); b(ne, &done); // Left and right are equal, but check for +/-0. VFPCompareAndSetFlags(left, 0.0); b(eq, out_of_line); // The arguments are equal and not zero, so it doesn't matter which input we // pick. We have already moved one input into the result (if it didn't // already alias) so there's nothing more to do. bind(&done); } } template <typename T> void MacroAssembler::FloatMaxOutOfLineHelper(T result, T left, T right) { DCHECK(!left.is(right)); // ARMv8: At least one of left and right is a NaN. // Anything else: At least one of left and right is a NaN, or both left and // right are zeroes with unknown sign. // If left and right are +/-0, select the one with the most positive sign. // If left or right are NaN, vadd propagates the appropriate one. vadd(result, left, right); } template <typename T> void MacroAssembler::FloatMinHelper(T result, T left, T right, Label* out_of_line) { // This trivial case is caught sooner, so that the out-of-line code can be // completely avoided. DCHECK(!left.is(right)); if (CpuFeatures::IsSupported(ARMv8)) { CpuFeatureScope scope(this, ARMv8); VFPCompareAndSetFlags(left, right); b(vs, out_of_line); vminnm(result, left, right); } else { Label done; VFPCompareAndSetFlags(left, right); b(vs, out_of_line); // Avoid a conditional instruction if the result register is unique. bool aliased_result_reg = result.is(left) || result.is(right); Move(result, left, aliased_result_reg ? mi : al); Move(result, right, gt); b(ne, &done); // Left and right are equal, but check for +/-0. VFPCompareAndSetFlags(left, 0.0); // If the arguments are equal and not zero, it doesn't matter which input we // pick. We have already moved one input into the result (if it didn't // already alias) so there's nothing more to do. b(ne, &done); // At this point, both left and right are either 0 or -0. // We could use a single 'vorr' instruction here if we had NEON support. // The algorithm used is -((-L) + (-R)), which is most efficiently expressed // as -((-L) - R). if (left.is(result)) { DCHECK(!right.is(result)); vneg(result, left); vsub(result, result, right); vneg(result, result); } else { DCHECK(!left.is(result)); vneg(result, right); vsub(result, result, left); vneg(result, result); } bind(&done); } } template <typename T> void MacroAssembler::FloatMinOutOfLineHelper(T result, T left, T right) { DCHECK(!left.is(right)); // At least one of left and right is a NaN. Use vadd to propagate the NaN // appropriately. +/-0 is handled inline. vadd(result, left, right); } void MacroAssembler::FloatMax(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right, Label* out_of_line) { FloatMaxHelper(result, left, right, out_of_line); } void MacroAssembler::FloatMin(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right, Label* out_of_line) { FloatMinHelper(result, left, right, out_of_line); } void MacroAssembler::FloatMax(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right, Label* out_of_line) { FloatMaxHelper(result, left, right, out_of_line); } void MacroAssembler::FloatMin(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right, Label* out_of_line) { FloatMinHelper(result, left, right, out_of_line); } void MacroAssembler::FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right) { FloatMaxOutOfLineHelper(result, left, right); } void MacroAssembler::FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right) { FloatMinOutOfLineHelper(result, left, right); } void MacroAssembler::FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right) { FloatMaxOutOfLineHelper(result, left, right); } void MacroAssembler::FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right) { FloatMinOutOfLineHelper(result, left, right); } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; and_(scratch1, first, Operand(kFlatOneByteStringMask)); and_(scratch2, second, Operand(kFlatOneByteStringMask)); cmp(scratch1, Operand(kFlatOneByteStringTag)); // Ignore second test if first test failed. cmp(scratch2, Operand(kFlatOneByteStringTag), eq); b(ne, failure); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; and_(scratch, type, Operand(kFlatOneByteStringMask)); cmp(scratch, Operand(kFlatOneByteStringTag)); b(ne, failure); } static const int kRegisterPassedArguments = 4; int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; if (use_eabi_hardfloat()) { // In the hard floating point calling convention, we can use // all double registers to pass doubles. if (num_double_arguments > DoubleRegister::NumRegisters()) { stack_passed_words += 2 * (num_double_arguments - DoubleRegister::NumRegisters()); } } else { // In the soft floating point calling convention, every double // argument is passed using two registers. num_reg_arguments += 2 * num_double_arguments; } // Up to four simple arguments are passed in registers r0..r3. if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } return stack_passed_words; } void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index, Register value, uint32_t encoding_mask) { Label is_object; SmiTst(string); Check(ne, kNonObject); ldr(ip, FieldMemOperand(string, HeapObject::kMapOffset)); ldrb(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset)); and_(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask)); cmp(ip, Operand(encoding_mask)); Check(eq, kUnexpectedStringType); // The index is assumed to be untagged coming in, tag it to compare with the // string length without using a temp register, it is restored at the end of // this function. Label index_tag_ok, index_tag_bad; TrySmiTag(index, index, &index_tag_bad); b(&index_tag_ok); bind(&index_tag_bad); Abort(kIndexIsTooLarge); bind(&index_tag_ok); ldr(ip, FieldMemOperand(string, String::kLengthOffset)); cmp(index, ip); Check(lt, kIndexIsTooLarge); cmp(index, Operand(Smi::kZero)); Check(ge, kIndexIsNegative); SmiUntag(index, index); } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for num_arguments - 4 words // and the original value of sp. mov(scratch, sp); sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); and_(sp, sp, Operand(-frame_alignment)); str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { sub(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, Register scratch) { PrepareCallCFunction(num_reg_arguments, 0, scratch); } void MacroAssembler::MovToFloatParameter(DwVfpRegister src) { DCHECK(src.is(d0)); if (!use_eabi_hardfloat()) { vmov(r0, r1, src); } } // On ARM this is just a synonym to make the purpose clear. void MacroAssembler::MovToFloatResult(DwVfpRegister src) { MovToFloatParameter(src); } void MacroAssembler::MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2) { DCHECK(src1.is(d0)); DCHECK(src2.is(d1)); if (!use_eabi_hardfloat()) { vmov(r0, r1, src1); vmov(r2, r3, src2); } } void MacroAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { mov(ip, Operand(function)); CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { DCHECK(has_frame()); // Make sure that the stack is aligned before calling a C function unless // running in the simulator. The simulator has its own alignment check which // provides more information. #if V8_HOST_ARCH_ARM if (emit_debug_code()) { int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); Label alignment_as_expected; tst(sp, Operand(frame_alignment_mask)); b(eq, &alignment_as_expected); // Don't use Check here, as it will call Runtime_Abort possibly // re-entering here. stop("Unexpected alignment"); bind(&alignment_as_expected); } } #endif // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. Call(function); int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (ActivationFrameAlignment() > kPointerSize) { ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { add(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void MacroAssembler::CheckPageFlag( Register object, Register scratch, int mask, Condition cc, Label* condition_met) { DCHECK(cc == eq || cc == ne); Bfc(scratch, object, 0, kPageSizeBits); ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); tst(scratch, Operand(mask)); b(cc, condition_met); } void MacroAssembler::JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black) { HasColor(object, scratch0, scratch1, on_black, 1, 1); // kBlackBitPattern. DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); } void MacroAssembler::HasColor(Register object, Register bitmap_scratch, Register mask_scratch, Label* has_color, int first_bit, int second_bit) { DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg)); GetMarkBits(object, bitmap_scratch, mask_scratch); Label other_color, word_boundary; ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); tst(ip, Operand(mask_scratch)); b(first_bit == 1 ? eq : ne, &other_color); // Shift left 1 by adding. add(mask_scratch, mask_scratch, Operand(mask_scratch), SetCC); b(eq, &word_boundary); tst(ip, Operand(mask_scratch)); b(second_bit == 1 ? ne : eq, has_color); jmp(&other_color); bind(&word_boundary); ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize)); tst(ip, Operand(1)); b(second_bit == 1 ? ne : eq, has_color); bind(&other_color); } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg) { DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); and_(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask)); Ubfx(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; Ubfx(ip, addr_reg, kLowBits, kPageSizeBits - kLowBits); add(bitmap_reg, bitmap_reg, Operand(ip, LSL, kPointerSizeLog2)); mov(ip, Operand(1)); mov(mask_reg, Operand(ip, LSL, mask_reg)); } void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch, Register mask_scratch, Register load_scratch, Label* value_is_white) { DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip)); GetMarkBits(value, bitmap_scratch, mask_scratch); // If the value is black or grey we don't need to do anything. DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0); DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); tst(mask_scratch, load_scratch); b(eq, value_is_white); } void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { usat(output_reg, 8, Operand(input_reg)); } void MacroAssembler::ClampDoubleToUint8(Register result_reg, DwVfpRegister input_reg, LowDwVfpRegister double_scratch) { Label done; // Handle inputs >= 255 (including +infinity). Vmov(double_scratch, 255.0, result_reg); mov(result_reg, Operand(255)); VFPCompareAndSetFlags(input_reg, double_scratch); b(ge, &done); // For inputs < 255 (including negative) vcvt_u32_f64 with round-to-nearest // rounding mode will provide the correct result. vcvt_u32_f64(double_scratch.low(), input_reg, kFPSCRRounding); vmov(result_reg, double_scratch.low()); bind(&done); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); } void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { ldr(dst, FieldMemOperand(map, Map::kBitField3Offset)); DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); } void MacroAssembler::EnumLength(Register dst, Register map) { STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); ldr(dst, FieldMemOperand(map, Map::kBitField3Offset)); and_(dst, dst, Operand(Map::EnumLengthBits::kMask)); SmiTag(dst); } void MacroAssembler::LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor) { ldr(dst, FieldMemOperand(holder, HeapObject::kMapOffset)); LoadInstanceDescriptors(dst, dst); ldr(dst, FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index))); int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset : AccessorPair::kSetterOffset; ldr(dst, FieldMemOperand(dst, offset)); } void MacroAssembler::CheckEnumCache(Label* call_runtime) { Register null_value = r5; Register empty_fixed_array_value = r6; LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); Label next, start; mov(r2, r0); // Check if the enum length field is properly initialized, indicating that // there is an enum cache. ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); EnumLength(r3, r1); cmp(r3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel))); b(eq, call_runtime); LoadRoot(null_value, Heap::kNullValueRootIndex); jmp(&start); bind(&next); ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); // For all objects but the receiver, check that the cache is empty. EnumLength(r3, r1); cmp(r3, Operand(Smi::kZero)); b(ne, call_runtime); bind(&start); // Check that there are no elements. Register r2 contains the current JS // object we've reached through the prototype chain. Label no_elements; ldr(r2, FieldMemOperand(r2, JSObject::kElementsOffset)); cmp(r2, empty_fixed_array_value); b(eq, &no_elements); // Second chance, the object may be using the empty slow element dictionary. CompareRoot(r2, Heap::kEmptySlowElementDictionaryRootIndex); b(ne, call_runtime); bind(&no_elements); ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset)); cmp(r2, null_value); b(ne, &next); } void MacroAssembler::TestJSArrayForAllocationMemento( Register receiver_reg, Register scratch_reg, Label* no_memento_found) { Label map_check; Label top_check; ExternalReference new_space_allocation_top_adr = ExternalReference::new_space_allocation_top_address(isolate()); const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag; const int kMementoLastWordOffset = kMementoMapOffset + AllocationMemento::kSize - kPointerSize; // Bail out if the object is not in new space. JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found); // If the object is in new space, we need to check whether it is on the same // page as the current top. add(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset)); mov(ip, Operand(new_space_allocation_top_adr)); ldr(ip, MemOperand(ip)); eor(scratch_reg, scratch_reg, Operand(ip)); tst(scratch_reg, Operand(~Page::kPageAlignmentMask)); b(eq, &top_check); // The object is on a different page than allocation top. Bail out if the // object sits on the page boundary as no memento can follow and we cannot // touch the memory following it. add(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset)); eor(scratch_reg, scratch_reg, Operand(receiver_reg)); tst(scratch_reg, Operand(~Page::kPageAlignmentMask)); b(ne, no_memento_found); // Continue with the actual map check. jmp(&map_check); // If top is on the same page as the current object, we need to check whether // we are below top. bind(&top_check); add(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset)); mov(ip, Operand(new_space_allocation_top_adr)); ldr(ip, MemOperand(ip)); cmp(scratch_reg, ip); b(ge, no_memento_found); // Memento map check. bind(&map_check); ldr(scratch_reg, MemOperand(receiver_reg, kMementoMapOffset)); cmp(scratch_reg, Operand(isolate()->factory()->allocation_memento_map())); } Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6) { RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { int code = config->GetAllocatableGeneralCode(i); Register candidate = Register::from_code(code); if (regs & candidate.bit()) continue; return candidate; } UNREACHABLE(); return no_reg; } void MacroAssembler::JumpIfDictionaryInPrototypeChain( Register object, Register scratch0, Register scratch1, Label* found) { DCHECK(!scratch1.is(scratch0)); Register current = scratch0; Label loop_again, end; // scratch contained elements pointer. mov(current, object); ldr(current, FieldMemOperand(current, HeapObject::kMapOffset)); ldr(current, FieldMemOperand(current, Map::kPrototypeOffset)); CompareRoot(current, Heap::kNullValueRootIndex); b(eq, &end); // Loop based on the map going up the prototype chain. bind(&loop_again); ldr(current, FieldMemOperand(current, HeapObject::kMapOffset)); STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE); STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE); ldrb(scratch1, FieldMemOperand(current, Map::kInstanceTypeOffset)); cmp(scratch1, Operand(JS_OBJECT_TYPE)); b(lo, found); ldr(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); DecodeField<Map::ElementsKindBits>(scratch1); cmp(scratch1, Operand(DICTIONARY_ELEMENTS)); b(eq, found); ldr(current, FieldMemOperand(current, Map::kPrototypeOffset)); CompareRoot(current, Heap::kNullValueRootIndex); b(ne, &loop_again); bind(&end); } #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6, Register reg7, Register reg8) { int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + reg7.is_valid() + reg8.is_valid(); RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); if (reg7.is_valid()) regs |= reg7.bit(); if (reg8.is_valid()) regs |= reg8.bit(); int n_of_non_aliasing_regs = NumRegs(regs); return n_of_valid_regs != n_of_non_aliasing_regs; } #endif CodePatcher::CodePatcher(Isolate* isolate, byte* address, int instructions, FlushICache flush_cache) : address_(address), size_(instructions * Assembler::kInstrSize), masm_(isolate, address, size_ + Assembler::kGap, CodeObjectRequired::kNo), flush_cache_(flush_cache) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. if (flush_cache_ == FLUSH) { Assembler::FlushICache(masm_.isolate(), address_, size_); } // Check that we don't have any pending constant pools. DCHECK(masm_.pending_32_bit_constants_.empty()); DCHECK(masm_.pending_64_bit_constants_.empty()); // Check that the code was patched as expected. DCHECK(masm_.pc_ == address_ + size_); DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void CodePatcher::Emit(Instr instr) { masm()->emit(instr); } void CodePatcher::Emit(Address addr) { masm()->emit(reinterpret_cast<Instr>(addr)); } void CodePatcher::EmitCondition(Condition cond) { Instr instr = Assembler::instr_at(masm_.pc_); instr = (instr & ~kCondMask) | cond; masm_.emit(instr); } void MacroAssembler::TruncatingDiv(Register result, Register dividend, int32_t divisor) { DCHECK(!dividend.is(result)); DCHECK(!dividend.is(ip)); DCHECK(!result.is(ip)); base::MagicNumbersForDivision<uint32_t> mag = base::SignedDivisionByConstant(bit_cast<uint32_t>(divisor)); mov(ip, Operand(mag.multiplier)); bool neg = (mag.multiplier & (1U << 31)) != 0; if (divisor > 0 && neg) { smmla(result, dividend, ip, dividend); } else { smmul(result, dividend, ip); if (divisor < 0 && !neg && mag.multiplier > 0) { sub(result, result, Operand(dividend)); } } if (mag.shift > 0) mov(result, Operand(result, ASR, mag.shift)); add(result, result, Operand(dividend, LSR, 31)); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM