// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_AST_AST_H_ #define V8_AST_AST_H_ #include "src/ast/ast-types.h" #include "src/ast/ast-value-factory.h" #include "src/ast/modules.h" #include "src/ast/variables.h" #include "src/bailout-reason.h" #include "src/base/flags.h" #include "src/factory.h" #include "src/globals.h" #include "src/isolate.h" #include "src/list.h" #include "src/parsing/token.h" #include "src/runtime/runtime.h" #include "src/small-pointer-list.h" #include "src/utils.h" namespace v8 { namespace internal { // The abstract syntax tree is an intermediate, light-weight // representation of the parsed JavaScript code suitable for // compilation to native code. // Nodes are allocated in a separate zone, which allows faster // allocation and constant-time deallocation of the entire syntax // tree. // ---------------------------------------------------------------------------- // Nodes of the abstract syntax tree. Only concrete classes are // enumerated here. #define DECLARATION_NODE_LIST(V) \ V(VariableDeclaration) \ V(FunctionDeclaration) #define ITERATION_NODE_LIST(V) \ V(DoWhileStatement) \ V(WhileStatement) \ V(ForStatement) \ V(ForInStatement) \ V(ForOfStatement) #define BREAKABLE_NODE_LIST(V) \ V(Block) \ V(SwitchStatement) #define STATEMENT_NODE_LIST(V) \ ITERATION_NODE_LIST(V) \ BREAKABLE_NODE_LIST(V) \ V(ExpressionStatement) \ V(EmptyStatement) \ V(SloppyBlockFunctionStatement) \ V(IfStatement) \ V(ContinueStatement) \ V(BreakStatement) \ V(ReturnStatement) \ V(WithStatement) \ V(TryCatchStatement) \ V(TryFinallyStatement) \ V(DebuggerStatement) #define LITERAL_NODE_LIST(V) \ V(RegExpLiteral) \ V(ObjectLiteral) \ V(ArrayLiteral) #define PROPERTY_NODE_LIST(V) \ V(Assignment) \ V(CountOperation) \ V(Property) #define CALL_NODE_LIST(V) \ V(Call) \ V(CallNew) #define EXPRESSION_NODE_LIST(V) \ LITERAL_NODE_LIST(V) \ PROPERTY_NODE_LIST(V) \ CALL_NODE_LIST(V) \ V(FunctionLiteral) \ V(ClassLiteral) \ V(NativeFunctionLiteral) \ V(Conditional) \ V(VariableProxy) \ V(Literal) \ V(Yield) \ V(Throw) \ V(CallRuntime) \ V(UnaryOperation) \ V(BinaryOperation) \ V(CompareOperation) \ V(Spread) \ V(ThisFunction) \ V(SuperPropertyReference) \ V(SuperCallReference) \ V(CaseClause) \ V(EmptyParentheses) \ V(DoExpression) \ V(RewritableExpression) #define AST_NODE_LIST(V) \ DECLARATION_NODE_LIST(V) \ STATEMENT_NODE_LIST(V) \ EXPRESSION_NODE_LIST(V) // Forward declarations class AstNodeFactory; class Declaration; class Module; class BreakableStatement; class Expression; class IterationStatement; class MaterializedLiteral; class Statement; class TypeFeedbackOracle; #define DEF_FORWARD_DECLARATION(type) class type; AST_NODE_LIST(DEF_FORWARD_DECLARATION) #undef DEF_FORWARD_DECLARATION class FeedbackVectorSlotCache { public: explicit FeedbackVectorSlotCache(Zone* zone) : zone_(zone), hash_map_(ZoneHashMap::kDefaultHashMapCapacity, ZoneAllocationPolicy(zone)) {} void Put(Variable* variable, FeedbackVectorSlot slot) { ZoneHashMap::Entry* entry = hash_map_.LookupOrInsert( variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone_)); entry->value = reinterpret_cast<void*>(slot.ToInt()); } ZoneHashMap::Entry* Get(Variable* variable) const { return hash_map_.Lookup(variable, ComputePointerHash(variable)); } private: Zone* zone_; ZoneHashMap hash_map_; }; class AstProperties final BASE_EMBEDDED { public: enum Flag { kNoFlags = 0, kDontSelfOptimize = 1 << 0, kDontCrankshaft = 1 << 1 }; typedef base::Flags<Flag> Flags; explicit AstProperties(Zone* zone) : node_count_(0), spec_(zone) {} Flags& flags() { return flags_; } Flags flags() const { return flags_; } int node_count() { return node_count_; } void add_node_count(int count) { node_count_ += count; } const FeedbackVectorSpec* get_spec() const { return &spec_; } FeedbackVectorSpec* get_spec() { return &spec_; } private: Flags flags_; int node_count_; FeedbackVectorSpec spec_; }; DEFINE_OPERATORS_FOR_FLAGS(AstProperties::Flags) class AstNode: public ZoneObject { public: #define DECLARE_TYPE_ENUM(type) k##type, enum NodeType : uint8_t { AST_NODE_LIST(DECLARE_TYPE_ENUM) }; #undef DECLARE_TYPE_ENUM void* operator new(size_t size, Zone* zone) { return zone->New(size); } NodeType node_type() const { return NodeTypeField::decode(bit_field_); } int position() const { return position_; } #ifdef DEBUG void Print(Isolate* isolate); #endif // DEBUG // Type testing & conversion functions overridden by concrete subclasses. #define DECLARE_NODE_FUNCTIONS(type) \ V8_INLINE bool Is##type() const; \ V8_INLINE type* As##type(); \ V8_INLINE const type* As##type() const; AST_NODE_LIST(DECLARE_NODE_FUNCTIONS) #undef DECLARE_NODE_FUNCTIONS BreakableStatement* AsBreakableStatement(); IterationStatement* AsIterationStatement(); MaterializedLiteral* AsMaterializedLiteral(); private: // Hidden to prevent accidental usage. It would have to load the // current zone from the TLS. void* operator new(size_t size); int position_; class NodeTypeField : public BitField<NodeType, 0, 6> {}; protected: uint32_t bit_field_; static const uint8_t kNextBitFieldIndex = NodeTypeField::kNext; AstNode(int position, NodeType type) : position_(position), bit_field_(NodeTypeField::encode(type)) {} }; class Statement : public AstNode { public: bool IsEmpty() { return AsEmptyStatement() != NULL; } bool IsJump() const; protected: Statement(int position, NodeType type) : AstNode(position, type) {} static const uint8_t kNextBitFieldIndex = AstNode::kNextBitFieldIndex; }; class SmallMapList final { public: SmallMapList() {} SmallMapList(int capacity, Zone* zone) : list_(capacity, zone) {} void Reserve(int capacity, Zone* zone) { list_.Reserve(capacity, zone); } void Clear() { list_.Clear(); } void Sort() { list_.Sort(); } bool is_empty() const { return list_.is_empty(); } int length() const { return list_.length(); } void AddMapIfMissing(Handle<Map> map, Zone* zone) { if (!Map::TryUpdate(map).ToHandle(&map)) return; for (int i = 0; i < length(); ++i) { if (at(i).is_identical_to(map)) return; } Add(map, zone); } void FilterForPossibleTransitions(Map* root_map) { for (int i = list_.length() - 1; i >= 0; i--) { if (at(i)->FindRootMap() != root_map) { list_.RemoveElement(list_.at(i)); } } } void Add(Handle<Map> handle, Zone* zone) { list_.Add(handle.location(), zone); } Handle<Map> at(int i) const { return Handle<Map>(list_.at(i)); } Handle<Map> first() const { return at(0); } Handle<Map> last() const { return at(length() - 1); } private: // The list stores pointers to Map*, that is Map**, so it's GC safe. SmallPointerList<Map*> list_; DISALLOW_COPY_AND_ASSIGN(SmallMapList); }; class Expression : public AstNode { public: enum Context { // Not assigned a context yet, or else will not be visited during // code generation. kUninitialized, // Evaluated for its side effects. kEffect, // Evaluated for its value (and side effects). kValue, // Evaluated for control flow (and side effects). kTest }; // Mark this expression as being in tail position. void MarkTail(); // True iff the expression is a valid reference expression. bool IsValidReferenceExpression() const; // Helpers for ToBoolean conversion. bool ToBooleanIsTrue() const; bool ToBooleanIsFalse() const; // Symbols that cannot be parsed as array indices are considered property // names. We do not treat symbols that can be array indexes as property // names because [] for string objects is handled only by keyed ICs. bool IsPropertyName() const; // True iff the expression is a class or function expression without // a syntactic name. bool IsAnonymousFunctionDefinition() const; // True iff the expression is a literal represented as a smi. bool IsSmiLiteral() const; // True iff the expression is a string literal. bool IsStringLiteral() const; // True iff the expression is the null literal. bool IsNullLiteral() const; // True if we can prove that the expression is the undefined literal. Note // that this also checks for loads of the global "undefined" variable. bool IsUndefinedLiteral() const; // True iff the expression is a valid target for an assignment. bool IsValidReferenceExpressionOrThis() const; // TODO(rossberg): this should move to its own AST node eventually. void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle); uint16_t to_boolean_types() const { return ToBooleanTypesField::decode(bit_field_); } SmallMapList* GetReceiverTypes(); KeyedAccessStoreMode GetStoreMode() const; IcCheckType GetKeyType() const; bool IsMonomorphic() const; void set_base_id(int id) { base_id_ = id; } static int num_ids() { return parent_num_ids() + 2; } BailoutId id() const { return BailoutId(local_id(0)); } TypeFeedbackId test_id() const { return TypeFeedbackId(local_id(1)); } private: int local_id(int n) const { return base_id() + parent_num_ids() + n; } int base_id_; class ToBooleanTypesField : public BitField<uint16_t, AstNode::kNextBitFieldIndex, 9> {}; protected: Expression(int pos, NodeType type) : AstNode(pos, type), base_id_(BailoutId::None().ToInt()) { bit_field_ = ToBooleanTypesField::update(bit_field_, 0); } static int parent_num_ids() { return 0; } void set_to_boolean_types(uint16_t types) { bit_field_ = ToBooleanTypesField::update(bit_field_, types); } int base_id() const { DCHECK(!BailoutId(base_id_).IsNone()); return base_id_; } static const uint8_t kNextBitFieldIndex = ToBooleanTypesField::kNext; }; class BreakableStatement : public Statement { public: enum BreakableType { TARGET_FOR_ANONYMOUS, TARGET_FOR_NAMED_ONLY }; // The labels associated with this statement. May be NULL; // if it is != NULL, guaranteed to contain at least one entry. ZoneList<const AstRawString*>* labels() const { return labels_; } // Code generation Label* break_target() { return &break_target_; } // Testers. bool is_target_for_anonymous() const { return BreakableTypeField::decode(bit_field_) == TARGET_FOR_ANONYMOUS; } void set_base_id(int id) { base_id_ = id; } static int num_ids() { return parent_num_ids() + 2; } BailoutId EntryId() const { return BailoutId(local_id(0)); } BailoutId ExitId() const { return BailoutId(local_id(1)); } private: int local_id(int n) const { return base_id() + parent_num_ids() + n; } BreakableType breakableType() const { return BreakableTypeField::decode(bit_field_); } int base_id_; Label break_target_; ZoneList<const AstRawString*>* labels_; class BreakableTypeField : public BitField<BreakableType, Statement::kNextBitFieldIndex, 1> {}; protected: BreakableStatement(ZoneList<const AstRawString*>* labels, BreakableType breakable_type, int position, NodeType type) : Statement(position, type), base_id_(BailoutId::None().ToInt()), labels_(labels) { DCHECK(labels == NULL || labels->length() > 0); bit_field_ |= BreakableTypeField::encode(breakable_type); } static int parent_num_ids() { return 0; } int base_id() const { DCHECK(!BailoutId(base_id_).IsNone()); return base_id_; } static const uint8_t kNextBitFieldIndex = BreakableTypeField::kNext; }; class Block final : public BreakableStatement { public: ZoneList<Statement*>* statements() { return &statements_; } bool ignore_completion_value() const { return IgnoreCompletionField::decode(bit_field_); } static int num_ids() { return parent_num_ids() + 1; } BailoutId DeclsId() const { return BailoutId(local_id(0)); } bool IsJump() const { return !statements_.is_empty() && statements_.last()->IsJump() && labels() == NULL; // Good enough as an approximation... } Scope* scope() const { return scope_; } void set_scope(Scope* scope) { scope_ = scope; } private: friend class AstNodeFactory; Block(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity, bool ignore_completion_value, int pos) : BreakableStatement(labels, TARGET_FOR_NAMED_ONLY, pos, kBlock), statements_(capacity, zone), scope_(NULL) { bit_field_ |= IgnoreCompletionField::encode(ignore_completion_value); } static int parent_num_ids() { return BreakableStatement::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } ZoneList<Statement*> statements_; Scope* scope_; class IgnoreCompletionField : public BitField<bool, BreakableStatement::kNextBitFieldIndex, 1> {}; protected: static const uint8_t kNextBitFieldIndex = IgnoreCompletionField::kNext; }; class DoExpression final : public Expression { public: Block* block() { return block_; } void set_block(Block* b) { block_ = b; } VariableProxy* result() { return result_; } void set_result(VariableProxy* v) { result_ = v; } FunctionLiteral* represented_function() { return represented_function_; } void set_represented_function(FunctionLiteral* f) { represented_function_ = f; } bool IsAnonymousFunctionDefinition() const; protected: static const uint8_t kNextBitFieldIndex = Expression::kNextBitFieldIndex; private: friend class AstNodeFactory; DoExpression(Block* block, VariableProxy* result, int pos) : Expression(pos, kDoExpression), block_(block), result_(result), represented_function_(nullptr) { DCHECK_NOT_NULL(block_); DCHECK_NOT_NULL(result_); } static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Block* block_; VariableProxy* result_; FunctionLiteral* represented_function_; }; class Declaration : public AstNode { public: typedef ThreadedList<Declaration> List; VariableProxy* proxy() const { return proxy_; } Scope* scope() const { return scope_; } protected: Declaration(VariableProxy* proxy, Scope* scope, int pos, NodeType type) : AstNode(pos, type), proxy_(proxy), scope_(scope), next_(nullptr) {} static const uint8_t kNextBitFieldIndex = AstNode::kNextBitFieldIndex; private: VariableProxy* proxy_; // Nested scope from which the declaration originated. Scope* scope_; // Declarations list threaded through the declarations. Declaration** next() { return &next_; } Declaration* next_; friend List; }; class VariableDeclaration final : public Declaration { private: friend class AstNodeFactory; VariableDeclaration(VariableProxy* proxy, Scope* scope, int pos) : Declaration(proxy, scope, pos, kVariableDeclaration) {} }; class FunctionDeclaration final : public Declaration { public: FunctionLiteral* fun() const { return fun_; } void set_fun(FunctionLiteral* f) { fun_ = f; } private: friend class AstNodeFactory; FunctionDeclaration(VariableProxy* proxy, FunctionLiteral* fun, Scope* scope, int pos) : Declaration(proxy, scope, pos, kFunctionDeclaration), fun_(fun) { DCHECK(fun != NULL); } FunctionLiteral* fun_; }; class IterationStatement : public BreakableStatement { public: Statement* body() const { return body_; } void set_body(Statement* s) { body_ = s; } int yield_count() const { return yield_count_; } int first_yield_id() const { return first_yield_id_; } void set_yield_count(int yield_count) { yield_count_ = yield_count; } void set_first_yield_id(int first_yield_id) { first_yield_id_ = first_yield_id; } static int num_ids() { return parent_num_ids() + 1; } BailoutId OsrEntryId() const { return BailoutId(local_id(0)); } // Code generation Label* continue_target() { return &continue_target_; } protected: IterationStatement(ZoneList<const AstRawString*>* labels, int pos, NodeType type) : BreakableStatement(labels, TARGET_FOR_ANONYMOUS, pos, type), body_(NULL), yield_count_(0), first_yield_id_(0) {} static int parent_num_ids() { return BreakableStatement::num_ids(); } void Initialize(Statement* body) { body_ = body; } static const uint8_t kNextBitFieldIndex = BreakableStatement::kNextBitFieldIndex; private: int local_id(int n) const { return base_id() + parent_num_ids() + n; } Statement* body_; Label continue_target_; int yield_count_; int first_yield_id_; }; class DoWhileStatement final : public IterationStatement { public: void Initialize(Expression* cond, Statement* body) { IterationStatement::Initialize(body); cond_ = cond; } Expression* cond() const { return cond_; } void set_cond(Expression* e) { cond_ = e; } static int num_ids() { return parent_num_ids() + 2; } BailoutId ContinueId() const { return BailoutId(local_id(0)); } BailoutId StackCheckId() const { return BackEdgeId(); } BailoutId BackEdgeId() const { return BailoutId(local_id(1)); } private: friend class AstNodeFactory; DoWhileStatement(ZoneList<const AstRawString*>* labels, int pos) : IterationStatement(labels, pos, kDoWhileStatement), cond_(NULL) {} static int parent_num_ids() { return IterationStatement::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Expression* cond_; }; class WhileStatement final : public IterationStatement { public: void Initialize(Expression* cond, Statement* body) { IterationStatement::Initialize(body); cond_ = cond; } Expression* cond() const { return cond_; } void set_cond(Expression* e) { cond_ = e; } static int num_ids() { return parent_num_ids() + 1; } BailoutId ContinueId() const { return EntryId(); } BailoutId StackCheckId() const { return BodyId(); } BailoutId BodyId() const { return BailoutId(local_id(0)); } private: friend class AstNodeFactory; WhileStatement(ZoneList<const AstRawString*>* labels, int pos) : IterationStatement(labels, pos, kWhileStatement), cond_(NULL) {} static int parent_num_ids() { return IterationStatement::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Expression* cond_; }; class ForStatement final : public IterationStatement { public: void Initialize(Statement* init, Expression* cond, Statement* next, Statement* body) { IterationStatement::Initialize(body); init_ = init; cond_ = cond; next_ = next; } Statement* init() const { return init_; } Expression* cond() const { return cond_; } Statement* next() const { return next_; } void set_init(Statement* s) { init_ = s; } void set_cond(Expression* e) { cond_ = e; } void set_next(Statement* s) { next_ = s; } static int num_ids() { return parent_num_ids() + 2; } BailoutId ContinueId() const { return BailoutId(local_id(0)); } BailoutId StackCheckId() const { return BodyId(); } BailoutId BodyId() const { return BailoutId(local_id(1)); } private: friend class AstNodeFactory; ForStatement(ZoneList<const AstRawString*>* labels, int pos) : IterationStatement(labels, pos, kForStatement), init_(NULL), cond_(NULL), next_(NULL) {} static int parent_num_ids() { return IterationStatement::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Statement* init_; Expression* cond_; Statement* next_; }; class ForEachStatement : public IterationStatement { public: enum VisitMode { ENUMERATE, // for (each in subject) body; ITERATE // for (each of subject) body; }; using IterationStatement::Initialize; static const char* VisitModeString(VisitMode mode) { return mode == ITERATE ? "for-of" : "for-in"; } protected: ForEachStatement(ZoneList<const AstRawString*>* labels, int pos, NodeType type) : IterationStatement(labels, pos, type) {} }; class ForInStatement final : public ForEachStatement { public: void Initialize(Expression* each, Expression* subject, Statement* body) { ForEachStatement::Initialize(body); each_ = each; subject_ = subject; } Expression* enumerable() const { return subject(); } Expression* each() const { return each_; } Expression* subject() const { return subject_; } void set_each(Expression* e) { each_ = e; } void set_subject(Expression* e) { subject_ = e; } // Type feedback information. void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); FeedbackVectorSlot EachFeedbackSlot() const { return each_slot_; } FeedbackVectorSlot ForInFeedbackSlot() { DCHECK(!for_in_feedback_slot_.IsInvalid()); return for_in_feedback_slot_; } enum ForInType { FAST_FOR_IN, SLOW_FOR_IN }; ForInType for_in_type() const { return ForInTypeField::decode(bit_field_); } void set_for_in_type(ForInType type) { bit_field_ = ForInTypeField::update(bit_field_, type); } static int num_ids() { return parent_num_ids() + 7; } BailoutId BodyId() const { return BailoutId(local_id(0)); } BailoutId EnumId() const { return BailoutId(local_id(1)); } BailoutId ToObjectId() const { return BailoutId(local_id(2)); } BailoutId PrepareId() const { return BailoutId(local_id(3)); } BailoutId FilterId() const { return BailoutId(local_id(4)); } BailoutId AssignmentId() const { return BailoutId(local_id(5)); } BailoutId IncrementId() const { return BailoutId(local_id(6)); } BailoutId StackCheckId() const { return BodyId(); } private: friend class AstNodeFactory; ForInStatement(ZoneList<const AstRawString*>* labels, int pos) : ForEachStatement(labels, pos, kForInStatement), each_(nullptr), subject_(nullptr) { bit_field_ = ForInTypeField::update(bit_field_, SLOW_FOR_IN); } static int parent_num_ids() { return ForEachStatement::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Expression* each_; Expression* subject_; FeedbackVectorSlot each_slot_; FeedbackVectorSlot for_in_feedback_slot_; class ForInTypeField : public BitField<ForInType, ForEachStatement::kNextBitFieldIndex, 1> {}; protected: static const uint8_t kNextBitFieldIndex = ForInTypeField::kNext; }; class ForOfStatement final : public ForEachStatement { public: void Initialize(Statement* body, Variable* iterator, Expression* assign_iterator, Expression* next_result, Expression* result_done, Expression* assign_each) { ForEachStatement::Initialize(body); iterator_ = iterator; assign_iterator_ = assign_iterator; next_result_ = next_result; result_done_ = result_done; assign_each_ = assign_each; } Variable* iterator() const { return iterator_; } // iterator = subject[Symbol.iterator]() Expression* assign_iterator() const { return assign_iterator_; } // result = iterator.next() // with type check Expression* next_result() const { return next_result_; } // result.done Expression* result_done() const { return result_done_; } // each = result.value Expression* assign_each() const { return assign_each_; } void set_assign_iterator(Expression* e) { assign_iterator_ = e; } void set_next_result(Expression* e) { next_result_ = e; } void set_result_done(Expression* e) { result_done_ = e; } void set_assign_each(Expression* e) { assign_each_ = e; } BailoutId ContinueId() const { return EntryId(); } BailoutId StackCheckId() const { return BackEdgeId(); } static int num_ids() { return parent_num_ids() + 1; } BailoutId BackEdgeId() const { return BailoutId(local_id(0)); } private: friend class AstNodeFactory; ForOfStatement(ZoneList<const AstRawString*>* labels, int pos) : ForEachStatement(labels, pos, kForOfStatement), iterator_(NULL), assign_iterator_(NULL), next_result_(NULL), result_done_(NULL), assign_each_(NULL) {} static int parent_num_ids() { return ForEachStatement::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Variable* iterator_; Expression* assign_iterator_; Expression* next_result_; Expression* result_done_; Expression* assign_each_; }; class ExpressionStatement final : public Statement { public: void set_expression(Expression* e) { expression_ = e; } Expression* expression() const { return expression_; } bool IsJump() const { return expression_->IsThrow(); } private: friend class AstNodeFactory; ExpressionStatement(Expression* expression, int pos) : Statement(pos, kExpressionStatement), expression_(expression) {} Expression* expression_; }; class JumpStatement : public Statement { public: bool IsJump() const { return true; } protected: JumpStatement(int pos, NodeType type) : Statement(pos, type) {} }; class ContinueStatement final : public JumpStatement { public: IterationStatement* target() const { return target_; } private: friend class AstNodeFactory; ContinueStatement(IterationStatement* target, int pos) : JumpStatement(pos, kContinueStatement), target_(target) {} IterationStatement* target_; }; class BreakStatement final : public JumpStatement { public: BreakableStatement* target() const { return target_; } private: friend class AstNodeFactory; BreakStatement(BreakableStatement* target, int pos) : JumpStatement(pos, kBreakStatement), target_(target) {} BreakableStatement* target_; }; class ReturnStatement final : public JumpStatement { public: Expression* expression() const { return expression_; } void set_expression(Expression* e) { expression_ = e; } private: friend class AstNodeFactory; ReturnStatement(Expression* expression, int pos) : JumpStatement(pos, kReturnStatement), expression_(expression) {} Expression* expression_; }; class WithStatement final : public Statement { public: Scope* scope() { return scope_; } Expression* expression() const { return expression_; } void set_expression(Expression* e) { expression_ = e; } Statement* statement() const { return statement_; } void set_statement(Statement* s) { statement_ = s; } void set_base_id(int id) { base_id_ = id; } static int num_ids() { return parent_num_ids() + 2; } BailoutId ToObjectId() const { return BailoutId(local_id(0)); } BailoutId EntryId() const { return BailoutId(local_id(1)); } private: friend class AstNodeFactory; WithStatement(Scope* scope, Expression* expression, Statement* statement, int pos) : Statement(pos, kWithStatement), base_id_(BailoutId::None().ToInt()), scope_(scope), expression_(expression), statement_(statement) {} static int parent_num_ids() { return 0; } int base_id() const { DCHECK(!BailoutId(base_id_).IsNone()); return base_id_; } int local_id(int n) const { return base_id() + parent_num_ids() + n; } int base_id_; Scope* scope_; Expression* expression_; Statement* statement_; }; class CaseClause final : public Expression { public: bool is_default() const { return label_ == NULL; } Expression* label() const { CHECK(!is_default()); return label_; } void set_label(Expression* e) { label_ = e; } Label* body_target() { return &body_target_; } ZoneList<Statement*>* statements() const { return statements_; } static int num_ids() { return parent_num_ids() + 2; } BailoutId EntryId() const { return BailoutId(local_id(0)); } TypeFeedbackId CompareId() { return TypeFeedbackId(local_id(1)); } AstType* compare_type() { return compare_type_; } void set_compare_type(AstType* type) { compare_type_ = type; } // CaseClause will have both a slot in the feedback vector and the // TypeFeedbackId to record the type information. TypeFeedbackId is used by // full codegen and the feedback vector slot is used by interpreter. void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); FeedbackVectorSlot CompareOperationFeedbackSlot() { return type_feedback_slot_; } private: friend class AstNodeFactory; static int parent_num_ids() { return Expression::num_ids(); } CaseClause(Expression* label, ZoneList<Statement*>* statements, int pos); int local_id(int n) const { return base_id() + parent_num_ids() + n; } Expression* label_; Label body_target_; ZoneList<Statement*>* statements_; AstType* compare_type_; FeedbackVectorSlot type_feedback_slot_; }; class SwitchStatement final : public BreakableStatement { public: void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) { tag_ = tag; cases_ = cases; } Expression* tag() const { return tag_; } ZoneList<CaseClause*>* cases() const { return cases_; } void set_tag(Expression* t) { tag_ = t; } private: friend class AstNodeFactory; SwitchStatement(ZoneList<const AstRawString*>* labels, int pos) : BreakableStatement(labels, TARGET_FOR_ANONYMOUS, pos, kSwitchStatement), tag_(NULL), cases_(NULL) {} Expression* tag_; ZoneList<CaseClause*>* cases_; }; // If-statements always have non-null references to their then- and // else-parts. When parsing if-statements with no explicit else-part, // the parser implicitly creates an empty statement. Use the // HasThenStatement() and HasElseStatement() functions to check if a // given if-statement has a then- or an else-part containing code. class IfStatement final : public Statement { public: bool HasThenStatement() const { return !then_statement()->IsEmpty(); } bool HasElseStatement() const { return !else_statement()->IsEmpty(); } Expression* condition() const { return condition_; } Statement* then_statement() const { return then_statement_; } Statement* else_statement() const { return else_statement_; } void set_condition(Expression* e) { condition_ = e; } void set_then_statement(Statement* s) { then_statement_ = s; } void set_else_statement(Statement* s) { else_statement_ = s; } bool IsJump() const { return HasThenStatement() && then_statement()->IsJump() && HasElseStatement() && else_statement()->IsJump(); } void set_base_id(int id) { base_id_ = id; } static int num_ids() { return parent_num_ids() + 3; } BailoutId IfId() const { return BailoutId(local_id(0)); } BailoutId ThenId() const { return BailoutId(local_id(1)); } BailoutId ElseId() const { return BailoutId(local_id(2)); } private: friend class AstNodeFactory; IfStatement(Expression* condition, Statement* then_statement, Statement* else_statement, int pos) : Statement(pos, kIfStatement), base_id_(BailoutId::None().ToInt()), condition_(condition), then_statement_(then_statement), else_statement_(else_statement) {} static int parent_num_ids() { return 0; } int base_id() const { DCHECK(!BailoutId(base_id_).IsNone()); return base_id_; } int local_id(int n) const { return base_id() + parent_num_ids() + n; } int base_id_; Expression* condition_; Statement* then_statement_; Statement* else_statement_; }; class TryStatement : public Statement { public: Block* try_block() const { return try_block_; } void set_try_block(Block* b) { try_block_ = b; } // Prediction of whether exceptions thrown into the handler for this try block // will be caught. // // This is set in ast-numbering and later compiled into the code's handler // table. The runtime uses this information to implement a feature that // notifies the debugger when an uncaught exception is thrown, _before_ the // exception propagates to the top. // // Since it's generally undecidable whether an exception will be caught, our // prediction is only an approximation. HandlerTable::CatchPrediction catch_prediction() const { return catch_prediction_; } void set_catch_prediction(HandlerTable::CatchPrediction prediction) { catch_prediction_ = prediction; } protected: TryStatement(Block* try_block, int pos, NodeType type) : Statement(pos, type), catch_prediction_(HandlerTable::UNCAUGHT), try_block_(try_block) {} HandlerTable::CatchPrediction catch_prediction_; private: Block* try_block_; }; class TryCatchStatement final : public TryStatement { public: Scope* scope() { return scope_; } Variable* variable() { return variable_; } Block* catch_block() const { return catch_block_; } void set_catch_block(Block* b) { catch_block_ = b; } // The clear_pending_message flag indicates whether or not to clear the // isolate's pending exception message before executing the catch_block. In // the normal use case, this flag is always on because the message object // is not needed anymore when entering the catch block and should not be kept // alive. // The use case where the flag is off is when the catch block is guaranteed to // rethrow the caught exception (using %ReThrow), which reuses the pending // message instead of generating a new one. // (When the catch block doesn't rethrow but is guaranteed to perform an // ordinary throw, not clearing the old message is safe but not very useful.) bool clear_pending_message() const { return catch_prediction_ != HandlerTable::UNCAUGHT; } private: friend class AstNodeFactory; TryCatchStatement(Block* try_block, Scope* scope, Variable* variable, Block* catch_block, HandlerTable::CatchPrediction catch_prediction, int pos) : TryStatement(try_block, pos, kTryCatchStatement), scope_(scope), variable_(variable), catch_block_(catch_block) { catch_prediction_ = catch_prediction; } Scope* scope_; Variable* variable_; Block* catch_block_; }; class TryFinallyStatement final : public TryStatement { public: Block* finally_block() const { return finally_block_; } void set_finally_block(Block* b) { finally_block_ = b; } private: friend class AstNodeFactory; TryFinallyStatement(Block* try_block, Block* finally_block, int pos) : TryStatement(try_block, pos, kTryFinallyStatement), finally_block_(finally_block) {} Block* finally_block_; }; class DebuggerStatement final : public Statement { public: void set_base_id(int id) { base_id_ = id; } static int num_ids() { return parent_num_ids() + 1; } BailoutId DebugBreakId() const { return BailoutId(local_id(0)); } private: friend class AstNodeFactory; explicit DebuggerStatement(int pos) : Statement(pos, kDebuggerStatement), base_id_(BailoutId::None().ToInt()) {} static int parent_num_ids() { return 0; } int base_id() const { DCHECK(!BailoutId(base_id_).IsNone()); return base_id_; } int local_id(int n) const { return base_id() + parent_num_ids() + n; } int base_id_; }; class EmptyStatement final : public Statement { private: friend class AstNodeFactory; explicit EmptyStatement(int pos) : Statement(pos, kEmptyStatement) {} }; // Delegates to another statement, which may be overwritten. // This was introduced to implement ES2015 Annex B3.3 for conditionally making // sloppy-mode block-scoped functions have a var binding, which is changed // from one statement to another during parsing. class SloppyBlockFunctionStatement final : public Statement { public: Statement* statement() const { return statement_; } void set_statement(Statement* statement) { statement_ = statement; } Scope* scope() const { return scope_; } SloppyBlockFunctionStatement* next() { return next_; } void set_next(SloppyBlockFunctionStatement* next) { next_ = next; } private: friend class AstNodeFactory; SloppyBlockFunctionStatement(Statement* statement, Scope* scope) : Statement(kNoSourcePosition, kSloppyBlockFunctionStatement), statement_(statement), scope_(scope), next_(nullptr) {} Statement* statement_; Scope* const scope_; SloppyBlockFunctionStatement* next_; }; class Literal final : public Expression { public: // Returns true if literal represents a property name (i.e. cannot be parsed // as array indices). bool IsPropertyName() const { return value_->IsPropertyName(); } Handle<String> AsPropertyName() { DCHECK(IsPropertyName()); return Handle<String>::cast(value()); } const AstRawString* AsRawPropertyName() { DCHECK(IsPropertyName()); return value_->AsString(); } bool ToBooleanIsTrue() const { return raw_value()->BooleanValue(); } bool ToBooleanIsFalse() const { return !raw_value()->BooleanValue(); } Handle<Object> value() const { return value_->value(); } const AstValue* raw_value() const { return value_; } // Support for using Literal as a HashMap key. NOTE: Currently, this works // only for string and number literals! uint32_t Hash(); static bool Match(void* literal1, void* literal2); static int num_ids() { return parent_num_ids() + 1; } TypeFeedbackId LiteralFeedbackId() const { return TypeFeedbackId(local_id(0)); } private: friend class AstNodeFactory; Literal(const AstValue* value, int position) : Expression(position, kLiteral), value_(value) {} static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } const AstValue* value_; }; class AstLiteralReindexer; // Base class for literals that needs space in the corresponding JSFunction. class MaterializedLiteral : public Expression { public: int literal_index() { return literal_index_; } int depth() const { // only callable after initialization. DCHECK(depth_ >= 1); return depth_; } private: int depth_ : 31; int literal_index_; friend class AstLiteralReindexer; class IsSimpleField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {}; protected: MaterializedLiteral(int literal_index, int pos, NodeType type) : Expression(pos, type), depth_(0), literal_index_(literal_index) { bit_field_ |= IsSimpleField::encode(false); } // A materialized literal is simple if the values consist of only // constants and simple object and array literals. bool is_simple() const { return IsSimpleField::decode(bit_field_); } void set_is_simple(bool is_simple) { bit_field_ = IsSimpleField::update(bit_field_, is_simple); } friend class CompileTimeValue; void set_depth(int depth) { DCHECK_LE(1, depth); depth_ = depth; } // Populate the constant properties/elements fixed array. void BuildConstants(Isolate* isolate); friend class ArrayLiteral; friend class ObjectLiteral; // If the expression is a literal, return the literal value; // if the expression is a materialized literal and is simple return a // compile time value as encoded by CompileTimeValue::GetValue(). // Otherwise, return undefined literal as the placeholder // in the object literal boilerplate. Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate); static const uint8_t kNextBitFieldIndex = IsSimpleField::kNext; }; // Common supertype for ObjectLiteralProperty and ClassLiteralProperty class LiteralProperty : public ZoneObject { public: Expression* key() const { return key_; } Expression* value() const { return value_; } void set_key(Expression* e) { key_ = e; } void set_value(Expression* e) { value_ = e; } bool is_computed_name() const { return is_computed_name_; } FeedbackVectorSlot GetSlot(int offset = 0) const { DCHECK_LT(offset, static_cast<int>(arraysize(slots_))); return slots_[offset]; } void SetSlot(FeedbackVectorSlot slot, int offset = 0) { DCHECK_LT(offset, static_cast<int>(arraysize(slots_))); slots_[offset] = slot; } bool NeedsSetFunctionName() const; protected: LiteralProperty(Expression* key, Expression* value, bool is_computed_name) : key_(key), value_(value), is_computed_name_(is_computed_name) {} Expression* key_; Expression* value_; FeedbackVectorSlot slots_[2]; bool is_computed_name_; }; // Property is used for passing information // about an object literal's properties from the parser // to the code generator. class ObjectLiteralProperty final : public LiteralProperty { public: enum Kind : uint8_t { CONSTANT, // Property with constant value (compile time). COMPUTED, // Property with computed value (execution time). MATERIALIZED_LITERAL, // Property value is a materialized literal. GETTER, SETTER, // Property is an accessor function. PROTOTYPE // Property is __proto__. }; Kind kind() const { return kind_; } // Type feedback information. bool IsMonomorphic() const { return !receiver_type_.is_null(); } Handle<Map> GetReceiverType() const { return receiver_type_; } bool IsCompileTimeValue() const; void set_emit_store(bool emit_store); bool emit_store() const; void set_receiver_type(Handle<Map> map) { receiver_type_ = map; } private: friend class AstNodeFactory; ObjectLiteralProperty(Expression* key, Expression* value, Kind kind, bool is_computed_name); ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key, Expression* value, bool is_computed_name); Kind kind_; bool emit_store_; Handle<Map> receiver_type_; }; // An object literal has a boilerplate object that is used // for minimizing the work when constructing it at runtime. class ObjectLiteral final : public MaterializedLiteral { public: typedef ObjectLiteralProperty Property; Handle<FixedArray> constant_properties() const { return constant_properties_; } int properties_count() const { return boilerplate_properties_; } ZoneList<Property*>* properties() const { return properties_; } bool fast_elements() const { return FastElementsField::decode(bit_field_); } bool may_store_doubles() const { return MayStoreDoublesField::decode(bit_field_); } bool has_elements() const { return HasElementsField::decode(bit_field_); } bool has_shallow_properties() const { return depth() == 1 && !has_elements() && !may_store_doubles(); } // Decide if a property should be in the object boilerplate. static bool IsBoilerplateProperty(Property* property); // Populate the constant properties fixed array. void BuildConstantProperties(Isolate* isolate); // Mark all computed expressions that are bound to a key that // is shadowed by a later occurrence of the same key. For the // marked expressions, no store code is emitted. void CalculateEmitStore(Zone* zone); // Assemble bitfield of flags for the CreateObjectLiteral helper. int ComputeFlags(bool disable_mementos = false) const { int flags = fast_elements() ? kFastElements : kNoFlags; if (has_shallow_properties()) { flags |= kShallowProperties; } if (disable_mementos) { flags |= kDisableMementos; } return flags; } enum Flags { kNoFlags = 0, kFastElements = 1, kShallowProperties = 1 << 1, kDisableMementos = 1 << 2 }; struct Accessors: public ZoneObject { Accessors() : getter(NULL), setter(NULL), bailout_id(BailoutId::None()) {} ObjectLiteralProperty* getter; ObjectLiteralProperty* setter; BailoutId bailout_id; }; BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); } // Return an AST id for a property that is used in simulate instructions. BailoutId GetIdForPropertyName(int i) { return BailoutId(local_id(2 * i + 1)); } BailoutId GetIdForPropertySet(int i) { return BailoutId(local_id(2 * i + 2)); } // Unlike other AST nodes, this number of bailout IDs allocated for an // ObjectLiteral can vary, so num_ids() is not a static method. int num_ids() const { return parent_num_ids() + 1 + 2 * properties()->length(); } // Object literals need one feedback slot for each non-trivial value, as well // as some slots for home objects. void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); private: friend class AstNodeFactory; ObjectLiteral(ZoneList<Property*>* properties, int literal_index, uint32_t boilerplate_properties, int pos) : MaterializedLiteral(literal_index, pos, kObjectLiteral), boilerplate_properties_(boilerplate_properties), properties_(properties) { bit_field_ |= FastElementsField::encode(false) | HasElementsField::encode(false) | MayStoreDoublesField::encode(false); } static int parent_num_ids() { return MaterializedLiteral::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } uint32_t boilerplate_properties_; FeedbackVectorSlot slot_; Handle<FixedArray> constant_properties_; ZoneList<Property*>* properties_; class FastElementsField : public BitField<bool, MaterializedLiteral::kNextBitFieldIndex, 1> {}; class HasElementsField : public BitField<bool, FastElementsField::kNext, 1> { }; class MayStoreDoublesField : public BitField<bool, HasElementsField::kNext, 1> {}; protected: static const uint8_t kNextBitFieldIndex = MayStoreDoublesField::kNext; }; // A map from property names to getter/setter pairs allocated in the zone. class AccessorTable : public base::TemplateHashMap<Literal, ObjectLiteral::Accessors, bool (*)(void*, void*), ZoneAllocationPolicy> { public: explicit AccessorTable(Zone* zone) : base::TemplateHashMap<Literal, ObjectLiteral::Accessors, bool (*)(void*, void*), ZoneAllocationPolicy>( Literal::Match, ZoneAllocationPolicy(zone)), zone_(zone) {} Iterator lookup(Literal* literal) { Iterator it = find(literal, true, ZoneAllocationPolicy(zone_)); if (it->second == NULL) it->second = new (zone_) ObjectLiteral::Accessors(); return it; } private: Zone* zone_; }; // Node for capturing a regexp literal. class RegExpLiteral final : public MaterializedLiteral { public: Handle<String> pattern() const { return pattern_->string(); } int flags() const { return flags_; } private: friend class AstNodeFactory; RegExpLiteral(const AstRawString* pattern, int flags, int literal_index, int pos) : MaterializedLiteral(literal_index, pos, kRegExpLiteral), flags_(flags), pattern_(pattern) { set_depth(1); } int const flags_; const AstRawString* const pattern_; }; // An array literal has a literals object that is used // for minimizing the work when constructing it at runtime. class ArrayLiteral final : public MaterializedLiteral { public: Handle<FixedArray> constant_elements() const { return constant_elements_; } ElementsKind constant_elements_kind() const { DCHECK_EQ(2, constant_elements_->length()); return static_cast<ElementsKind>( Smi::cast(constant_elements_->get(0))->value()); } ZoneList<Expression*>* values() const { return values_; } BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); } // Return an AST id for an element that is used in simulate instructions. BailoutId GetIdForElement(int i) { return BailoutId(local_id(i + 1)); } // Unlike other AST nodes, this number of bailout IDs allocated for an // ArrayLiteral can vary, so num_ids() is not a static method. int num_ids() const { return parent_num_ids() + 1 + values()->length(); } // Populate the constant elements fixed array. void BuildConstantElements(Isolate* isolate); // Assemble bitfield of flags for the CreateArrayLiteral helper. int ComputeFlags(bool disable_mementos = false) const { int flags = depth() == 1 ? kShallowElements : kNoFlags; if (disable_mementos) { flags |= kDisableMementos; } return flags; } // Provide a mechanism for iterating through values to rewrite spreads. ZoneList<Expression*>::iterator FirstSpread() const { return (first_spread_index_ >= 0) ? values_->begin() + first_spread_index_ : values_->end(); } ZoneList<Expression*>::iterator EndValue() const { return values_->end(); } // Rewind an array literal omitting everything from the first spread on. void RewindSpreads() { values_->Rewind(first_spread_index_); first_spread_index_ = -1; } enum Flags { kNoFlags = 0, kShallowElements = 1, kDisableMementos = 1 << 1 }; void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); FeedbackVectorSlot LiteralFeedbackSlot() const { return literal_slot_; } private: friend class AstNodeFactory; ArrayLiteral(ZoneList<Expression*>* values, int first_spread_index, int literal_index, int pos) : MaterializedLiteral(literal_index, pos, kArrayLiteral), first_spread_index_(first_spread_index), values_(values) {} static int parent_num_ids() { return MaterializedLiteral::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } int first_spread_index_; FeedbackVectorSlot literal_slot_; Handle<FixedArray> constant_elements_; ZoneList<Expression*>* values_; }; class VariableProxy final : public Expression { public: bool IsValidReferenceExpression() const { return !is_this() && !is_new_target(); } Handle<String> name() const { return raw_name()->string(); } const AstRawString* raw_name() const { return is_resolved() ? var_->raw_name() : raw_name_; } Variable* var() const { DCHECK(is_resolved()); return var_; } void set_var(Variable* v) { DCHECK(!is_resolved()); DCHECK_NOT_NULL(v); var_ = v; } bool is_this() const { return IsThisField::decode(bit_field_); } bool is_assigned() const { return IsAssignedField::decode(bit_field_); } void set_is_assigned() { bit_field_ = IsAssignedField::update(bit_field_, true); } bool is_resolved() const { return IsResolvedField::decode(bit_field_); } void set_is_resolved() { bit_field_ = IsResolvedField::update(bit_field_, true); } bool is_new_target() const { return IsNewTargetField::decode(bit_field_); } void set_is_new_target() { bit_field_ = IsNewTargetField::update(bit_field_, true); } HoleCheckMode hole_check_mode() const { return HoleCheckModeField::decode(bit_field_); } void set_needs_hole_check() { bit_field_ = HoleCheckModeField::update(bit_field_, HoleCheckMode::kRequired); } // Bind this proxy to the variable var. void BindTo(Variable* var); bool UsesVariableFeedbackSlot() const { return var()->IsUnallocated() || var()->IsLookupSlot(); } void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); FeedbackVectorSlot VariableFeedbackSlot() { return variable_feedback_slot_; } static int num_ids() { return parent_num_ids() + 1; } BailoutId BeforeId() const { return BailoutId(local_id(0)); } void set_next_unresolved(VariableProxy* next) { next_unresolved_ = next; } VariableProxy* next_unresolved() { return next_unresolved_; } private: friend class AstNodeFactory; VariableProxy(Variable* var, int start_position); VariableProxy(const AstRawString* name, VariableKind variable_kind, int start_position); explicit VariableProxy(const VariableProxy* copy_from); static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } class IsThisField : public BitField<bool, Expression::kNextBitFieldIndex, 1> { }; class IsAssignedField : public BitField<bool, IsThisField::kNext, 1> {}; class IsResolvedField : public BitField<bool, IsAssignedField::kNext, 1> {}; class IsNewTargetField : public BitField<bool, IsResolvedField::kNext, 1> {}; class HoleCheckModeField : public BitField<HoleCheckMode, IsNewTargetField::kNext, 1> {}; FeedbackVectorSlot variable_feedback_slot_; union { const AstRawString* raw_name_; // if !is_resolved_ Variable* var_; // if is_resolved_ }; VariableProxy* next_unresolved_; }; // Left-hand side can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY, NAMED_SUPER_PROPERTY, KEYED_SUPER_PROPERTY }; class Property final : public Expression { public: bool IsValidReferenceExpression() const { return true; } Expression* obj() const { return obj_; } Expression* key() const { return key_; } void set_obj(Expression* e) { obj_ = e; } void set_key(Expression* e) { key_ = e; } static int num_ids() { return parent_num_ids() + 1; } BailoutId LoadId() const { return BailoutId(local_id(0)); } bool IsStringAccess() const { return IsStringAccessField::decode(bit_field_); } // Type feedback information. bool IsMonomorphic() const { return receiver_types_.length() == 1; } SmallMapList* GetReceiverTypes() { return &receiver_types_; } KeyedAccessStoreMode GetStoreMode() const { return STANDARD_STORE; } IcCheckType GetKeyType() const { return KeyTypeField::decode(bit_field_); } bool IsUninitialized() const { return !is_for_call() && HasNoTypeInformation(); } bool HasNoTypeInformation() const { return GetInlineCacheState() == UNINITIALIZED; } InlineCacheState GetInlineCacheState() const { return InlineCacheStateField::decode(bit_field_); } void set_is_string_access(bool b) { bit_field_ = IsStringAccessField::update(bit_field_, b); } void set_key_type(IcCheckType key_type) { bit_field_ = KeyTypeField::update(bit_field_, key_type); } void set_inline_cache_state(InlineCacheState state) { bit_field_ = InlineCacheStateField::update(bit_field_, state); } void mark_for_call() { bit_field_ = IsForCallField::update(bit_field_, true); } bool is_for_call() const { return IsForCallField::decode(bit_field_); } bool IsSuperAccess() { return obj()->IsSuperPropertyReference(); } void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache) { FeedbackVectorSlotKind kind = key()->IsPropertyName() ? FeedbackVectorSlotKind::LOAD_IC : FeedbackVectorSlotKind::KEYED_LOAD_IC; property_feedback_slot_ = spec->AddSlot(kind); } FeedbackVectorSlot PropertyFeedbackSlot() const { return property_feedback_slot_; } // Returns the properties assign type. static LhsKind GetAssignType(Property* property) { if (property == NULL) return VARIABLE; bool super_access = property->IsSuperAccess(); return (property->key()->IsPropertyName()) ? (super_access ? NAMED_SUPER_PROPERTY : NAMED_PROPERTY) : (super_access ? KEYED_SUPER_PROPERTY : KEYED_PROPERTY); } private: friend class AstNodeFactory; Property(Expression* obj, Expression* key, int pos) : Expression(pos, kProperty), obj_(obj), key_(key) { bit_field_ |= IsForCallField::encode(false) | IsStringAccessField::encode(false) | InlineCacheStateField::encode(UNINITIALIZED); } static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } class IsForCallField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {}; class IsStringAccessField : public BitField<bool, IsForCallField::kNext, 1> { }; class KeyTypeField : public BitField<IcCheckType, IsStringAccessField::kNext, 1> {}; class InlineCacheStateField : public BitField<InlineCacheState, KeyTypeField::kNext, 4> {}; FeedbackVectorSlot property_feedback_slot_; Expression* obj_; Expression* key_; SmallMapList receiver_types_; }; class Call final : public Expression { public: Expression* expression() const { return expression_; } ZoneList<Expression*>* arguments() const { return arguments_; } void set_expression(Expression* e) { expression_ = e; } // Type feedback information. void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); FeedbackVectorSlot CallFeedbackICSlot() const { return ic_slot_; } SmallMapList* GetReceiverTypes() { if (expression()->IsProperty()) { return expression()->AsProperty()->GetReceiverTypes(); } return nullptr; } bool IsMonomorphic() const { if (expression()->IsProperty()) { return expression()->AsProperty()->IsMonomorphic(); } return !target_.is_null(); } Handle<JSFunction> target() { return target_; } Handle<AllocationSite> allocation_site() { return allocation_site_; } void SetKnownGlobalTarget(Handle<JSFunction> target) { target_ = target; set_is_uninitialized(false); } void set_target(Handle<JSFunction> target) { target_ = target; } void set_allocation_site(Handle<AllocationSite> site) { allocation_site_ = site; } static int num_ids() { return parent_num_ids() + 4; } BailoutId ReturnId() const { return BailoutId(local_id(0)); } BailoutId EvalId() const { return BailoutId(local_id(1)); } BailoutId LookupId() const { return BailoutId(local_id(2)); } BailoutId CallId() const { return BailoutId(local_id(3)); } bool is_uninitialized() const { return IsUninitializedField::decode(bit_field_); } void set_is_uninitialized(bool b) { bit_field_ = IsUninitializedField::update(bit_field_, b); } bool is_possibly_eval() const { return IsPossiblyEvalField::decode(bit_field_); } TailCallMode tail_call_mode() const { return IsTailField::decode(bit_field_) ? TailCallMode::kAllow : TailCallMode::kDisallow; } void MarkTail() { bit_field_ = IsTailField::update(bit_field_, true); } enum CallType { GLOBAL_CALL, WITH_CALL, NAMED_PROPERTY_CALL, KEYED_PROPERTY_CALL, NAMED_SUPER_PROPERTY_CALL, KEYED_SUPER_PROPERTY_CALL, SUPER_CALL, OTHER_CALL }; enum PossiblyEval { IS_POSSIBLY_EVAL, NOT_EVAL, }; // Helpers to determine how to handle the call. CallType GetCallType() const; #ifdef DEBUG // Used to assert that the FullCodeGenerator records the return site. bool return_is_recorded_; #endif private: friend class AstNodeFactory; Call(Expression* expression, ZoneList<Expression*>* arguments, int pos, PossiblyEval possibly_eval) : Expression(pos, kCall), expression_(expression), arguments_(arguments) { bit_field_ |= IsUninitializedField::encode(false) | IsPossiblyEvalField::encode(possibly_eval == IS_POSSIBLY_EVAL); if (expression->IsProperty()) { expression->AsProperty()->mark_for_call(); } } static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } class IsUninitializedField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {}; class IsTailField : public BitField<bool, IsUninitializedField::kNext, 1> {}; class IsPossiblyEvalField : public BitField<bool, IsTailField::kNext, 1> {}; FeedbackVectorSlot ic_slot_; Expression* expression_; ZoneList<Expression*>* arguments_; Handle<JSFunction> target_; Handle<AllocationSite> allocation_site_; }; class CallNew final : public Expression { public: Expression* expression() const { return expression_; } ZoneList<Expression*>* arguments() const { return arguments_; } void set_expression(Expression* e) { expression_ = e; } // Type feedback information. void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache) { // CallNew stores feedback in the exact same way as Call. We can // piggyback on the type feedback infrastructure for calls. callnew_feedback_slot_ = spec->AddCallICSlot(); } FeedbackVectorSlot CallNewFeedbackSlot() { DCHECK(!callnew_feedback_slot_.IsInvalid()); return callnew_feedback_slot_; } bool IsMonomorphic() const { return IsMonomorphicField::decode(bit_field_); } Handle<JSFunction> target() const { return target_; } Handle<AllocationSite> allocation_site() const { return allocation_site_; } static int num_ids() { return parent_num_ids() + 1; } static int feedback_slots() { return 1; } BailoutId ReturnId() const { return BailoutId(local_id(0)); } void set_allocation_site(Handle<AllocationSite> site) { allocation_site_ = site; } void set_is_monomorphic(bool monomorphic) { bit_field_ = IsMonomorphicField::update(bit_field_, monomorphic); } void set_target(Handle<JSFunction> target) { target_ = target; } void SetKnownGlobalTarget(Handle<JSFunction> target) { target_ = target; set_is_monomorphic(true); } private: friend class AstNodeFactory; CallNew(Expression* expression, ZoneList<Expression*>* arguments, int pos) : Expression(pos, kCallNew), expression_(expression), arguments_(arguments) { bit_field_ |= IsMonomorphicField::encode(false); } static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } FeedbackVectorSlot callnew_feedback_slot_; Expression* expression_; ZoneList<Expression*>* arguments_; Handle<JSFunction> target_; Handle<AllocationSite> allocation_site_; class IsMonomorphicField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {}; }; // The CallRuntime class does not represent any official JavaScript // language construct. Instead it is used to call a C or JS function // with a set of arguments. This is used from the builtins that are // implemented in JavaScript (see "v8natives.js"). class CallRuntime final : public Expression { public: ZoneList<Expression*>* arguments() const { return arguments_; } bool is_jsruntime() const { return function_ == NULL; } int context_index() const { DCHECK(is_jsruntime()); return context_index_; } void set_context_index(int index) { DCHECK(is_jsruntime()); context_index_ = index; } const Runtime::Function* function() const { DCHECK(!is_jsruntime()); return function_; } static int num_ids() { return parent_num_ids() + 1; } BailoutId CallId() { return BailoutId(local_id(0)); } const char* debug_name() { return is_jsruntime() ? "(context function)" : function_->name; } private: friend class AstNodeFactory; CallRuntime(const Runtime::Function* function, ZoneList<Expression*>* arguments, int pos) : Expression(pos, kCallRuntime), function_(function), arguments_(arguments) {} CallRuntime(int context_index, ZoneList<Expression*>* arguments, int pos) : Expression(pos, kCallRuntime), context_index_(context_index), function_(NULL), arguments_(arguments) {} static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } int context_index_; const Runtime::Function* function_; ZoneList<Expression*>* arguments_; }; class UnaryOperation final : public Expression { public: Token::Value op() const { return OperatorField::decode(bit_field_); } Expression* expression() const { return expression_; } void set_expression(Expression* e) { expression_ = e; } // For unary not (Token::NOT), the AST ids where true and false will // actually be materialized, respectively. static int num_ids() { return parent_num_ids() + 2; } BailoutId MaterializeTrueId() const { return BailoutId(local_id(0)); } BailoutId MaterializeFalseId() const { return BailoutId(local_id(1)); } void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle); private: friend class AstNodeFactory; UnaryOperation(Token::Value op, Expression* expression, int pos) : Expression(pos, kUnaryOperation), expression_(expression) { bit_field_ |= OperatorField::encode(op); DCHECK(Token::IsUnaryOp(op)); } static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Expression* expression_; class OperatorField : public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {}; }; class BinaryOperation final : public Expression { public: Token::Value op() const { return OperatorField::decode(bit_field_); } Expression* left() const { return left_; } void set_left(Expression* e) { left_ = e; } Expression* right() const { return right_; } void set_right(Expression* e) { right_ = e; } Handle<AllocationSite> allocation_site() const { return allocation_site_; } void set_allocation_site(Handle<AllocationSite> allocation_site) { allocation_site_ = allocation_site; } void MarkTail() { switch (op()) { case Token::COMMA: case Token::AND: case Token::OR: right_->MarkTail(); default: break; } } // The short-circuit logical operations need an AST ID for their // right-hand subexpression. static int num_ids() { return parent_num_ids() + 2; } BailoutId RightId() const { return BailoutId(local_id(0)); } // BinaryOperation will have both a slot in the feedback vector and the // TypeFeedbackId to record the type information. TypeFeedbackId is used // by full codegen and the feedback vector slot is used by interpreter. void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); FeedbackVectorSlot BinaryOperationFeedbackSlot() const { return type_feedback_slot_; } TypeFeedbackId BinaryOperationFeedbackId() const { return TypeFeedbackId(local_id(1)); } Maybe<int> fixed_right_arg() const { return has_fixed_right_arg_ ? Just(fixed_right_arg_value_) : Nothing<int>(); } void set_fixed_right_arg(Maybe<int> arg) { has_fixed_right_arg_ = arg.IsJust(); if (arg.IsJust()) fixed_right_arg_value_ = arg.FromJust(); } void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle); private: friend class AstNodeFactory; BinaryOperation(Token::Value op, Expression* left, Expression* right, int pos) : Expression(pos, kBinaryOperation), has_fixed_right_arg_(false), fixed_right_arg_value_(0), left_(left), right_(right) { bit_field_ |= OperatorField::encode(op); DCHECK(Token::IsBinaryOp(op)); } static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } // TODO(rossberg): the fixed arg should probably be represented as a Constant // type for the RHS. Currenty it's actually a Maybe<int> bool has_fixed_right_arg_; int fixed_right_arg_value_; Expression* left_; Expression* right_; Handle<AllocationSite> allocation_site_; FeedbackVectorSlot type_feedback_slot_; class OperatorField : public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {}; }; class CountOperation final : public Expression { public: bool is_prefix() const { return IsPrefixField::decode(bit_field_); } bool is_postfix() const { return !is_prefix(); } Token::Value op() const { return TokenField::decode(bit_field_); } Token::Value binary_op() { return (op() == Token::INC) ? Token::ADD : Token::SUB; } Expression* expression() const { return expression_; } void set_expression(Expression* e) { expression_ = e; } bool IsMonomorphic() const { return receiver_types_.length() == 1; } SmallMapList* GetReceiverTypes() { return &receiver_types_; } IcCheckType GetKeyType() const { return KeyTypeField::decode(bit_field_); } KeyedAccessStoreMode GetStoreMode() const { return StoreModeField::decode(bit_field_); } AstType* type() const { return type_; } void set_key_type(IcCheckType type) { bit_field_ = KeyTypeField::update(bit_field_, type); } void set_store_mode(KeyedAccessStoreMode mode) { bit_field_ = StoreModeField::update(bit_field_, mode); } void set_type(AstType* type) { type_ = type; } static int num_ids() { return parent_num_ids() + 4; } BailoutId AssignmentId() const { return BailoutId(local_id(0)); } BailoutId ToNumberId() const { return BailoutId(local_id(1)); } TypeFeedbackId CountBinOpFeedbackId() const { return TypeFeedbackId(local_id(2)); } TypeFeedbackId CountStoreFeedbackId() const { return TypeFeedbackId(local_id(3)); } // Feedback slot for binary operation is only used by ignition. FeedbackVectorSlot CountBinaryOpFeedbackSlot() const { return binary_operation_slot_; } void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); FeedbackVectorSlot CountSlot() const { return slot_; } private: friend class AstNodeFactory; CountOperation(Token::Value op, bool is_prefix, Expression* expr, int pos) : Expression(pos, kCountOperation), type_(NULL), expression_(expr) { bit_field_ |= IsPrefixField::encode(is_prefix) | KeyTypeField::encode(ELEMENT) | StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op); } static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } class IsPrefixField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {}; class KeyTypeField : public BitField<IcCheckType, IsPrefixField::kNext, 1> {}; class StoreModeField : public BitField<KeyedAccessStoreMode, KeyTypeField::kNext, 3> {}; class TokenField : public BitField<Token::Value, StoreModeField::kNext, 7> {}; FeedbackVectorSlot slot_; FeedbackVectorSlot binary_operation_slot_; AstType* type_; Expression* expression_; SmallMapList receiver_types_; }; class CompareOperation final : public Expression { public: Token::Value op() const { return OperatorField::decode(bit_field_); } Expression* left() const { return left_; } Expression* right() const { return right_; } void set_left(Expression* e) { left_ = e; } void set_right(Expression* e) { right_ = e; } // Type feedback information. static int num_ids() { return parent_num_ids() + 1; } TypeFeedbackId CompareOperationFeedbackId() const { return TypeFeedbackId(local_id(0)); } AstType* combined_type() const { return combined_type_; } void set_combined_type(AstType* type) { combined_type_ = type; } // CompareOperation will have both a slot in the feedback vector and the // TypeFeedbackId to record the type information. TypeFeedbackId is used // by full codegen and the feedback vector slot is used by interpreter. void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); FeedbackVectorSlot CompareOperationFeedbackSlot() const { return type_feedback_slot_; } // Match special cases. bool IsLiteralCompareTypeof(Expression** expr, Handle<String>* check); bool IsLiteralCompareUndefined(Expression** expr); bool IsLiteralCompareNull(Expression** expr); private: friend class AstNodeFactory; CompareOperation(Token::Value op, Expression* left, Expression* right, int pos) : Expression(pos, kCompareOperation), left_(left), right_(right), combined_type_(AstType::None()) { bit_field_ |= OperatorField::encode(op); DCHECK(Token::IsCompareOp(op)); } static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Expression* left_; Expression* right_; AstType* combined_type_; FeedbackVectorSlot type_feedback_slot_; class OperatorField : public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {}; }; class Spread final : public Expression { public: Expression* expression() const { return expression_; } void set_expression(Expression* e) { expression_ = e; } int expression_position() const { return expr_pos_; } static int num_ids() { return parent_num_ids(); } private: friend class AstNodeFactory; Spread(Expression* expression, int pos, int expr_pos) : Expression(pos, kSpread), expr_pos_(expr_pos), expression_(expression) {} static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } int expr_pos_; Expression* expression_; }; class Conditional final : public Expression { public: Expression* condition() const { return condition_; } Expression* then_expression() const { return then_expression_; } Expression* else_expression() const { return else_expression_; } void set_condition(Expression* e) { condition_ = e; } void set_then_expression(Expression* e) { then_expression_ = e; } void set_else_expression(Expression* e) { else_expression_ = e; } void MarkTail() { then_expression_->MarkTail(); else_expression_->MarkTail(); } static int num_ids() { return parent_num_ids() + 2; } BailoutId ThenId() const { return BailoutId(local_id(0)); } BailoutId ElseId() const { return BailoutId(local_id(1)); } private: friend class AstNodeFactory; Conditional(Expression* condition, Expression* then_expression, Expression* else_expression, int position) : Expression(position, kConditional), condition_(condition), then_expression_(then_expression), else_expression_(else_expression) {} static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Expression* condition_; Expression* then_expression_; Expression* else_expression_; }; class Assignment final : public Expression { public: Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; } Token::Value binary_op() const; Token::Value op() const { return TokenField::decode(bit_field_); } Expression* target() const { return target_; } Expression* value() const { return value_; } void set_target(Expression* e) { target_ = e; } void set_value(Expression* e) { value_ = e; } BinaryOperation* binary_operation() const { return binary_operation_; } // This check relies on the definition order of token in token.h. bool is_compound() const { return op() > Token::ASSIGN; } static int num_ids() { return parent_num_ids() + 2; } BailoutId AssignmentId() const { return BailoutId(local_id(0)); } // Type feedback information. TypeFeedbackId AssignmentFeedbackId() { return TypeFeedbackId(local_id(1)); } bool IsUninitialized() const { return IsUninitializedField::decode(bit_field_); } bool HasNoTypeInformation() { return IsUninitializedField::decode(bit_field_); } bool IsMonomorphic() const { return receiver_types_.length() == 1; } SmallMapList* GetReceiverTypes() { return &receiver_types_; } IcCheckType GetKeyType() const { return KeyTypeField::decode(bit_field_); } KeyedAccessStoreMode GetStoreMode() const { return StoreModeField::decode(bit_field_); } void set_is_uninitialized(bool b) { bit_field_ = IsUninitializedField::update(bit_field_, b); } void set_key_type(IcCheckType key_type) { bit_field_ = KeyTypeField::update(bit_field_, key_type); } void set_store_mode(KeyedAccessStoreMode mode) { bit_field_ = StoreModeField::update(bit_field_, mode); } void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); FeedbackVectorSlot AssignmentSlot() const { return slot_; } private: friend class AstNodeFactory; Assignment(Token::Value op, Expression* target, Expression* value, int pos); static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } class IsUninitializedField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {}; class KeyTypeField : public BitField<IcCheckType, IsUninitializedField::kNext, 1> {}; class StoreModeField : public BitField<KeyedAccessStoreMode, KeyTypeField::kNext, 3> {}; class TokenField : public BitField<Token::Value, StoreModeField::kNext, 7> {}; FeedbackVectorSlot slot_; Expression* target_; Expression* value_; BinaryOperation* binary_operation_; SmallMapList receiver_types_; }; // The RewritableExpression class is a wrapper for AST nodes that wait // for some potential rewriting. However, even if such nodes are indeed // rewritten, the RewritableExpression wrapper nodes will survive in the // final AST and should be just ignored, i.e., they should be treated as // equivalent to the wrapped nodes. For this reason and to simplify later // phases, RewritableExpressions are considered as exceptions of AST nodes // in the following sense: // // 1. IsRewritableExpression and AsRewritableExpression behave as usual. // 2. All other Is* and As* methods are practically delegated to the // wrapped node, i.e. IsArrayLiteral() will return true iff the // wrapped node is an array literal. // // Furthermore, an invariant that should be respected is that the wrapped // node is not a RewritableExpression. class RewritableExpression final : public Expression { public: Expression* expression() const { return expr_; } bool is_rewritten() const { return IsRewrittenField::decode(bit_field_); } void Rewrite(Expression* new_expression) { DCHECK(!is_rewritten()); DCHECK_NOT_NULL(new_expression); DCHECK(!new_expression->IsRewritableExpression()); expr_ = new_expression; bit_field_ = IsRewrittenField::update(bit_field_, true); } static int num_ids() { return parent_num_ids(); } private: friend class AstNodeFactory; explicit RewritableExpression(Expression* expression) : Expression(expression->position(), kRewritableExpression), expr_(expression) { bit_field_ |= IsRewrittenField::encode(false); DCHECK(!expression->IsRewritableExpression()); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } Expression* expr_; class IsRewrittenField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {}; }; // Our Yield is different from the JS yield in that it "returns" its argument as // is, without wrapping it in an iterator result object. Such wrapping, if // desired, must be done beforehand (see the parser). class Yield final : public Expression { public: enum OnException { kOnExceptionThrow, kOnExceptionRethrow }; Expression* generator_object() const { return generator_object_; } Expression* expression() const { return expression_; } OnException on_exception() const { return OnExceptionField::decode(bit_field_); } bool rethrow_on_exception() const { return on_exception() == kOnExceptionRethrow; } int yield_id() const { return yield_id_; } void set_generator_object(Expression* e) { generator_object_ = e; } void set_expression(Expression* e) { expression_ = e; } void set_yield_id(int yield_id) { yield_id_ = yield_id; } private: friend class AstNodeFactory; Yield(Expression* generator_object, Expression* expression, int pos, OnException on_exception) : Expression(pos, kYield), yield_id_(-1), generator_object_(generator_object), expression_(expression) { bit_field_ |= OnExceptionField::encode(on_exception); } int yield_id_; Expression* generator_object_; Expression* expression_; class OnExceptionField : public BitField<OnException, Expression::kNextBitFieldIndex, 1> {}; }; class Throw final : public Expression { public: Expression* exception() const { return exception_; } void set_exception(Expression* e) { exception_ = e; } private: friend class AstNodeFactory; Throw(Expression* exception, int pos) : Expression(pos, kThrow), exception_(exception) {} Expression* exception_; }; class FunctionLiteral final : public Expression { public: enum FunctionType { kAnonymousExpression, kNamedExpression, kDeclaration, kAccessorOrMethod }; enum ParameterFlag { kNoDuplicateParameters, kHasDuplicateParameters }; enum EagerCompileHint { kShouldEagerCompile, kShouldLazyCompile }; Handle<String> name() const { return raw_name_->string(); } const AstString* raw_name() const { return raw_name_; } void set_raw_name(const AstString* name) { raw_name_ = name; } DeclarationScope* scope() const { return scope_; } ZoneList<Statement*>* body() const { return body_; } void set_function_token_position(int pos) { function_token_position_ = pos; } int function_token_position() const { return function_token_position_; } int start_position() const; int end_position() const; int SourceSize() const { return end_position() - start_position(); } bool is_declaration() const { return function_type() == kDeclaration; } bool is_named_expression() const { return function_type() == kNamedExpression; } bool is_anonymous_expression() const { return function_type() == kAnonymousExpression; } LanguageMode language_mode() const; static bool NeedsHomeObject(Expression* expr); int materialized_literal_count() { return materialized_literal_count_; } int expected_property_count() { return expected_property_count_; } int parameter_count() { return parameter_count_; } int function_length() { return function_length_; } bool AllowsLazyCompilation(); Handle<String> debug_name() const { if (raw_name_ != NULL && !raw_name_->IsEmpty()) { return raw_name_->string(); } return inferred_name(); } Handle<String> inferred_name() const { if (!inferred_name_.is_null()) { DCHECK(raw_inferred_name_ == NULL); return inferred_name_; } if (raw_inferred_name_ != NULL) { return raw_inferred_name_->string(); } UNREACHABLE(); return Handle<String>(); } // Only one of {set_inferred_name, set_raw_inferred_name} should be called. void set_inferred_name(Handle<String> inferred_name) { DCHECK(!inferred_name.is_null()); inferred_name_ = inferred_name; DCHECK(raw_inferred_name_== NULL || raw_inferred_name_->IsEmpty()); raw_inferred_name_ = NULL; } void set_raw_inferred_name(const AstString* raw_inferred_name) { DCHECK(raw_inferred_name != NULL); raw_inferred_name_ = raw_inferred_name; DCHECK(inferred_name_.is_null()); inferred_name_ = Handle<String>(); } bool pretenure() const { return Pretenure::decode(bit_field_); } void set_pretenure() { bit_field_ = Pretenure::update(bit_field_, true); } bool has_duplicate_parameters() const { return HasDuplicateParameters::decode(bit_field_); } bool is_function() const { return IsFunction::decode(bit_field_); } // This is used as a heuristic on when to eagerly compile a function // literal. We consider the following constructs as hints that the // function will be called immediately: // - (function() { ... })(); // - var x = function() { ... }(); bool ShouldEagerCompile() const; void SetShouldEagerCompile(); // A hint that we expect this function to be called (exactly) once, // i.e. we suspect it's an initialization function. bool should_be_used_once_hint() const { return ShouldNotBeUsedOnceHintField::decode(bit_field_); } void set_should_be_used_once_hint() { bit_field_ = ShouldNotBeUsedOnceHintField::update(bit_field_, true); } FunctionType function_type() const { return FunctionTypeBits::decode(bit_field_); } FunctionKind kind() const; int ast_node_count() { return ast_properties_.node_count(); } AstProperties::Flags flags() const { return ast_properties_.flags(); } void set_ast_properties(AstProperties* ast_properties) { ast_properties_ = *ast_properties; } const FeedbackVectorSpec* feedback_vector_spec() const { return ast_properties_.get_spec(); } bool dont_optimize() { return dont_optimize_reason() != kNoReason; } BailoutReason dont_optimize_reason() { return DontOptimizeReasonField::decode(bit_field_); } void set_dont_optimize_reason(BailoutReason reason) { bit_field_ = DontOptimizeReasonField::update(bit_field_, reason); } bool IsAnonymousFunctionDefinition() const { return is_anonymous_expression(); } int yield_count() { return yield_count_; } void set_yield_count(int yield_count) { yield_count_ = yield_count; } bool requires_class_field_init() { return RequiresClassFieldInit::decode(bit_field_); } void set_requires_class_field_init(bool requires_class_field_init) { bit_field_ = RequiresClassFieldInit::update(bit_field_, requires_class_field_init); } bool is_class_field_initializer() { return IsClassFieldInitializer::decode(bit_field_); } void set_is_class_field_initializer(bool is_class_field_initializer) { bit_field_ = IsClassFieldInitializer::update(bit_field_, is_class_field_initializer); } int return_position() { return std::max(start_position(), end_position() - (has_braces_ ? 1 : 0)); } private: friend class AstNodeFactory; FunctionLiteral(Zone* zone, const AstString* name, AstValueFactory* ast_value_factory, DeclarationScope* scope, ZoneList<Statement*>* body, int materialized_literal_count, int expected_property_count, int parameter_count, int function_length, FunctionType function_type, ParameterFlag has_duplicate_parameters, EagerCompileHint eager_compile_hint, int position, bool is_function, bool has_braces) : Expression(position, kFunctionLiteral), materialized_literal_count_(materialized_literal_count), expected_property_count_(expected_property_count), parameter_count_(parameter_count), function_length_(function_length), function_token_position_(kNoSourcePosition), yield_count_(0), has_braces_(has_braces), raw_name_(name), scope_(scope), body_(body), raw_inferred_name_(ast_value_factory->empty_string()), ast_properties_(zone) { bit_field_ |= FunctionTypeBits::encode(function_type) | Pretenure::encode(false) | HasDuplicateParameters::encode(has_duplicate_parameters == kHasDuplicateParameters) | IsFunction::encode(is_function) | RequiresClassFieldInit::encode(false) | ShouldNotBeUsedOnceHintField::encode(false) | DontOptimizeReasonField::encode(kNoReason) | IsClassFieldInitializer::encode(false); if (eager_compile_hint == kShouldEagerCompile) SetShouldEagerCompile(); } class FunctionTypeBits : public BitField<FunctionType, Expression::kNextBitFieldIndex, 2> {}; class Pretenure : public BitField<bool, FunctionTypeBits::kNext, 1> {}; class HasDuplicateParameters : public BitField<bool, Pretenure::kNext, 1> {}; class IsFunction : public BitField<bool, HasDuplicateParameters::kNext, 1> {}; class ShouldNotBeUsedOnceHintField : public BitField<bool, IsFunction::kNext, 1> {}; class RequiresClassFieldInit : public BitField<bool, ShouldNotBeUsedOnceHintField::kNext, 1> {}; class IsClassFieldInitializer : public BitField<bool, RequiresClassFieldInit::kNext, 1> {}; class DontOptimizeReasonField : public BitField<BailoutReason, IsClassFieldInitializer::kNext, 8> {}; int materialized_literal_count_; int expected_property_count_; int parameter_count_; int function_length_; int function_token_position_; int yield_count_; bool has_braces_; const AstString* raw_name_; DeclarationScope* scope_; ZoneList<Statement*>* body_; const AstString* raw_inferred_name_; Handle<String> inferred_name_; AstProperties ast_properties_; }; // Property is used for passing information // about a class literal's properties from the parser to the code generator. class ClassLiteralProperty final : public LiteralProperty { public: enum Kind : uint8_t { METHOD, GETTER, SETTER, FIELD }; Kind kind() const { return kind_; } bool is_static() const { return is_static_; } private: friend class AstNodeFactory; ClassLiteralProperty(Expression* key, Expression* value, Kind kind, bool is_static, bool is_computed_name); Kind kind_; bool is_static_; }; class ClassLiteral final : public Expression { public: typedef ClassLiteralProperty Property; VariableProxy* class_variable_proxy() const { return class_variable_proxy_; } Expression* extends() const { return extends_; } void set_extends(Expression* e) { extends_ = e; } FunctionLiteral* constructor() const { return constructor_; } void set_constructor(FunctionLiteral* f) { constructor_ = f; } ZoneList<Property*>* properties() const { return properties_; } int start_position() const { return position(); } int end_position() const { return end_position_; } VariableProxy* static_initializer_proxy() const { return static_initializer_proxy_; } void set_static_initializer_proxy(VariableProxy* proxy) { static_initializer_proxy_ = proxy; } BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); } BailoutId PrototypeId() { return BailoutId(local_id(1)); } // Return an AST id for a property that is used in simulate instructions. BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 2)); } // Unlike other AST nodes, this number of bailout IDs allocated for an // ClassLiteral can vary, so num_ids() is not a static method. int num_ids() const { return parent_num_ids() + 2 + properties()->length(); } // Object literals need one feedback slot for each non-trivial value, as well // as some slots for home objects. void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache); bool NeedsProxySlot() const { return class_variable_proxy() != nullptr && class_variable_proxy()->var()->IsUnallocated(); } FeedbackVectorSlot PrototypeSlot() const { return prototype_slot_; } FeedbackVectorSlot ProxySlot() const { return proxy_slot_; } private: friend class AstNodeFactory; ClassLiteral(VariableProxy* class_variable_proxy, Expression* extends, FunctionLiteral* constructor, ZoneList<Property*>* properties, int start_position, int end_position) : Expression(start_position, kClassLiteral), end_position_(end_position), class_variable_proxy_(class_variable_proxy), extends_(extends), constructor_(constructor), properties_(properties), static_initializer_proxy_(nullptr) {} static int parent_num_ids() { return Expression::num_ids(); } int local_id(int n) const { return base_id() + parent_num_ids() + n; } int end_position_; FeedbackVectorSlot prototype_slot_; FeedbackVectorSlot proxy_slot_; VariableProxy* class_variable_proxy_; Expression* extends_; FunctionLiteral* constructor_; ZoneList<Property*>* properties_; VariableProxy* static_initializer_proxy_; }; class NativeFunctionLiteral final : public Expression { public: Handle<String> name() const { return name_->string(); } v8::Extension* extension() const { return extension_; } private: friend class AstNodeFactory; NativeFunctionLiteral(const AstRawString* name, v8::Extension* extension, int pos) : Expression(pos, kNativeFunctionLiteral), name_(name), extension_(extension) {} const AstRawString* name_; v8::Extension* extension_; }; class ThisFunction final : public Expression { private: friend class AstNodeFactory; explicit ThisFunction(int pos) : Expression(pos, kThisFunction) {} }; class SuperPropertyReference final : public Expression { public: VariableProxy* this_var() const { return this_var_; } void set_this_var(VariableProxy* v) { this_var_ = v; } Expression* home_object() const { return home_object_; } void set_home_object(Expression* e) { home_object_ = e; } private: friend class AstNodeFactory; SuperPropertyReference(VariableProxy* this_var, Expression* home_object, int pos) : Expression(pos, kSuperPropertyReference), this_var_(this_var), home_object_(home_object) { DCHECK(this_var->is_this()); DCHECK(home_object->IsProperty()); } VariableProxy* this_var_; Expression* home_object_; }; class SuperCallReference final : public Expression { public: VariableProxy* this_var() const { return this_var_; } void set_this_var(VariableProxy* v) { this_var_ = v; } VariableProxy* new_target_var() const { return new_target_var_; } void set_new_target_var(VariableProxy* v) { new_target_var_ = v; } VariableProxy* this_function_var() const { return this_function_var_; } void set_this_function_var(VariableProxy* v) { this_function_var_ = v; } private: friend class AstNodeFactory; SuperCallReference(VariableProxy* this_var, VariableProxy* new_target_var, VariableProxy* this_function_var, int pos) : Expression(pos, kSuperCallReference), this_var_(this_var), new_target_var_(new_target_var), this_function_var_(this_function_var) { DCHECK(this_var->is_this()); DCHECK(new_target_var->raw_name()->IsOneByteEqualTo(".new.target")); DCHECK(this_function_var->raw_name()->IsOneByteEqualTo(".this_function")); } VariableProxy* this_var_; VariableProxy* new_target_var_; VariableProxy* this_function_var_; }; // This class is produced when parsing the () in arrow functions without any // arguments and is not actually a valid expression. class EmptyParentheses final : public Expression { private: friend class AstNodeFactory; explicit EmptyParentheses(int pos) : Expression(pos, kEmptyParentheses) {} }; // ---------------------------------------------------------------------------- // Basic visitor // Sub-class should parametrize AstVisitor with itself, e.g.: // class SpecificVisitor : public AstVisitor<SpecificVisitor> { ... } template <class Subclass> class AstVisitor BASE_EMBEDDED { public: void Visit(AstNode* node) { impl()->Visit(node); } void VisitDeclarations(Declaration::List* declarations) { for (Declaration* decl : *declarations) Visit(decl); } void VisitStatements(ZoneList<Statement*>* statements) { for (int i = 0; i < statements->length(); i++) { Statement* stmt = statements->at(i); Visit(stmt); if (stmt->IsJump()) break; } } void VisitExpressions(ZoneList<Expression*>* expressions) { for (int i = 0; i < expressions->length(); i++) { // The variable statement visiting code may pass NULL expressions // to this code. Maybe this should be handled by introducing an // undefined expression or literal? Revisit this code if this // changes Expression* expression = expressions->at(i); if (expression != NULL) Visit(expression); } } protected: Subclass* impl() { return static_cast<Subclass*>(this); } }; #define GENERATE_VISIT_CASE(NodeType) \ case AstNode::k##NodeType: \ return this->impl()->Visit##NodeType(static_cast<NodeType*>(node)); #define GENERATE_AST_VISITOR_SWITCH() \ switch (node->node_type()) { \ AST_NODE_LIST(GENERATE_VISIT_CASE) \ } #define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \ public: \ void VisitNoStackOverflowCheck(AstNode* node) { \ GENERATE_AST_VISITOR_SWITCH() \ } \ \ void Visit(AstNode* node) { \ if (CheckStackOverflow()) return; \ VisitNoStackOverflowCheck(node); \ } \ \ void SetStackOverflow() { stack_overflow_ = true; } \ void ClearStackOverflow() { stack_overflow_ = false; } \ bool HasStackOverflow() const { return stack_overflow_; } \ \ bool CheckStackOverflow() { \ if (stack_overflow_) return true; \ if (GetCurrentStackPosition() < stack_limit_) { \ stack_overflow_ = true; \ return true; \ } \ return false; \ } \ \ private: \ void InitializeAstVisitor(Isolate* isolate) { \ stack_limit_ = isolate->stack_guard()->real_climit(); \ stack_overflow_ = false; \ } \ \ void InitializeAstVisitor(uintptr_t stack_limit) { \ stack_limit_ = stack_limit; \ stack_overflow_ = false; \ } \ \ uintptr_t stack_limit_; \ bool stack_overflow_ #define DEFINE_AST_VISITOR_MEMBERS_WITHOUT_STACKOVERFLOW() \ public: \ void Visit(AstNode* node) { GENERATE_AST_VISITOR_SWITCH() } \ \ private: #define DEFINE_AST_REWRITER_SUBCLASS_MEMBERS() \ public: \ AstNode* Rewrite(AstNode* node) { \ DCHECK_NULL(replacement_); \ DCHECK_NOT_NULL(node); \ Visit(node); \ if (HasStackOverflow()) return node; \ if (replacement_ == nullptr) return node; \ AstNode* result = replacement_; \ replacement_ = nullptr; \ return result; \ } \ \ private: \ void InitializeAstRewriter(Isolate* isolate) { \ InitializeAstVisitor(isolate); \ replacement_ = nullptr; \ } \ \ void InitializeAstRewriter(uintptr_t stack_limit) { \ InitializeAstVisitor(stack_limit); \ replacement_ = nullptr; \ } \ \ DEFINE_AST_VISITOR_SUBCLASS_MEMBERS(); \ \ protected: \ AstNode* replacement_ // Generic macro for rewriting things; `GET` is the expression to be // rewritten; `SET` is a command that should do the rewriting, i.e. // something sensible with the variable called `replacement`. #define AST_REWRITE(Type, GET, SET) \ do { \ DCHECK(!HasStackOverflow()); \ DCHECK_NULL(replacement_); \ Visit(GET); \ if (HasStackOverflow()) return; \ if (replacement_ == nullptr) break; \ Type* replacement = reinterpret_cast<Type*>(replacement_); \ do { \ SET; \ } while (false); \ replacement_ = nullptr; \ } while (false) // Macro for rewriting object properties; it assumes that `object` has // `property` with a public getter and setter. #define AST_REWRITE_PROPERTY(Type, object, property) \ do { \ auto _obj = (object); \ AST_REWRITE(Type, _obj->property(), _obj->set_##property(replacement)); \ } while (false) // Macro for rewriting list elements; it assumes that `list` has methods // `at` and `Set`. #define AST_REWRITE_LIST_ELEMENT(Type, list, index) \ do { \ auto _list = (list); \ auto _index = (index); \ AST_REWRITE(Type, _list->at(_index), _list->Set(_index, replacement)); \ } while (false) // ---------------------------------------------------------------------------- // AstNode factory class AstNodeFactory final BASE_EMBEDDED { public: explicit AstNodeFactory(AstValueFactory* ast_value_factory) : zone_(nullptr), ast_value_factory_(ast_value_factory) { if (ast_value_factory != nullptr) { zone_ = ast_value_factory->zone(); } } AstValueFactory* ast_value_factory() const { return ast_value_factory_; } void set_ast_value_factory(AstValueFactory* ast_value_factory) { ast_value_factory_ = ast_value_factory; zone_ = ast_value_factory->zone(); } VariableDeclaration* NewVariableDeclaration(VariableProxy* proxy, Scope* scope, int pos) { return new (zone_) VariableDeclaration(proxy, scope, pos); } FunctionDeclaration* NewFunctionDeclaration(VariableProxy* proxy, FunctionLiteral* fun, Scope* scope, int pos) { return new (zone_) FunctionDeclaration(proxy, fun, scope, pos); } Block* NewBlock(ZoneList<const AstRawString*>* labels, int capacity, bool ignore_completion_value, int pos) { return new (zone_) Block(zone_, labels, capacity, ignore_completion_value, pos); } #define STATEMENT_WITH_LABELS(NodeType) \ NodeType* New##NodeType(ZoneList<const AstRawString*>* labels, int pos) { \ return new (zone_) NodeType(labels, pos); \ } STATEMENT_WITH_LABELS(DoWhileStatement) STATEMENT_WITH_LABELS(WhileStatement) STATEMENT_WITH_LABELS(ForStatement) STATEMENT_WITH_LABELS(SwitchStatement) #undef STATEMENT_WITH_LABELS ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode, ZoneList<const AstRawString*>* labels, int pos) { switch (visit_mode) { case ForEachStatement::ENUMERATE: { return new (zone_) ForInStatement(labels, pos); } case ForEachStatement::ITERATE: { return new (zone_) ForOfStatement(labels, pos); } } UNREACHABLE(); return NULL; } ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) { return new (zone_) ExpressionStatement(expression, pos); } ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) { return new (zone_) ContinueStatement(target, pos); } BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) { return new (zone_) BreakStatement(target, pos); } ReturnStatement* NewReturnStatement(Expression* expression, int pos) { return new (zone_) ReturnStatement(expression, pos); } WithStatement* NewWithStatement(Scope* scope, Expression* expression, Statement* statement, int pos) { return new (zone_) WithStatement(scope, expression, statement, pos); } IfStatement* NewIfStatement(Expression* condition, Statement* then_statement, Statement* else_statement, int pos) { return new (zone_) IfStatement(condition, then_statement, else_statement, pos); } TryCatchStatement* NewTryCatchStatement(Block* try_block, Scope* scope, Variable* variable, Block* catch_block, int pos) { return new (zone_) TryCatchStatement( try_block, scope, variable, catch_block, HandlerTable::CAUGHT, pos); } TryCatchStatement* NewTryCatchStatementForReThrow(Block* try_block, Scope* scope, Variable* variable, Block* catch_block, int pos) { return new (zone_) TryCatchStatement( try_block, scope, variable, catch_block, HandlerTable::UNCAUGHT, pos); } TryCatchStatement* NewTryCatchStatementForPromiseReject(Block* try_block, Scope* scope, Variable* variable, Block* catch_block, int pos) { return new (zone_) TryCatchStatement( try_block, scope, variable, catch_block, HandlerTable::PROMISE, pos); } TryCatchStatement* NewTryCatchStatementForDesugaring(Block* try_block, Scope* scope, Variable* variable, Block* catch_block, int pos) { return new (zone_) TryCatchStatement( try_block, scope, variable, catch_block, HandlerTable::DESUGARING, pos); } TryCatchStatement* NewTryCatchStatementForAsyncAwait(Block* try_block, Scope* scope, Variable* variable, Block* catch_block, int pos) { return new (zone_) TryCatchStatement(try_block, scope, variable, catch_block, HandlerTable::ASYNC_AWAIT, pos); } TryFinallyStatement* NewTryFinallyStatement(Block* try_block, Block* finally_block, int pos) { return new (zone_) TryFinallyStatement(try_block, finally_block, pos); } DebuggerStatement* NewDebuggerStatement(int pos) { return new (zone_) DebuggerStatement(pos); } EmptyStatement* NewEmptyStatement(int pos) { return new (zone_) EmptyStatement(pos); } SloppyBlockFunctionStatement* NewSloppyBlockFunctionStatement(Scope* scope) { return new (zone_) SloppyBlockFunctionStatement( NewEmptyStatement(kNoSourcePosition), scope); } CaseClause* NewCaseClause( Expression* label, ZoneList<Statement*>* statements, int pos) { return new (zone_) CaseClause(label, statements, pos); } Literal* NewStringLiteral(const AstRawString* string, int pos) { return new (zone_) Literal(ast_value_factory_->NewString(string), pos); } // A JavaScript symbol (ECMA-262 edition 6). Literal* NewSymbolLiteral(const char* name, int pos) { return new (zone_) Literal(ast_value_factory_->NewSymbol(name), pos); } Literal* NewNumberLiteral(double number, int pos, bool with_dot = false) { return new (zone_) Literal(ast_value_factory_->NewNumber(number, with_dot), pos); } Literal* NewSmiLiteral(uint32_t number, int pos) { return new (zone_) Literal(ast_value_factory_->NewSmi(number), pos); } Literal* NewBooleanLiteral(bool b, int pos) { return new (zone_) Literal(ast_value_factory_->NewBoolean(b), pos); } Literal* NewNullLiteral(int pos) { return new (zone_) Literal(ast_value_factory_->NewNull(), pos); } Literal* NewUndefinedLiteral(int pos) { return new (zone_) Literal(ast_value_factory_->NewUndefined(), pos); } Literal* NewTheHoleLiteral(int pos) { return new (zone_) Literal(ast_value_factory_->NewTheHole(), pos); } ObjectLiteral* NewObjectLiteral( ZoneList<ObjectLiteral::Property*>* properties, int literal_index, uint32_t boilerplate_properties, int pos) { return new (zone_) ObjectLiteral(properties, literal_index, boilerplate_properties, pos); } ObjectLiteral::Property* NewObjectLiteralProperty( Expression* key, Expression* value, ObjectLiteralProperty::Kind kind, bool is_computed_name) { return new (zone_) ObjectLiteral::Property(key, value, kind, is_computed_name); } ObjectLiteral::Property* NewObjectLiteralProperty(Expression* key, Expression* value, bool is_computed_name) { return new (zone_) ObjectLiteral::Property(ast_value_factory_, key, value, is_computed_name); } RegExpLiteral* NewRegExpLiteral(const AstRawString* pattern, int flags, int literal_index, int pos) { return new (zone_) RegExpLiteral(pattern, flags, literal_index, pos); } ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values, int literal_index, int pos) { return new (zone_) ArrayLiteral(values, -1, literal_index, pos); } ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values, int first_spread_index, int literal_index, int pos) { return new (zone_) ArrayLiteral(values, first_spread_index, literal_index, pos); } VariableProxy* NewVariableProxy(Variable* var, int start_position = kNoSourcePosition) { return new (zone_) VariableProxy(var, start_position); } VariableProxy* NewVariableProxy(const AstRawString* name, VariableKind variable_kind, int start_position = kNoSourcePosition) { DCHECK_NOT_NULL(name); return new (zone_) VariableProxy(name, variable_kind, start_position); } // Recreates the VariableProxy in this Zone. VariableProxy* CopyVariableProxy(VariableProxy* proxy) { return new (zone_) VariableProxy(proxy); } Property* NewProperty(Expression* obj, Expression* key, int pos) { return new (zone_) Property(obj, key, pos); } Call* NewCall(Expression* expression, ZoneList<Expression*>* arguments, int pos, Call::PossiblyEval possibly_eval = Call::NOT_EVAL) { return new (zone_) Call(expression, arguments, pos, possibly_eval); } CallNew* NewCallNew(Expression* expression, ZoneList<Expression*>* arguments, int pos) { return new (zone_) CallNew(expression, arguments, pos); } CallRuntime* NewCallRuntime(Runtime::FunctionId id, ZoneList<Expression*>* arguments, int pos) { return new (zone_) CallRuntime(Runtime::FunctionForId(id), arguments, pos); } CallRuntime* NewCallRuntime(const Runtime::Function* function, ZoneList<Expression*>* arguments, int pos) { return new (zone_) CallRuntime(function, arguments, pos); } CallRuntime* NewCallRuntime(int context_index, ZoneList<Expression*>* arguments, int pos) { return new (zone_) CallRuntime(context_index, arguments, pos); } UnaryOperation* NewUnaryOperation(Token::Value op, Expression* expression, int pos) { return new (zone_) UnaryOperation(op, expression, pos); } BinaryOperation* NewBinaryOperation(Token::Value op, Expression* left, Expression* right, int pos) { return new (zone_) BinaryOperation(op, left, right, pos); } CountOperation* NewCountOperation(Token::Value op, bool is_prefix, Expression* expr, int pos) { return new (zone_) CountOperation(op, is_prefix, expr, pos); } CompareOperation* NewCompareOperation(Token::Value op, Expression* left, Expression* right, int pos) { return new (zone_) CompareOperation(op, left, right, pos); } Spread* NewSpread(Expression* expression, int pos, int expr_pos) { return new (zone_) Spread(expression, pos, expr_pos); } Conditional* NewConditional(Expression* condition, Expression* then_expression, Expression* else_expression, int position) { return new (zone_) Conditional(condition, then_expression, else_expression, position); } RewritableExpression* NewRewritableExpression(Expression* expression) { DCHECK_NOT_NULL(expression); return new (zone_) RewritableExpression(expression); } Assignment* NewAssignment(Token::Value op, Expression* target, Expression* value, int pos) { DCHECK(Token::IsAssignmentOp(op)); Assignment* assign = new (zone_) Assignment(op, target, value, pos); if (assign->is_compound()) { DCHECK(Token::IsAssignmentOp(op)); assign->binary_operation_ = NewBinaryOperation(assign->binary_op(), target, value, pos + 1); } return assign; } Yield* NewYield(Expression* generator_object, Expression* expression, int pos, Yield::OnException on_exception) { if (!expression) expression = NewUndefinedLiteral(pos); return new (zone_) Yield(generator_object, expression, pos, on_exception); } Throw* NewThrow(Expression* exception, int pos) { return new (zone_) Throw(exception, pos); } FunctionLiteral* NewFunctionLiteral( const AstRawString* name, DeclarationScope* scope, ZoneList<Statement*>* body, int materialized_literal_count, int expected_property_count, int parameter_count, int function_length, FunctionLiteral::ParameterFlag has_duplicate_parameters, FunctionLiteral::FunctionType function_type, FunctionLiteral::EagerCompileHint eager_compile_hint, int position, bool has_braces) { return new (zone_) FunctionLiteral( zone_, name, ast_value_factory_, scope, body, materialized_literal_count, expected_property_count, parameter_count, function_length, function_type, has_duplicate_parameters, eager_compile_hint, position, true, has_braces); } // Creates a FunctionLiteral representing a top-level script, the // result of an eval (top-level or otherwise), or the result of calling // the Function constructor. FunctionLiteral* NewScriptOrEvalFunctionLiteral( DeclarationScope* scope, ZoneList<Statement*>* body, int materialized_literal_count, int expected_property_count, int parameter_count) { return new (zone_) FunctionLiteral( zone_, ast_value_factory_->empty_string(), ast_value_factory_, scope, body, materialized_literal_count, expected_property_count, parameter_count, parameter_count, FunctionLiteral::kAnonymousExpression, FunctionLiteral::kNoDuplicateParameters, FunctionLiteral::kShouldLazyCompile, 0, false, true); } ClassLiteral::Property* NewClassLiteralProperty( Expression* key, Expression* value, ClassLiteralProperty::Kind kind, bool is_static, bool is_computed_name) { return new (zone_) ClassLiteral::Property(key, value, kind, is_static, is_computed_name); } ClassLiteral* NewClassLiteral(VariableProxy* proxy, Expression* extends, FunctionLiteral* constructor, ZoneList<ClassLiteral::Property*>* properties, int start_position, int end_position) { return new (zone_) ClassLiteral(proxy, extends, constructor, properties, start_position, end_position); } NativeFunctionLiteral* NewNativeFunctionLiteral(const AstRawString* name, v8::Extension* extension, int pos) { return new (zone_) NativeFunctionLiteral(name, extension, pos); } DoExpression* NewDoExpression(Block* block, Variable* result_var, int pos) { VariableProxy* result = NewVariableProxy(result_var, pos); return new (zone_) DoExpression(block, result, pos); } ThisFunction* NewThisFunction(int pos) { return new (zone_) ThisFunction(pos); } SuperPropertyReference* NewSuperPropertyReference(VariableProxy* this_var, Expression* home_object, int pos) { return new (zone_) SuperPropertyReference(this_var, home_object, pos); } SuperCallReference* NewSuperCallReference(VariableProxy* this_var, VariableProxy* new_target_var, VariableProxy* this_function_var, int pos) { return new (zone_) SuperCallReference(this_var, new_target_var, this_function_var, pos); } EmptyParentheses* NewEmptyParentheses(int pos) { return new (zone_) EmptyParentheses(pos); } Zone* zone() const { return zone_; } void set_zone(Zone* zone) { zone_ = zone; } // Handles use of temporary zones when parsing inner function bodies. class BodyScope { public: BodyScope(AstNodeFactory* factory, Zone* temp_zone, bool use_temp_zone) : factory_(factory), prev_zone_(factory->zone_) { if (use_temp_zone) { factory->zone_ = temp_zone; } } void Reset() { factory_->zone_ = prev_zone_; } ~BodyScope() { Reset(); } private: AstNodeFactory* factory_; Zone* prev_zone_; }; private: // This zone may be deallocated upon returning from parsing a function body // which we can guarantee is not going to be compiled or have its AST // inspected. // See ParseFunctionLiteral in parser.cc for preconditions. Zone* zone_; AstValueFactory* ast_value_factory_; }; // Type testing & conversion functions overridden by concrete subclasses. // Inline functions for AstNode. #define DECLARE_NODE_FUNCTIONS(type) \ bool AstNode::Is##type() const { \ NodeType mine = node_type(); \ if (mine == AstNode::kRewritableExpression && \ AstNode::k##type != AstNode::kRewritableExpression) \ mine = reinterpret_cast<const RewritableExpression*>(this) \ ->expression() \ ->node_type(); \ return mine == AstNode::k##type; \ } \ type* AstNode::As##type() { \ NodeType mine = node_type(); \ AstNode* result = this; \ if (mine == AstNode::kRewritableExpression && \ AstNode::k##type != AstNode::kRewritableExpression) { \ result = \ reinterpret_cast<const RewritableExpression*>(this)->expression(); \ mine = result->node_type(); \ } \ return mine == AstNode::k##type ? reinterpret_cast<type*>(result) : NULL; \ } \ const type* AstNode::As##type() const { \ NodeType mine = node_type(); \ const AstNode* result = this; \ if (mine == AstNode::kRewritableExpression && \ AstNode::k##type != AstNode::kRewritableExpression) { \ result = \ reinterpret_cast<const RewritableExpression*>(this)->expression(); \ mine = result->node_type(); \ } \ return mine == AstNode::k##type ? reinterpret_cast<const type*>(result) \ : NULL; \ } AST_NODE_LIST(DECLARE_NODE_FUNCTIONS) #undef DECLARE_NODE_FUNCTIONS } // namespace internal } // namespace v8 #endif // V8_AST_AST_H_