// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/arm64/frames-arm64.h" #include "src/codegen.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/register-configuration.h" #include "src/safepoint-table.h" namespace v8 { namespace internal { int Deoptimizer::patch_size() { // Size of the code used to patch lazy bailout points. // Patching is done by Deoptimizer::DeoptimizeFunction. return 4 * kInstructionSize; } void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) { // Empty because there is no need for relocation information for the code // patching in Deoptimizer::PatchCodeForDeoptimization below. } void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) { // Invalidate the relocation information, as it will become invalid by the // code patching below, and is not needed any more. code->InvalidateRelocation(); // TODO(jkummerow): if (FLAG_zap_code_space), make the code object's // entry sequence unusable (see other architectures). DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); Address code_start_address = code->instruction_start(); #ifdef DEBUG Address prev_call_address = NULL; #endif // For each LLazyBailout instruction insert a call to the corresponding // deoptimization entry. for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; Address call_address = code_start_address + deopt_data->Pc(i)->value(); Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY); PatchingAssembler patcher(isolate, call_address, patch_size() / kInstructionSize); patcher.ldr_pcrel(ip0, (2 * kInstructionSize) >> kLoadLiteralScaleLog2); patcher.blr(ip0); patcher.dc64(reinterpret_cast<intptr_t>(deopt_entry)); DCHECK((prev_call_address == NULL) || (call_address >= prev_call_address + patch_size())); DCHECK(call_address + patch_size() <= code->instruction_end()); #ifdef DEBUG prev_call_address = call_address; #endif } } void Deoptimizer::SetPlatformCompiledStubRegisters( FrameDescription* output_frame, CodeStubDescriptor* descriptor) { ApiFunction function(descriptor->deoptimization_handler()); ExternalReference xref(&function, ExternalReference::BUILTIN_CALL, isolate_); intptr_t handler = reinterpret_cast<intptr_t>(xref.address()); int params = descriptor->GetHandlerParameterCount(); output_frame->SetRegister(x0.code(), params); output_frame->SetRegister(x1.code(), handler); } void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) { for (int i = 0; i < DoubleRegister::kMaxNumRegisters; ++i) { double double_value = input_->GetDoubleRegister(i); output_frame->SetDoubleRegister(i, double_value); } } #define __ masm()-> void Deoptimizer::TableEntryGenerator::Generate() { GeneratePrologue(); // TODO(all): This code needs to be revisited. We probably only need to save // caller-saved registers here. Callee-saved registers can be stored directly // in the input frame. // Save all allocatable floating point registers. CPURegList saved_fp_registers( CPURegister::kFPRegister, kDRegSizeInBits, RegisterConfiguration::Crankshaft()->allocatable_double_codes_mask()); __ PushCPURegList(saved_fp_registers); // We save all the registers expcept jssp, sp and lr. CPURegList saved_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 27); saved_registers.Combine(fp); __ PushCPURegList(saved_registers); __ Mov(x3, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); __ Str(fp, MemOperand(x3)); const int kSavedRegistersAreaSize = (saved_registers.Count() * kXRegSize) + (saved_fp_registers.Count() * kDRegSize); // Floating point registers are saved on the stack above core registers. const int kFPRegistersOffset = saved_registers.Count() * kXRegSize; // Get the bailout id from the stack. Register bailout_id = x2; __ Peek(bailout_id, kSavedRegistersAreaSize); Register code_object = x3; Register fp_to_sp = x4; // Get the address of the location in the code object. This is the return // address for lazy deoptimization. __ Mov(code_object, lr); // Compute the fp-to-sp delta, and correct one word for bailout id. __ Add(fp_to_sp, __ StackPointer(), kSavedRegistersAreaSize + (1 * kPointerSize)); __ Sub(fp_to_sp, fp, fp_to_sp); // Allocate a new deoptimizer object. __ Mov(x0, 0); Label context_check; __ Ldr(x1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); __ JumpIfSmi(x1, &context_check); __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ bind(&context_check); __ Mov(x1, type()); // Following arguments are already loaded: // - x2: bailout id // - x3: code object address // - x4: fp-to-sp delta __ Mov(x5, ExternalReference::isolate_address(isolate())); { // Call Deoptimizer::New(). AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6); } // Preserve "deoptimizer" object in register x0. Register deoptimizer = x0; // Get the input frame descriptor pointer. __ Ldr(x1, MemOperand(deoptimizer, Deoptimizer::input_offset())); // Copy core registers into the input frame. CPURegList copy_to_input = saved_registers; for (int i = 0; i < saved_registers.Count(); i++) { __ Peek(x2, i * kPointerSize); CPURegister current_reg = copy_to_input.PopLowestIndex(); int offset = (current_reg.code() * kPointerSize) + FrameDescription::registers_offset(); __ Str(x2, MemOperand(x1, offset)); } // Copy FP registers to the input frame. CPURegList copy_fp_to_input = saved_fp_registers; for (int i = 0; i < saved_fp_registers.Count(); i++) { int src_offset = kFPRegistersOffset + (i * kDoubleSize); __ Peek(x2, src_offset); CPURegister reg = copy_fp_to_input.PopLowestIndex(); int dst_offset = FrameDescription::double_registers_offset() + (reg.code() * kDoubleSize); __ Str(x2, MemOperand(x1, dst_offset)); } // Remove the bailout id and the saved registers from the stack. __ Drop(1 + (kSavedRegistersAreaSize / kXRegSize)); // Compute a pointer to the unwinding limit in register x2; that is // the first stack slot not part of the input frame. Register unwind_limit = x2; __ Ldr(unwind_limit, MemOperand(x1, FrameDescription::frame_size_offset())); __ Add(unwind_limit, unwind_limit, __ StackPointer()); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ Add(x3, x1, FrameDescription::frame_content_offset()); Label pop_loop; Label pop_loop_header; __ B(&pop_loop_header); __ Bind(&pop_loop); __ Pop(x4); __ Str(x4, MemOperand(x3, kPointerSize, PostIndex)); __ Bind(&pop_loop_header); __ Cmp(unwind_limit, __ StackPointer()); __ B(ne, &pop_loop); // Compute the output frame in the deoptimizer. __ Push(x0); // Preserve deoptimizer object across call. { // Call Deoptimizer::ComputeOutputFrames(). AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction( ExternalReference::compute_output_frames_function(isolate()), 1); } __ Pop(x4); // Restore deoptimizer object (class Deoptimizer). __ Ldr(__ StackPointer(), MemOperand(x4, Deoptimizer::caller_frame_top_offset())); // Replace the current (input) frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; __ Ldrsw(x1, MemOperand(x4, Deoptimizer::output_count_offset())); __ Ldr(x0, MemOperand(x4, Deoptimizer::output_offset())); __ Add(x1, x0, Operand(x1, LSL, kPointerSizeLog2)); __ B(&outer_loop_header); __ Bind(&outer_push_loop); Register current_frame = x2; __ Ldr(current_frame, MemOperand(x0, 0)); __ Ldr(x3, MemOperand(current_frame, FrameDescription::frame_size_offset())); __ B(&inner_loop_header); __ Bind(&inner_push_loop); __ Sub(x3, x3, kPointerSize); __ Add(x6, current_frame, x3); __ Ldr(x7, MemOperand(x6, FrameDescription::frame_content_offset())); __ Push(x7); __ Bind(&inner_loop_header); __ Cbnz(x3, &inner_push_loop); __ Add(x0, x0, kPointerSize); __ Bind(&outer_loop_header); __ Cmp(x0, x1); __ B(lt, &outer_push_loop); __ Ldr(x1, MemOperand(x4, Deoptimizer::input_offset())); DCHECK(!saved_fp_registers.IncludesAliasOf(crankshaft_fp_scratch) && !saved_fp_registers.IncludesAliasOf(fp_zero) && !saved_fp_registers.IncludesAliasOf(fp_scratch)); while (!saved_fp_registers.IsEmpty()) { const CPURegister reg = saved_fp_registers.PopLowestIndex(); int src_offset = FrameDescription::double_registers_offset() + (reg.code() * kDoubleSize); __ Ldr(reg, MemOperand(x1, src_offset)); } // Push state from the last output frame. __ Ldr(x6, MemOperand(current_frame, FrameDescription::state_offset())); __ Push(x6); // TODO(all): ARM copies a lot (if not all) of the last output frame onto the // stack, then pops it all into registers. Here, we try to load it directly // into the relevant registers. Is this correct? If so, we should improve the // ARM code. // TODO(all): This code needs to be revisited, We probably don't need to // restore all the registers as fullcodegen does not keep live values in // registers (note that at least fp must be restored though). // Restore registers from the last output frame. // Note that lr is not in the list of saved_registers and will be restored // later. We can use it to hold the address of last output frame while // reloading the other registers. DCHECK(!saved_registers.IncludesAliasOf(lr)); Register last_output_frame = lr; __ Mov(last_output_frame, current_frame); // We don't need to restore x7 as it will be clobbered later to hold the // continuation address. Register continuation = x7; saved_registers.Remove(continuation); while (!saved_registers.IsEmpty()) { // TODO(all): Look for opportunities to optimize this by using ldp. CPURegister current_reg = saved_registers.PopLowestIndex(); int offset = (current_reg.code() * kPointerSize) + FrameDescription::registers_offset(); __ Ldr(current_reg, MemOperand(last_output_frame, offset)); } __ Ldr(continuation, MemOperand(last_output_frame, FrameDescription::continuation_offset())); __ Ldr(lr, MemOperand(last_output_frame, FrameDescription::pc_offset())); __ InitializeRootRegister(); __ Br(continuation); } // Size of an entry of the second level deopt table. // This is the code size generated by GeneratePrologue for one entry. const int Deoptimizer::table_entry_size_ = 2 * kInstructionSize; void Deoptimizer::TableEntryGenerator::GeneratePrologue() { UseScratchRegisterScope temps(masm()); Register entry_id = temps.AcquireX(); // Create a sequence of deoptimization entries. // Note that registers are still live when jumping to an entry. Label done; { InstructionAccurateScope scope(masm()); // The number of entry will never exceed kMaxNumberOfEntries. // As long as kMaxNumberOfEntries is a valid 16 bits immediate you can use // a movz instruction to load the entry id. DCHECK(is_uint16(Deoptimizer::kMaxNumberOfEntries)); for (int i = 0; i < count(); i++) { int start = masm()->pc_offset(); USE(start); __ movz(entry_id, i); __ b(&done); DCHECK(masm()->pc_offset() - start == table_entry_size_); } } __ Bind(&done); __ Push(entry_id); } void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) { // No embedded constant pool support. UNREACHABLE(); } #undef __ } // namespace internal } // namespace v8