// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS64 #include "src/codegen.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { // ----------- S t a t e ------------- // -- a0 : number of arguments excluding receiver // -- a1 : target // -- a3 : new.target // -- sp[0] : last argument // -- ... // -- sp[8 * (argc - 1)] : first argument // -- sp[8 * agrc] : receiver // ----------------------------------- __ AssertFunction(a1); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // JumpToExternalReference expects a0 to contain the number of arguments // including the receiver and the extra arguments. const int num_extra_args = 3; __ Daddu(a0, a0, num_extra_args + 1); // Insert extra arguments. __ SmiTag(a0); __ Push(a0, a1, a3); __ SmiUntag(a0); __ JumpToExternalReference(ExternalReference(address, masm->isolate()), PROTECT, exit_frame_type == BUILTIN_EXIT); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the InternalArray function from the native context. __ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result); } // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the Array function from the native context. __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, a1); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, a4); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, a4, Operand(zero_reg)); __ GetObjectType(a2, a3, a4); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction, a4, Operand(MAP_TYPE)); } // Run the native code for the InternalArray function called as a normal // function. // Tail call a stub. InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code; // Get the Array function. GenerateLoadArrayFunction(masm, a1); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, a4); __ Assert(ne, kUnexpectedInitialMapForArrayFunction1, a4, Operand(zero_reg)); __ GetObjectType(a2, a3, a4); __ Assert(eq, kUnexpectedInitialMapForArrayFunction2, a4, Operand(MAP_TYPE)); } // Run the native code for the Array function called as a normal function. // Tail call a stub. __ mov(a3, a1); __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } // static void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : function // -- cp : context // -- ra : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero-based) // -- sp[argc * 8] : receiver // ----------------------------------- Heap::RootListIndex const root_index = (kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex : Heap::kMinusInfinityValueRootIndex; // Load the accumulator with the default return value (either -Infinity or // +Infinity), with the tagged value in t1 and the double value in f0. __ LoadRoot(t1, root_index); __ ldc1(f0, FieldMemOperand(t1, HeapNumber::kValueOffset)); Label done_loop, loop; __ mov(a3, a0); __ bind(&loop); { // Check if all parameters done. __ Dsubu(a3, a3, Operand(1)); __ Branch(&done_loop, lt, a3, Operand(zero_reg)); // Load the next parameter tagged value into a2. __ Dlsa(at, sp, a3, kPointerSizeLog2); __ ld(a2, MemOperand(at)); // Load the double value of the parameter into f2, maybe converting the // parameter to a number first using the ToNumber builtin if necessary. Label convert, convert_smi, convert_number, done_convert; __ bind(&convert); __ JumpIfSmi(a2, &convert_smi); __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset)); __ JumpIfRoot(a4, Heap::kHeapNumberMapRootIndex, &convert_number); { // Parameter is not a Number, use the ToNumber builtin to convert it. FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(a0); __ SmiTag(a3); __ EnterBuiltinFrame(cp, a1, a0); __ Push(t1, a3); __ mov(a0, a2); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ mov(a2, v0); __ Pop(t1, a3); __ LeaveBuiltinFrame(cp, a1, a0); __ SmiUntag(a3); __ SmiUntag(a0); { // Restore the double accumulator value (f0). Label restore_smi, done_restore; __ JumpIfSmi(t1, &restore_smi); __ ldc1(f0, FieldMemOperand(t1, HeapNumber::kValueOffset)); __ jmp(&done_restore); __ bind(&restore_smi); __ SmiToDoubleFPURegister(t1, f0, a4); __ bind(&done_restore); } } __ jmp(&convert); __ bind(&convert_number); __ ldc1(f2, FieldMemOperand(a2, HeapNumber::kValueOffset)); __ jmp(&done_convert); __ bind(&convert_smi); __ SmiToDoubleFPURegister(a2, f2, a4); __ bind(&done_convert); // Perform the actual comparison with using Min/Max macro instructions the // accumulator value on the left hand side (f0) and the next parameter value // on the right hand side (f2). // We need to work out which HeapNumber (or smi) the result came from. Label compare_nan; __ BranchF(nullptr, &compare_nan, eq, f0, f2); __ Move(a4, f0); if (kind == MathMaxMinKind::kMin) { __ MinNaNCheck_d(f0, f0, f2); } else { DCHECK(kind == MathMaxMinKind::kMax); __ MaxNaNCheck_d(f0, f0, f2); } __ Move(at, f0); __ Branch(&loop, eq, a4, Operand(at)); __ mov(t1, a2); __ jmp(&loop); // At least one side is NaN, which means that the result will be NaN too. __ bind(&compare_nan); __ LoadRoot(t1, Heap::kNanValueRootIndex); __ ldc1(f0, FieldMemOperand(t1, HeapNumber::kValueOffset)); __ jmp(&loop); } __ bind(&done_loop); // Drop all slots, including the receiver. __ Daddu(a0, a0, Operand(1)); __ Dlsa(sp, sp, a0, kPointerSizeLog2); __ Ret(USE_DELAY_SLOT); __ mov(v0, t1); // In delay slot. } // static void Builtins::Generate_NumberConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- cp : context // -- ra : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- // 1. Load the first argument into a0 and get rid of the rest (including the // receiver). Label no_arguments; { __ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg)); __ Dsubu(t1, a0, Operand(1)); // In delay slot. __ mov(t0, a0); // Store argc in t0. __ Dlsa(at, sp, t1, kPointerSizeLog2); __ ld(a0, MemOperand(at)); } // 2a. Convert first argument to number. { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(t0); __ EnterBuiltinFrame(cp, a1, t0); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ LeaveBuiltinFrame(cp, a1, t0); __ SmiUntag(t0); } { // Drop all arguments including the receiver. __ Dlsa(sp, sp, t0, kPointerSizeLog2); __ DropAndRet(1); } // 2b. No arguments, return +0. __ bind(&no_arguments); __ Move(v0, Smi::kZero); __ DropAndRet(1); } void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- a3 : new target // -- cp : context // -- ra : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- // 1. Make sure we operate in the context of the called function. __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // 2. Load the first argument into a0 and get rid of the rest (including the // receiver). { Label no_arguments, done; __ mov(t0, a0); // Store argc in t0. __ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg)); __ Dsubu(a0, a0, Operand(1)); // In delay slot. __ Dlsa(at, sp, a0, kPointerSizeLog2); __ ld(a0, MemOperand(at)); __ jmp(&done); __ bind(&no_arguments); __ Move(a0, Smi::kZero); __ bind(&done); } // 3. Make sure a0 is a number. { Label done_convert; __ JumpIfSmi(a0, &done_convert); __ GetObjectType(a0, a2, a2); __ Branch(&done_convert, eq, a2, Operand(HEAP_NUMBER_TYPE)); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(t0); __ EnterBuiltinFrame(cp, a1, t0); __ Push(a3); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ Move(a0, v0); __ Pop(a3); __ LeaveBuiltinFrame(cp, a1, t0); __ SmiUntag(t0); } __ bind(&done_convert); } // 4. Check if new target and constructor differ. Label drop_frame_and_ret, new_object; __ Branch(&new_object, ne, a1, Operand(a3)); // 5. Allocate a JSValue wrapper for the number. __ AllocateJSValue(v0, a1, a0, a2, t1, &new_object); __ jmp(&drop_frame_and_ret); // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::MANUAL); FastNewObjectStub stub(masm->isolate()); __ SmiTag(t0); __ EnterBuiltinFrame(cp, a1, t0); __ Push(a0); __ CallStub(&stub); __ Pop(a0); __ LeaveBuiltinFrame(cp, a1, t0); __ SmiUntag(t0); } __ sd(a0, FieldMemOperand(v0, JSValue::kValueOffset)); __ bind(&drop_frame_and_ret); { __ Dlsa(sp, sp, t0, kPointerSizeLog2); __ DropAndRet(1); } } // static void Builtins::Generate_StringConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- cp : context // -- ra : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- // 1. Load the first argument into a0 and get rid of the rest (including the // receiver). Label no_arguments; { __ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg)); __ Dsubu(t1, a0, Operand(1)); // In delay slot. __ mov(t0, a0); // Store argc in t0. __ Dlsa(at, sp, t1, kPointerSizeLog2); __ ld(a0, MemOperand(at)); } // 2a. At least one argument, return a0 if it's a string, otherwise // dispatch to appropriate conversion. Label drop_frame_and_ret, to_string, symbol_descriptive_string; { __ JumpIfSmi(a0, &to_string); __ GetObjectType(a0, t1, t1); STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); __ Subu(t1, t1, Operand(FIRST_NONSTRING_TYPE)); __ Branch(&symbol_descriptive_string, eq, t1, Operand(zero_reg)); __ Branch(&to_string, gt, t1, Operand(zero_reg)); __ mov(v0, a0); __ jmp(&drop_frame_and_ret); } // 2b. No arguments, return the empty string (and pop the receiver). __ bind(&no_arguments); { __ LoadRoot(v0, Heap::kempty_stringRootIndex); __ DropAndRet(1); } // 3a. Convert a0 to a string. __ bind(&to_string); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(t0); __ EnterBuiltinFrame(cp, a1, t0); __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET); __ LeaveBuiltinFrame(cp, a1, t0); __ SmiUntag(t0); } __ jmp(&drop_frame_and_ret); // 3b. Convert symbol in a0 to a string. __ bind(&symbol_descriptive_string); { __ Dlsa(sp, sp, t0, kPointerSizeLog2); __ Drop(1); __ Push(a0); __ TailCallRuntime(Runtime::kSymbolDescriptiveString); } __ bind(&drop_frame_and_ret); { __ Dlsa(sp, sp, t0, kPointerSizeLog2); __ DropAndRet(1); } } void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- a3 : new target // -- cp : context // -- ra : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- // 1. Make sure we operate in the context of the called function. __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // 2. Load the first argument into a0 and get rid of the rest (including the // receiver). { Label no_arguments, done; __ mov(t0, a0); // Store argc in t0. __ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg)); __ Dsubu(a0, a0, Operand(1)); __ Dlsa(at, sp, a0, kPointerSizeLog2); __ ld(a0, MemOperand(at)); __ jmp(&done); __ bind(&no_arguments); __ LoadRoot(a0, Heap::kempty_stringRootIndex); __ bind(&done); } // 3. Make sure a0 is a string. { Label convert, done_convert; __ JumpIfSmi(a0, &convert); __ GetObjectType(a0, a2, a2); __ And(t1, a2, Operand(kIsNotStringMask)); __ Branch(&done_convert, eq, t1, Operand(zero_reg)); __ bind(&convert); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(t0); __ EnterBuiltinFrame(cp, a1, t0); __ Push(a3); __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET); __ Move(a0, v0); __ Pop(a3); __ LeaveBuiltinFrame(cp, a1, t0); __ SmiUntag(t0); } __ bind(&done_convert); } // 4. Check if new target and constructor differ. Label drop_frame_and_ret, new_object; __ Branch(&new_object, ne, a1, Operand(a3)); // 5. Allocate a JSValue wrapper for the string. __ AllocateJSValue(v0, a1, a0, a2, t1, &new_object); __ jmp(&drop_frame_and_ret); // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::MANUAL); FastNewObjectStub stub(masm->isolate()); __ SmiTag(t0); __ EnterBuiltinFrame(cp, a1, t0); __ Push(a0); __ CallStub(&stub); __ Pop(a0); __ LeaveBuiltinFrame(cp, a1, t0); __ SmiUntag(t0); } __ sd(a0, FieldMemOperand(v0, JSValue::kValueOffset)); __ bind(&drop_frame_and_ret); { __ Dlsa(sp, sp, t0, kPointerSizeLog2); __ DropAndRet(1); } } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset)); __ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a1 : target function (preserved for callee) // -- a3 : new target (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push a copy of the target function and the new target. __ SmiTag(a0); __ Push(a0, a1, a3, a1); __ CallRuntime(function_id, 1); // Restore target function and new target. __ Pop(a0, a1, a3); __ SmiUntag(a0); } __ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; __ LoadRoot(a4, Heap::kStackLimitRootIndex); __ Branch(&ok, hs, sp, Operand(a4)); GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode); __ bind(&ok); GenerateTailCallToSharedCode(masm); } namespace { void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_implicit_receiver, bool check_derived_construct) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- a3 : new target // -- cp : context // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Isolate* isolate = masm->isolate(); // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(a0); __ Push(cp, a0); if (create_implicit_receiver) { __ Push(a1, a3); FastNewObjectStub stub(masm->isolate()); __ CallStub(&stub); __ mov(t0, v0); __ Pop(a1, a3); // ----------- S t a t e ------------- // -- a1: constructor function // -- a3: new target // -- t0: newly allocated object // ----------------------------------- __ ld(a0, MemOperand(sp)); } __ SmiUntag(a0); if (create_implicit_receiver) { // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(t0, t0); } else { __ PushRoot(Heap::kTheHoleValueRootIndex); } // Set up pointer to last argument. __ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. // a0: number of arguments // a1: constructor function // a2: address of last argument (caller sp) // a3: new target // t0: number of arguments (smi-tagged) // sp[0]: receiver // sp[1]: receiver // sp[2]: number of arguments (smi-tagged) Label loop, entry; __ mov(t0, a0); __ jmp(&entry); __ bind(&loop); __ Dlsa(a4, a2, t0, kPointerSizeLog2); __ ld(a5, MemOperand(a4)); __ push(a5); __ bind(&entry); __ Daddu(t0, t0, Operand(-1)); __ Branch(&loop, greater_equal, t0, Operand(zero_reg)); // Call the function. // a0: number of arguments // a1: constructor function // a3: new target ParameterCount actual(a0); __ InvokeFunction(a1, a3, actual, CALL_FUNCTION, CheckDebugStepCallWrapper()); // Store offset of return address for deoptimizer. if (create_implicit_receiver && !is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. __ ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); if (create_implicit_receiver) { // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // v0: result // sp[0]: receiver (newly allocated object) // sp[1]: number of arguments (smi-tagged) __ JumpIfSmi(v0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. __ GetObjectType(v0, a1, a3); __ Branch(&exit, greater_equal, a3, Operand(FIRST_JS_RECEIVER_TYPE)); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ ld(v0, MemOperand(sp)); // Remove receiver from the stack, remove caller arguments, and // return. __ bind(&exit); // v0: result // sp[0]: receiver (newly allocated object) // sp[1]: number of arguments (smi-tagged) __ ld(a1, MemOperand(sp, 1 * kPointerSize)); } else { __ ld(a1, MemOperand(sp)); } // Leave construct frame. } // ES6 9.2.2. Step 13+ // Check that the result is not a Smi, indicating that the constructor result // from a derived class is neither undefined nor an Object. if (check_derived_construct) { Label dont_throw; __ JumpIfNotSmi(v0, &dont_throw); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject); } __ bind(&dont_throw); } __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); __ Daddu(sp, sp, kPointerSize); if (create_implicit_receiver) { __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2); } __ Ret(); } } // namespace void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false, false); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false, false); } void Builtins::Generate_JSBuiltinsConstructStubForDerived( MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false, true); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : the value to pass to the generator // -- a1 : the JSGeneratorObject to resume // -- a2 : the resume mode (tagged) // -- ra : return address // ----------------------------------- __ AssertGeneratorObject(a1); // Store input value into generator object. __ sd(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset)); __ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3, kRAHasNotBeenSaved, kDontSaveFPRegs); // Store resume mode into generator object. __ sd(a2, FieldMemOperand(a1, JSGeneratorObject::kResumeModeOffset)); // Load suspended function and context. __ ld(cp, FieldMemOperand(a1, JSGeneratorObject::kContextOffset)); __ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference last_step_action = ExternalReference::debug_last_step_action_address(masm->isolate()); STATIC_ASSERT(StepFrame > StepIn); __ li(a5, Operand(last_step_action)); __ lb(a5, MemOperand(a5)); __ Branch(&prepare_step_in_if_stepping, ge, a5, Operand(StepIn)); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ li(a5, Operand(debug_suspended_generator)); __ ld(a5, MemOperand(a5)); __ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5)); __ bind(&stepping_prepared); // Push receiver. __ ld(a5, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset)); __ Push(a5); // ----------- S t a t e ------------- // -- a1 : the JSGeneratorObject to resume // -- a2 : the resume mode (tagged) // -- a4 : generator function // -- cp : generator context // -- ra : return address // -- sp[0] : generator receiver // ----------------------------------- // Push holes for arguments to generator function. Since the parser forced // context allocation for any variables in generators, the actual argument // values have already been copied into the context and these dummy values // will never be used. __ ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); { Label done_loop, loop; __ bind(&loop); __ Dsubu(a3, a3, Operand(1)); __ Branch(&done_loop, lt, a3, Operand(zero_reg)); __ PushRoot(Heap::kTheHoleValueRootIndex); __ Branch(&loop); __ bind(&done_loop); } // Dispatch on the kind of generator object. Label old_generator; __ ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset)); __ GetObjectType(a3, a3, a3); __ Branch(&old_generator, ne, a3, Operand(BYTECODE_ARRAY_TYPE)); // New-style (ignition/turbofan) generator object. { __ ld(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ lw(a0, FieldMemOperand(a0, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ Move(a3, a1); __ Move(a1, a4); __ ld(a2, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ Jump(a2); } // Old-style (full-codegen) generator object __ bind(&old_generator); { // Enter a new JavaScript frame, and initialize its slots as they were when // the generator was suspended. FrameScope scope(masm, StackFrame::MANUAL); __ Push(ra, fp); __ Move(fp, sp); __ Push(cp, a4); // Restore the operand stack. __ ld(a0, FieldMemOperand(a1, JSGeneratorObject::kOperandStackOffset)); __ ld(a3, FieldMemOperand(a0, FixedArray::kLengthOffset)); __ SmiUntag(a3); __ Daddu(a0, a0, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ Dlsa(a3, a0, a3, kPointerSizeLog2); { Label done_loop, loop; __ bind(&loop); __ Branch(&done_loop, eq, a0, Operand(a3)); __ ld(a5, MemOperand(a0)); __ Push(a5); __ Branch(USE_DELAY_SLOT, &loop); __ daddiu(a0, a0, kPointerSize); // In delay slot. __ bind(&done_loop); } // Reset operand stack so we don't leak. __ LoadRoot(a5, Heap::kEmptyFixedArrayRootIndex); __ sd(a5, FieldMemOperand(a1, JSGeneratorObject::kOperandStackOffset)); // Resume the generator function at the continuation. __ ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset)); __ Daddu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag)); __ ld(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset)); __ SmiUntag(a2); __ Daddu(a3, a3, Operand(a2)); __ li(a2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting))); __ sd(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset)); __ Move(v0, a1); // Continuation expects generator object in v0. __ Jump(a3); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1, a2, a4); __ CallRuntime(Runtime::kDebugPrepareStepInIfStepping); __ Pop(a1, a2); } __ Branch(USE_DELAY_SLOT, &stepping_prepared); __ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1, a2); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(a1, a2); } __ Branch(USE_DELAY_SLOT, &stepping_prepared); __ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt }; // Clobbers a2; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, IsTagged argc_is_tagged) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); // Make a2 the space we have left. The stack might already be overflowed // here which will cause r2 to become negative. __ dsubu(a2, sp, a2); // Check if the arguments will overflow the stack. if (argc_is_tagged == kArgcIsSmiTagged) { __ SmiScale(a7, v0, kPointerSizeLog2); } else { DCHECK(argc_is_tagged == kArgcIsUntaggedInt); __ dsll(a7, argc, kPointerSizeLog2); } __ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from JSEntryStub::GenerateBody // ----------- S t a t e ------------- // -- a0: new.target // -- a1: function // -- a2: receiver_pointer // -- a3: argc // -- s0: argv // ----------------------------------- ProfileEntryHookStub::MaybeCallEntryHook(masm); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(Isolate::kContextAddress, masm->isolate()); __ li(cp, Operand(context_address)); __ ld(cp, MemOperand(cp)); // Push the function and the receiver onto the stack. __ Push(a1, a2); // Check if we have enough stack space to push all arguments. // Clobbers a2. Generate_CheckStackOverflow(masm, a3, kArgcIsUntaggedInt); // Remember new.target. __ mov(a5, a0); // Copy arguments to the stack in a loop. // a3: argc // s0: argv, i.e. points to first arg Label loop, entry; __ Dlsa(a6, s0, a3, kPointerSizeLog2); __ b(&entry); __ nop(); // Branch delay slot nop. // a6 points past last arg. __ bind(&loop); __ ld(a4, MemOperand(s0)); // Read next parameter. __ daddiu(s0, s0, kPointerSize); __ ld(a4, MemOperand(a4)); // Dereference handle. __ push(a4); // Push parameter. __ bind(&entry); __ Branch(&loop, ne, s0, Operand(a6)); // Setup new.target and argc. __ mov(a0, a3); __ mov(a3, a5); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(a4, Heap::kUndefinedValueRootIndex); __ mov(s1, a4); __ mov(s2, a4); __ mov(s3, a4); __ mov(s4, a4); __ mov(s5, a4); // s6 holds the root address. Do not clobber. // s7 is cp. Do not init. // Invoke the code. Handle<Code> builtin = is_construct ? masm->isolate()->builtins()->Construct() : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Leave internal frame. } __ Jump(ra); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { Register args_count = scratch; // Get the arguments + receiver count. __ ld(args_count, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ lw(t0, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::JAVA_SCRIPT); // Drop receiver + arguments. __ Daddu(sp, sp, args_count); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o a1: the JS function object being called. // o a3: the new target // o cp: our context // o fp: the caller's frame pointer // o sp: stack pointer // o ra: return address // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushStandardFrame(a1); // Get the bytecode array from the function object (or from the DebugInfo if // it is present) and load it into kInterpreterBytecodeArrayRegister. __ ld(a0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); Label load_debug_bytecode_array, bytecode_array_loaded; Register debug_info = kInterpreterBytecodeArrayRegister; DCHECK(!debug_info.is(a0)); __ ld(debug_info, FieldMemOperand(a0, SharedFunctionInfo::kDebugInfoOffset)); __ Branch(&load_debug_bytecode_array, ne, debug_info, Operand(DebugInfo::uninitialized())); __ ld(kInterpreterBytecodeArrayRegister, FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset)); __ bind(&bytecode_array_loaded); // Check whether we should continue to use the interpreter. Label switch_to_different_code_kind; __ ld(a0, FieldMemOperand(a0, SharedFunctionInfo::kCodeOffset)); __ Branch(&switch_to_different_code_kind, ne, a0, Operand(masm->CodeObject())); // Self-reference to this code. // Increment invocation count for the function. __ ld(a0, FieldMemOperand(a1, JSFunction::kLiteralsOffset)); __ ld(a0, FieldMemOperand(a0, LiteralsArray::kFeedbackVectorOffset)); __ ld(a4, FieldMemOperand( a0, TypeFeedbackVector::kInvocationCountIndex * kPointerSize + TypeFeedbackVector::kHeaderSize)); __ Daddu(a4, a4, Operand(Smi::FromInt(1))); __ sd(a4, FieldMemOperand( a0, TypeFeedbackVector::kInvocationCountIndex * kPointerSize + TypeFeedbackVector::kHeaderSize)); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ SmiTst(kInterpreterBytecodeArrayRegister, a4); __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4, Operand(zero_reg)); __ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4); __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4, Operand(BYTECODE_ARRAY_TYPE)); } // Load initial bytecode offset. __ li(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push new.target, bytecode array and Smi tagged bytecode array offset. __ SmiTag(a4, kInterpreterBytecodeOffsetRegister); __ Push(a3, kInterpreterBytecodeArrayRegister, a4); // Allocate the local and temporary register file on the stack. { // Load frame size (word) from the BytecodeArray object. __ lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ Dsubu(a5, sp, Operand(a4)); __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); __ Branch(&ok, hs, a5, Operand(a2)); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); __ Branch(&loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(a5); // Continue loop if not done. __ bind(&loop_check); __ Dsubu(a4, a4, Operand(kPointerSize)); __ Branch(&loop_header, ge, a4, Operand(zero_reg)); } // Load accumulator and dispatch table into registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ li(kInterpreterDispatchTableRegister, Operand(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); // Dispatch to the first bytecode handler for the function. __ Daddu(a0, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ lbu(a0, MemOperand(a0)); __ Dlsa(at, kInterpreterDispatchTableRegister, a0, kPointerSizeLog2); __ ld(at, MemOperand(at)); __ Call(at); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // The return value is in v0. LeaveInterpreterFrame(masm, t0); __ Jump(ra); // Load debug copy of the bytecode array. __ bind(&load_debug_bytecode_array); __ ld(kInterpreterBytecodeArrayRegister, FieldMemOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex)); __ Branch(&bytecode_array_loaded); // If the shared code is no longer this entry trampoline, then the underlying // function has been switched to a different kind of code and we heal the // closure by switching the code entry field over to the new code as well. __ bind(&switch_to_different_code_kind); __ LeaveFrame(StackFrame::JAVA_SCRIPT); __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kCodeOffset)); __ Daddu(a4, a4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ sd(a4, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ RecordWriteCodeEntryField(a1, a4, a5); __ Jump(a4); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch1, Register scratch2, Label* stack_overflow) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(scratch1, Heap::kRealStackLimitRootIndex); // Make scratch1 the space we have left. The stack might already be overflowed // here which will cause scratch1 to become negative. __ dsubu(scratch1, sp, scratch1); // Check if the arguments will overflow the stack. __ dsll(scratch2, num_args, kPointerSizeLog2); // Signed comparison. __ Branch(stack_overflow, le, scratch1, Operand(scratch2)); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register index, Register scratch, Register scratch2, Label* stack_overflow) { // Generate_StackOverflowCheck(masm, num_args, scratch, scratch2, // stack_overflow); // Find the address of the last argument. __ mov(scratch2, num_args); __ dsll(scratch2, scratch2, kPointerSizeLog2); __ Dsubu(scratch2, index, Operand(scratch2)); // Push the arguments. Label loop_header, loop_check; __ Branch(&loop_check); __ bind(&loop_header); __ ld(scratch, MemOperand(index)); __ Daddu(index, index, Operand(-kPointerSize)); __ push(scratch); __ bind(&loop_check); __ Branch(&loop_header, gt, index, Operand(scratch2)); } // static void Builtins::Generate_InterpreterPushArgsAndCallImpl( MacroAssembler* masm, TailCallMode tail_call_mode, CallableType function_type) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a2 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- a1 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; __ Daddu(a3, a0, Operand(1)); // Add one for receiver. // This function modifies a2, t0 and a4. Generate_InterpreterPushArgs(masm, a3, a2, a4, t0, &stack_overflow); // Call the target. if (function_type == CallableType::kJSFunction) { __ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny, tail_call_mode), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(function_type, CallableType::kAny); __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny, tail_call_mode), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); } } // static void Builtins::Generate_InterpreterPushArgsAndConstructImpl( MacroAssembler* masm, CallableType construct_type) { // ----------- S t a t e ------------- // -- a0 : argument count (not including receiver) // -- a3 : new target // -- a1 : constructor to call // -- a2 : allocation site feedback if available, undefined otherwise. // -- a4 : address of the first argument // ----------------------------------- Label stack_overflow; // Push a slot for the receiver. __ push(zero_reg); // This function modifies t0, a4 and a5. Generate_InterpreterPushArgs(masm, a0, a4, a5, t0, &stack_overflow); __ AssertUndefinedOrAllocationSite(a2, t0); if (construct_type == CallableType::kJSFunction) { __ AssertFunction(a1); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset)); __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); } else { DCHECK_EQ(construct_type, CallableType::kAny); // Call the constructor with a0, a1, and a3 unmodified. __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); } } // static void Builtins::Generate_InterpreterPushArgsAndConstructArray( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the target to call checked to be Array function. // -- a2 : allocation site feedback. // -- a3 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- Label stack_overflow; __ Daddu(a4, a0, Operand(1)); // Add one for receiver. // This function modifies a3, a5 and a6. Generate_InterpreterPushArgs(masm, a4, a3, a5, a6, &stack_overflow); // ArrayConstructor stub expects constructor in a3. Set it here. __ mov(a3, a1); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); __ li(t0, Operand(masm->isolate()->builtins()->InterpreterEntryTrampoline())); __ Daddu(ra, t0, Operand(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); // Initialize the dispatch table register. __ li(kInterpreterDispatchTableRegister, Operand(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); // Get the bytecode array pointer from the frame. __ ld(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ SmiTst(kInterpreterBytecodeArrayRegister, at); __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, at, Operand(zero_reg)); __ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1); __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a1, Operand(BYTECODE_ARRAY_TYPE)); } // Get the target bytecode offset from the frame. __ ld(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ Daddu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ lbu(a1, MemOperand(a1)); __ Dlsa(a1, kInterpreterDispatchTableRegister, a1, kPointerSizeLog2); __ ld(a1, MemOperand(a1)); __ Jump(a1); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Advance the current bytecode offset stored within the given interpreter // stack frame. This simulates what all bytecode handlers do upon completion // of the underlying operation. __ ld(a1, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ ld(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(kInterpreterAccumulatorRegister, a1, a2); __ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset); __ mov(a2, v0); // Result is the new bytecode offset. __ Pop(kInterpreterAccumulatorRegister); } __ sd(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a3 : new target (preserved for callee) // -- a1 : target function (preserved for callee) // ----------------------------------- // First lookup code, maybe we don't need to compile! Label gotta_call_runtime, gotta_call_runtime_no_stack; Label try_shared; Label loop_top, loop_bottom; Register argument_count = a0; Register closure = a1; Register new_target = a3; __ push(argument_count); __ push(new_target); __ push(closure); Register map = a0; Register index = a2; __ ld(map, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ ld(map, FieldMemOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset)); __ ld(index, FieldMemOperand(map, FixedArray::kLengthOffset)); __ Branch(&gotta_call_runtime, lt, index, Operand(Smi::FromInt(2))); // Find literals. // a3 : native context // a2 : length / index // a0 : optimized code map // stack[0] : new target // stack[4] : closure Register native_context = a3; __ ld(native_context, NativeContextMemOperand()); __ bind(&loop_top); Register temp = a1; Register array_pointer = a5; // Does the native context match? __ SmiScale(at, index, kPointerSizeLog2); __ Daddu(array_pointer, map, Operand(at)); __ ld(temp, FieldMemOperand(array_pointer, SharedFunctionInfo::kOffsetToPreviousContext)); __ ld(temp, FieldMemOperand(temp, WeakCell::kValueOffset)); __ Branch(&loop_bottom, ne, temp, Operand(native_context)); // OSR id set to none? __ ld(temp, FieldMemOperand(array_pointer, SharedFunctionInfo::kOffsetToPreviousOsrAstId)); const int bailout_id = BailoutId::None().ToInt(); __ Branch(&loop_bottom, ne, temp, Operand(Smi::FromInt(bailout_id))); // Literals available? __ ld(temp, FieldMemOperand(array_pointer, SharedFunctionInfo::kOffsetToPreviousLiterals)); __ ld(temp, FieldMemOperand(temp, WeakCell::kValueOffset)); __ JumpIfSmi(temp, &gotta_call_runtime); // Save the literals in the closure. __ ld(a4, MemOperand(sp, 0)); __ sd(temp, FieldMemOperand(a4, JSFunction::kLiteralsOffset)); __ push(index); __ RecordWriteField(a4, JSFunction::kLiteralsOffset, temp, index, kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ pop(index); // Code available? Register entry = a4; __ ld(entry, FieldMemOperand(array_pointer, SharedFunctionInfo::kOffsetToPreviousCachedCode)); __ ld(entry, FieldMemOperand(entry, WeakCell::kValueOffset)); __ JumpIfSmi(entry, &try_shared); // Found literals and code. Get them into the closure and return. __ pop(closure); // Store code entry in the closure. __ Daddu(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ sd(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset)); __ RecordWriteCodeEntryField(closure, entry, a5); // Link the closure into the optimized function list. // a4 : code entry // a3 : native context // a1 : closure __ ld(a5, ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST)); __ sd(a5, FieldMemOperand(closure, JSFunction::kNextFunctionLinkOffset)); __ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, a5, a0, kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); const int function_list_offset = Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST); __ sd(closure, ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST)); // Save closure before the write barrier. __ mov(a5, closure); __ RecordWriteContextSlot(native_context, function_list_offset, closure, a0, kRAHasNotBeenSaved, kDontSaveFPRegs); __ mov(closure, a5); __ pop(new_target); __ pop(argument_count); __ Jump(entry); __ bind(&loop_bottom); __ Dsubu(index, index, Operand(Smi::FromInt(SharedFunctionInfo::kEntryLength))); __ Branch(&loop_top, gt, index, Operand(Smi::FromInt(1))); // We found neither literals nor code. __ jmp(&gotta_call_runtime); __ bind(&try_shared); __ pop(closure); __ pop(new_target); __ pop(argument_count); __ ld(entry, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); // Is the shared function marked for tier up? __ lbu(a5, FieldMemOperand(entry, SharedFunctionInfo::kMarkedForTierUpByteOffset)); __ And(a5, a5, Operand(1 << SharedFunctionInfo::kMarkedForTierUpBitWithinByte)); __ Branch(&gotta_call_runtime_no_stack, ne, a5, Operand(zero_reg)); // Is the full code valid? __ ld(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset)); __ lw(a5, FieldMemOperand(entry, Code::kFlagsOffset)); __ And(a5, a5, Operand(Code::KindField::kMask)); __ dsrl(a5, a5, Code::KindField::kShift); __ Branch(&gotta_call_runtime_no_stack, eq, a5, Operand(Code::BUILTIN)); // Yes, install the full code. __ Daddu(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ sd(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset)); __ RecordWriteCodeEntryField(closure, entry, a5); __ Jump(entry); __ bind(&gotta_call_runtime); __ pop(closure); __ pop(new_target); __ pop(argument_count); __ bind(&gotta_call_runtime_no_stack); GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); } void Builtins::Generate_CompileBaseline(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_NotConcurrent); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a1 : new target (preserved for callee) // -- a3 : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the target function and the new target. // Push function as parameter to the runtime call. __ Move(t2, a0); __ SmiTag(a0); __ Push(a0, a1, a3, a1); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ Branch(&over, ne, t2, Operand(j)); } for (int i = j - 1; i >= 0; --i) { __ ld(t2, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); __ push(t2); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(v0, &failed); __ Drop(2); __ pop(t2); __ SmiUntag(t2); scope.GenerateLeaveFrame(); __ Daddu(t2, t2, Operand(1)); __ Dlsa(sp, sp, t2, kPointerSizeLog2); __ Ret(); __ bind(&failed); // Restore target function and new target. __ Pop(a0, a1, a3); __ SmiUntag(a0); } // On failure, tail call back to regular js. GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Set a0 to point to the head of the PlatformCodeAge sequence. __ Dsubu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize)); // The following registers must be saved and restored when calling through to // the runtime: // a0 - contains return address (beginning of patch sequence) // a1 - isolate // a3 - new target RegList saved_regs = (a0.bit() | a1.bit() | a3.bit() | ra.bit() | fp.bit()) & ~sp.bit(); FrameScope scope(masm, StackFrame::MANUAL); __ MultiPush(saved_regs); __ PrepareCallCFunction(2, 0, a2); __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ MultiPop(saved_regs); __ Jump(a0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. // Set a0 to point to the head of the PlatformCodeAge sequence. __ Dsubu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize)); // The following registers must be saved and restored when calling through to // the runtime: // a0 - contains return address (beginning of patch sequence) // a1 - isolate // a3 - new target RegList saved_regs = (a0.bit() | a1.bit() | a3.bit() | ra.bit() | fp.bit()) & ~sp.bit(); FrameScope scope(masm, StackFrame::MANUAL); __ MultiPush(saved_regs); __ PrepareCallCFunction(2, 0, a2); __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); __ MultiPop(saved_regs); // Perform prologue operations usually performed by the young code stub. __ PushStandardFrame(a1); // Jump to point after the code-age stub. __ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength))); __ Jump(a0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { Generate_MarkCodeAsExecutedOnce(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ MultiPush(kJSCallerSaved | kCalleeSaved); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, save_doubles); __ MultiPop(kJSCallerSaved | kCalleeSaved); } __ Daddu(sp, sp, Operand(kPointerSize)); // Ignore state __ Jump(ra); // Jump to miss handler } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the function and deoptimization type to the runtime system. __ li(a0, Operand(Smi::FromInt(static_cast<int>(type)))); __ push(a0); __ CallRuntime(Runtime::kNotifyDeoptimized); } // Get the full codegen state from the stack and untag it -> a6. __ ld(a6, MemOperand(sp, 0 * kPointerSize)); __ SmiUntag(a6); // Switch on the state. Label with_tos_register, unknown_state; __ Branch( &with_tos_register, ne, a6, Operand(static_cast<int64_t>(Deoptimizer::BailoutState::NO_REGISTERS))); __ Ret(USE_DELAY_SLOT); // Safe to fill delay slot Addu will emit one instruction. __ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state. __ bind(&with_tos_register); DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code()); __ ld(v0, MemOperand(sp, 1 * kPointerSize)); __ Branch( &unknown_state, ne, a6, Operand(static_cast<int64_t>(Deoptimizer::BailoutState::TOS_REGISTER))); __ Ret(USE_DELAY_SLOT); // Safe to fill delay slot Addu will emit one instruction. __ Daddu(sp, sp, Operand(2 * kPointerSize)); // Remove state. __ bind(&unknown_state); __ stop("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } // Clobbers {t2, t3, a4, a5}. static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver, Register function_template_info, Label* receiver_check_failed) { Register signature = t2; Register map = t3; Register constructor = a4; Register scratch = a5; // If there is no signature, return the holder. __ ld(signature, FieldMemOperand(function_template_info, FunctionTemplateInfo::kSignatureOffset)); Label receiver_check_passed; __ JumpIfRoot(signature, Heap::kUndefinedValueRootIndex, &receiver_check_passed); // Walk the prototype chain. __ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); Label prototype_loop_start; __ bind(&prototype_loop_start); // Get the constructor, if any. __ GetMapConstructor(constructor, map, scratch, scratch); Label next_prototype; __ Branch(&next_prototype, ne, scratch, Operand(JS_FUNCTION_TYPE)); Register type = constructor; __ ld(type, FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset)); __ ld(type, FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset)); // Loop through the chain of inheriting function templates. Label function_template_loop; __ bind(&function_template_loop); // If the signatures match, we have a compatible receiver. __ Branch(&receiver_check_passed, eq, signature, Operand(type), USE_DELAY_SLOT); // If the current type is not a FunctionTemplateInfo, load the next prototype // in the chain. __ JumpIfSmi(type, &next_prototype); __ GetObjectType(type, scratch, scratch); __ Branch(&next_prototype, ne, scratch, Operand(FUNCTION_TEMPLATE_INFO_TYPE)); // Otherwise load the parent function template and iterate. __ ld(type, FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset)); __ Branch(&function_template_loop); // Load the next prototype. __ bind(&next_prototype); __ lwu(scratch, FieldMemOperand(map, Map::kBitField3Offset)); __ DecodeField<Map::HasHiddenPrototype>(scratch); __ Branch(receiver_check_failed, eq, scratch, Operand(zero_reg)); __ ld(receiver, FieldMemOperand(map, Map::kPrototypeOffset)); __ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Iterate. __ Branch(&prototype_loop_start); __ bind(&receiver_check_passed); } void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments excluding receiver // -- a1 : callee // -- ra : return address // -- sp[0] : last argument // -- ... // -- sp[8 * (argc - 1)] : first argument // -- sp[8 * argc] : receiver // ----------------------------------- // Load the FunctionTemplateInfo. __ ld(t1, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ ld(t1, FieldMemOperand(t1, SharedFunctionInfo::kFunctionDataOffset)); // Do the compatible receiver check Label receiver_check_failed; __ Dlsa(t8, sp, a0, kPointerSizeLog2); __ ld(t0, MemOperand(t8)); CompatibleReceiverCheck(masm, t0, t1, &receiver_check_failed); // Get the callback offset from the FunctionTemplateInfo, and jump to the // beginning of the code. __ ld(t2, FieldMemOperand(t1, FunctionTemplateInfo::kCallCodeOffset)); __ ld(t2, FieldMemOperand(t2, CallHandlerInfo::kFastHandlerOffset)); __ Daddu(t2, t2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(t2); // Compatible receiver check failed: throw an Illegal Invocation exception. __ bind(&receiver_check_failed); // Drop the arguments (including the receiver); __ Daddu(t8, t8, Operand(kPointerSize)); __ daddu(sp, t8, zero_reg); __ TailCallRuntime(Runtime::kThrowIllegalInvocation); } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ ld(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset)); } else { __ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(a0); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } // If the code object is null, just return to the caller. __ Ret(eq, v0, Operand(Smi::kZero)); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ LeaveFrame(StackFrame::STUB); } // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ ld(a1, MemOperand(a1, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag)); __ SmiUntag(a1); // Compute the target address = code_obj + header_size + osr_offset // <entry_addr> = <code_obj> + #header_size + <osr_offset> __ daddu(v0, v0, a1); __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag); // And "return" to the OSR entry point of the function. __ Ret(); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : argArray // -- sp[4] : thisArg // -- sp[8] : receiver // ----------------------------------- // 1. Load receiver into a1, argArray into a0 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label no_arg; Register scratch = a4; __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ mov(a3, a2); // Dlsa() cannot be used hare as scratch value used later. __ dsll(scratch, a0, kPointerSizeLog2); __ Daddu(a0, sp, Operand(scratch)); __ ld(a1, MemOperand(a0)); // receiver __ Dsubu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ ld(a2, MemOperand(a0)); // thisArg __ Dsubu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ ld(a3, MemOperand(a0)); // argArray __ bind(&no_arg); __ Daddu(sp, sp, Operand(scratch)); __ sd(a2, MemOperand(sp)); __ mov(a0, a3); } // ----------- S t a t e ------------- // -- a0 : argArray // -- a1 : receiver // -- sp[0] : thisArg // ----------------------------------- // 2. Make sure the receiver is actually callable. Label receiver_not_callable; __ JumpIfSmi(a1, &receiver_not_callable); __ ld(a4, FieldMemOperand(a1, HeapObject::kMapOffset)); __ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset)); __ And(a4, a4, Operand(1 << Map::kIsCallable)); __ Branch(&receiver_not_callable, eq, a4, Operand(zero_reg)); // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(a0, Heap::kNullValueRootIndex, &no_arguments); __ JumpIfRoot(a0, Heap::kUndefinedValueRootIndex, &no_arguments); // 4a. Apply the receiver to the given argArray (passing undefined for // new.target). __ LoadRoot(a3, Heap::kUndefinedValueRootIndex); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ mov(a0, zero_reg); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // 4c. The receiver is not callable, throw an appropriate TypeError. __ bind(&receiver_not_callable); { __ sd(a1, MemOperand(sp)); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // a0: actual number of arguments { Label done; __ Branch(&done, ne, a0, Operand(zero_reg)); __ PushRoot(Heap::kUndefinedValueRootIndex); __ Daddu(a0, a0, Operand(1)); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack. // a0: actual number of arguments __ Dlsa(at, sp, a0, kPointerSizeLog2); __ ld(a1, MemOperand(at)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // a0: actual number of arguments // a1: function { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ Dlsa(a2, sp, a0, kPointerSizeLog2); __ bind(&loop); __ ld(at, MemOperand(a2, -kPointerSize)); __ sd(at, MemOperand(a2)); __ Dsubu(a2, a2, Operand(kPointerSize)); __ Branch(&loop, ne, a2, Operand(sp)); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Dsubu(a0, a0, Operand(1)); __ Pop(); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : argumentsList // -- sp[4] : thisArgument // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into a1 (if present), argumentsList into a0 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label no_arg; Register scratch = a4; __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); __ mov(a2, a1); __ mov(a3, a1); __ dsll(scratch, a0, kPointerSizeLog2); __ mov(a0, scratch); __ Dsubu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(zero_reg)); __ Daddu(a0, sp, Operand(a0)); __ ld(a1, MemOperand(a0)); // target __ Dsubu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ ld(a2, MemOperand(a0)); // thisArgument __ Dsubu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ ld(a3, MemOperand(a0)); // argumentsList __ bind(&no_arg); __ Daddu(sp, sp, Operand(scratch)); __ sd(a2, MemOperand(sp)); __ mov(a0, a3); } // ----------- S t a t e ------------- // -- a0 : argumentsList // -- a1 : target // -- sp[0] : thisArgument // ----------------------------------- // 2. Make sure the target is actually callable. Label target_not_callable; __ JumpIfSmi(a1, &target_not_callable); __ ld(a4, FieldMemOperand(a1, HeapObject::kMapOffset)); __ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset)); __ And(a4, a4, Operand(1 << Map::kIsCallable)); __ Branch(&target_not_callable, eq, a4, Operand(zero_reg)); // 3a. Apply the target to the given argumentsList (passing undefined for // new.target). __ LoadRoot(a3, Heap::kUndefinedValueRootIndex); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 3b. The target is not callable, throw an appropriate TypeError. __ bind(&target_not_callable); { __ sd(a1, MemOperand(sp)); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : new.target (optional) // -- sp[4] : argumentsList // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into a1 (if present), argumentsList into a0 (if present), // new.target into a3 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label no_arg; Register scratch = a4; __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); __ mov(a2, a1); // Dlsa() cannot be used hare as scratch value used later. __ dsll(scratch, a0, kPointerSizeLog2); __ Daddu(a0, sp, Operand(scratch)); __ sd(a2, MemOperand(a0)); // receiver __ Dsubu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ ld(a1, MemOperand(a0)); // target __ mov(a3, a1); // new.target defaults to target __ Dsubu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ ld(a2, MemOperand(a0)); // argumentsList __ Dsubu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ ld(a3, MemOperand(a0)); // new.target __ bind(&no_arg); __ Daddu(sp, sp, Operand(scratch)); __ mov(a0, a2); } // ----------- S t a t e ------------- // -- a0 : argumentsList // -- a3 : new.target // -- a1 : target // -- sp[0] : receiver (undefined) // ----------------------------------- // 2. Make sure the target is actually a constructor. Label target_not_constructor; __ JumpIfSmi(a1, &target_not_constructor); __ ld(a4, FieldMemOperand(a1, HeapObject::kMapOffset)); __ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset)); __ And(a4, a4, Operand(1 << Map::kIsConstructor)); __ Branch(&target_not_constructor, eq, a4, Operand(zero_reg)); // 3. Make sure the target is actually a constructor. Label new_target_not_constructor; __ JumpIfSmi(a3, &new_target_not_constructor); __ ld(a4, FieldMemOperand(a3, HeapObject::kMapOffset)); __ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset)); __ And(a4, a4, Operand(1 << Map::kIsConstructor)); __ Branch(&new_target_not_constructor, eq, a4, Operand(zero_reg)); // 4a. Construct the target with the given new.target and argumentsList. __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The target is not a constructor, throw an appropriate TypeError. __ bind(&target_not_constructor); { __ sd(a1, MemOperand(sp)); __ TailCallRuntime(Runtime::kThrowCalledNonCallable); } // 4c. The new.target is not a constructor, throw an appropriate TypeError. __ bind(&new_target_not_constructor); { __ sd(a3, MemOperand(sp)); __ TailCallRuntime(Runtime::kThrowCalledNonCallable); } } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { // __ sll(a0, a0, kSmiTagSize); __ dsll32(a0, a0, 0); __ li(a4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit()); __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); __ mov(sp, fp); __ MultiPop(fp.bit() | ra.bit()); __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); // Adjust for the receiver. __ Daddu(sp, sp, Operand(kPointerSize)); } // static void Builtins::Generate_Apply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argumentsList // -- a1 : target // -- a3 : new.target (checked to be constructor or undefined) // -- sp[0] : thisArgument // ----------------------------------- // Create the list of arguments from the array-like argumentsList. { Label create_arguments, create_array, create_runtime, done_create; __ JumpIfSmi(a0, &create_runtime); // Load the map of argumentsList into a2. __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset)); // Load native context into a4. __ ld(a4, NativeContextMemOperand()); // Check if argumentsList is an (unmodified) arguments object. __ ld(at, ContextMemOperand(a4, Context::SLOPPY_ARGUMENTS_MAP_INDEX)); __ Branch(&create_arguments, eq, a2, Operand(at)); __ ld(at, ContextMemOperand(a4, Context::STRICT_ARGUMENTS_MAP_INDEX)); __ Branch(&create_arguments, eq, a2, Operand(at)); // Check if argumentsList is a fast JSArray. __ ld(v0, FieldMemOperand(a2, HeapObject::kMapOffset)); __ lbu(v0, FieldMemOperand(v0, Map::kInstanceTypeOffset)); __ Branch(&create_array, eq, v0, Operand(JS_ARRAY_TYPE)); // Ask the runtime to create the list (actually a FixedArray). __ bind(&create_runtime); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1, a3, a0); __ CallRuntime(Runtime::kCreateListFromArrayLike); __ mov(a0, v0); __ Pop(a1, a3); __ ld(a2, FieldMemOperand(v0, FixedArray::kLengthOffset)); __ SmiUntag(a2); } __ Branch(&done_create); // Try to create the list from an arguments object. __ bind(&create_arguments); __ ld(a2, FieldMemOperand(a0, JSArgumentsObject::kLengthOffset)); __ ld(a4, FieldMemOperand(a0, JSObject::kElementsOffset)); __ ld(at, FieldMemOperand(a4, FixedArray::kLengthOffset)); __ Branch(&create_runtime, ne, a2, Operand(at)); __ SmiUntag(a2); __ mov(a0, a4); __ Branch(&done_create); // Try to create the list from a JSArray object. __ bind(&create_array); __ ld(a2, FieldMemOperand(a2, Map::kBitField2Offset)); __ DecodeField<Map::ElementsKindBits>(a2); STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); __ Branch(&create_runtime, hi, a2, Operand(FAST_ELEMENTS)); __ Branch(&create_runtime, eq, a2, Operand(FAST_HOLEY_SMI_ELEMENTS)); __ ld(a2, FieldMemOperand(a0, JSArray::kLengthOffset)); __ ld(a0, FieldMemOperand(a0, JSArray::kElementsOffset)); __ SmiUntag(a2); __ bind(&done_create); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(a4, Heap::kRealStackLimitRootIndex); // Make ip the space we have left. The stack might already be overflowed // here which will cause ip to become negative. __ Dsubu(a4, sp, a4); // Check if the arguments will overflow the stack. __ dsll(at, a2, kPointerSizeLog2); __ Branch(&done, gt, a4, Operand(at)); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // ----------- S t a t e ------------- // -- a1 : target // -- a0 : args (a FixedArray built from argumentsList) // -- a2 : len (number of elements to push from args) // -- a3 : new.target (checked to be constructor or undefined) // -- sp[0] : thisArgument // ----------------------------------- // Push arguments onto the stack (thisArgument is already on the stack). { __ mov(a4, zero_reg); Label done, loop; __ bind(&loop); __ Branch(&done, eq, a4, Operand(a2)); __ Dlsa(at, a0, a4, kPointerSizeLog2); __ ld(at, FieldMemOperand(at, FixedArray::kHeaderSize)); __ Push(at); __ Daddu(a4, a4, Operand(1)); __ Branch(&loop); __ bind(&done); __ Move(a0, a4); } // Dispatch to Call or Construct depending on whether new.target is undefined. { Label construct; __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&construct, ne, a3, Operand(at)); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); __ bind(&construct); __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } } namespace { // Drops top JavaScript frame and an arguments adaptor frame below it (if // present) preserving all the arguments prepared for current call. // Does nothing if debugger is currently active. // ES6 14.6.3. PrepareForTailCall // // Stack structure for the function g() tail calling f(): // // ------- Caller frame: ------- // | ... // | g()'s arg M // | ... // | g()'s arg 1 // | g()'s receiver arg // | g()'s caller pc // ------- g()'s frame: ------- // | g()'s caller fp <- fp // | g()'s context // | function pointer: g // | ------------------------- // | ... // | ... // | f()'s arg N // | ... // | f()'s arg 1 // | f()'s receiver arg <- sp (f()'s caller pc is not on the stack yet!) // ---------------------- // void PrepareForTailCall(MacroAssembler* masm, Register args_reg, Register scratch1, Register scratch2, Register scratch3) { DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3)); Comment cmnt(masm, "[ PrepareForTailCall"); // Prepare for tail call only if ES2015 tail call elimination is enabled. Label done; ExternalReference is_tail_call_elimination_enabled = ExternalReference::is_tail_call_elimination_enabled_address( masm->isolate()); __ li(at, Operand(is_tail_call_elimination_enabled)); __ lb(scratch1, MemOperand(at)); __ Branch(&done, eq, scratch1, Operand(zero_reg)); // Drop possible interpreter handler/stub frame. { Label no_interpreter_frame; __ ld(scratch3, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Branch(&no_interpreter_frame, ne, scratch3, Operand(Smi::FromInt(StackFrame::STUB))); __ ld(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ bind(&no_interpreter_frame); } // Check if next frame is an arguments adaptor frame. Register caller_args_count_reg = scratch1; Label no_arguments_adaptor, formal_parameter_count_loaded; __ ld(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(scratch3, MemOperand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Branch(&no_arguments_adaptor, ne, scratch3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Drop current frame and load arguments count from arguments adaptor frame. __ mov(fp, scratch2); __ ld(caller_args_count_reg, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(caller_args_count_reg); __ Branch(&formal_parameter_count_loaded); __ bind(&no_arguments_adaptor); // Load caller's formal parameter count __ ld(scratch1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kFunctionOffset)); __ ld(scratch1, FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); __ lw(caller_args_count_reg, FieldMemOperand(scratch1, SharedFunctionInfo::kFormalParameterCountOffset)); __ bind(&formal_parameter_count_loaded); ParameterCount callee_args_count(args_reg); __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2, scratch3); __ bind(&done); } } // namespace // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(a1); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that function is not a "classConstructor". Label class_constructor; __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFunctionKindByteOffset)); __ And(at, a3, Operand(SharedFunctionInfo::kClassConstructorBitsWithinByte)); __ Branch(&class_constructor, ne, at, Operand(zero_reg)); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset == SharedFunctionInfo::kStrictModeByteOffset); __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset)); __ And(at, a3, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) | (1 << SharedFunctionInfo::kStrictModeBitWithinByte))); __ Branch(&done_convert, ne, at, Operand(zero_reg)); { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // -- a2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(a3); } else { Label convert_to_object, convert_receiver; __ Dlsa(at, sp, a0, kPointerSizeLog2); __ ld(a3, MemOperand(at)); __ JumpIfSmi(a3, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ GetObjectType(a3, a4, a4); __ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE)); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(a3); } __ Branch(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(a0); __ Push(a0, a1); __ mov(a0, a3); __ Push(cp); __ Call(masm->isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET); __ Pop(cp); __ mov(a3, v0); __ Pop(a0, a1); __ SmiUntag(a0); } __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ Dlsa(at, sp, a0, kPointerSizeLog2); __ sd(a3, MemOperand(at)); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // -- a2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, a0, t0, t1, t2); } __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(a0); ParameterCount expected(a2); __ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION, CheckDebugStepCallWrapper()); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(a1); if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, a0, t0, t1, t2); } // Patch the receiver to [[BoundThis]]. { __ ld(at, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset)); __ Dlsa(a4, sp, a0, kPointerSizeLog2); __ sd(at, MemOperand(a4)); } // Load [[BoundArguments]] into a2 and length of that into a4. __ ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); __ ld(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ SmiUntag(a4); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a2 : the [[BoundArguments]] (implemented as FixedArray) // -- a4 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ dsll(a5, a4, kPointerSizeLog2); __ Dsubu(sp, sp, Operand(a5)); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". __ LoadRoot(at, Heap::kRealStackLimitRootIndex); __ Branch(&done, gt, sp, Operand(at)); // Signed comparison. // Restore the stack pointer. __ Daddu(sp, sp, Operand(a5)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. { Label loop, done_loop; __ mov(a5, zero_reg); __ bind(&loop); __ Branch(&done_loop, gt, a5, Operand(a0)); __ Dlsa(a6, sp, a4, kPointerSizeLog2); __ ld(at, MemOperand(a6)); __ Dlsa(a6, sp, a5, kPointerSizeLog2); __ sd(at, MemOperand(a6)); __ Daddu(a4, a4, Operand(1)); __ Daddu(a5, a5, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop, done_loop; __ ld(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ SmiUntag(a4); __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); __ Dsubu(a4, a4, Operand(1)); __ Branch(&done_loop, lt, a4, Operand(zero_reg)); __ Dlsa(a5, a2, a4, kPointerSizeLog2); __ ld(at, MemOperand(a5)); __ Dlsa(a5, sp, a0, kPointerSizeLog2); __ sd(at, MemOperand(a5)); __ Daddu(a0, a0, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Call the [[BoundTargetFunction]] via the Call builtin. __ ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ li(at, Operand(ExternalReference(Builtins::kCall_ReceiverIsAny, masm->isolate()))); __ ld(at, MemOperand(at)); __ Daddu(at, at, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(a1, &non_callable); __ bind(&non_smi); __ GetObjectType(a1, t1, t2); __ Jump(masm->isolate()->builtins()->CallFunction(mode, tail_call_mode), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); __ Jump(masm->isolate()->builtins()->CallBoundFunction(tail_call_mode), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); // Check if target has a [[Call]] internal method. __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t1, t1, Operand(1 << Map::kIsCallable)); __ Branch(&non_callable, eq, t1, Operand(zero_reg)); __ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE)); // 0. Prepare for tail call if necessary. if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, a0, t0, t1, t2); } // 1. Runtime fallback for Proxy [[Call]]. __ Push(a1); // Increase the arguments size to include the pushed function and the // existing receiver on the stack. __ Daddu(a0, a0, 2); // Tail-call to the runtime. __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyCall, masm->isolate())); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver with the (original) target. __ Dlsa(at, sp, a0, kPointerSizeLog2); __ sd(a1, MemOperand(at)); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the constructor to call (checked to be a JSFunction) // -- a3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertFunction(a1); // Calling convention for function specific ConstructStubs require // a2 to contain either an AllocationSite or undefined. __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset)); __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertBoundFunction(a1); // Load [[BoundArguments]] into a2 and length of that into a4. __ ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); __ ld(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ SmiUntag(a4); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a2 : the [[BoundArguments]] (implemented as FixedArray) // -- a3 : the new target (checked to be a constructor) // -- a4 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ dsll(a5, a4, kPointerSizeLog2); __ Dsubu(sp, sp, Operand(a5)); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". __ LoadRoot(at, Heap::kRealStackLimitRootIndex); __ Branch(&done, gt, sp, Operand(at)); // Signed comparison. // Restore the stack pointer. __ Daddu(sp, sp, Operand(a5)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. { Label loop, done_loop; __ mov(a5, zero_reg); __ bind(&loop); __ Branch(&done_loop, ge, a5, Operand(a0)); __ Dlsa(a6, sp, a4, kPointerSizeLog2); __ ld(at, MemOperand(a6)); __ Dlsa(a6, sp, a5, kPointerSizeLog2); __ sd(at, MemOperand(a6)); __ Daddu(a4, a4, Operand(1)); __ Daddu(a5, a5, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop, done_loop; __ ld(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ SmiUntag(a4); __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); __ Dsubu(a4, a4, Operand(1)); __ Branch(&done_loop, lt, a4, Operand(zero_reg)); __ Dlsa(a5, a2, a4, kPointerSizeLog2); __ ld(at, MemOperand(a5)); __ Dlsa(a5, sp, a0, kPointerSizeLog2); __ sd(at, MemOperand(a5)); __ Daddu(a0, a0, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label skip_load; __ Branch(&skip_load, ne, a1, Operand(a3)); __ ld(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&skip_load); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ li(at, Operand(ExternalReference(Builtins::kConstruct, masm->isolate()))); __ ld(at, MemOperand(at)); __ Daddu(at, at, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); } // static void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the constructor to call (checked to be a JSProxy) // -- a3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Call into the Runtime for Proxy [[Construct]]. __ Push(a1, a3); // Include the pushed new_target, constructor and the receiver. __ Daddu(a0, a0, Operand(3)); // Tail-call to the runtime. __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyConstruct, masm->isolate())); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the constructor to call (can be any Object) // -- a3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor; __ JumpIfSmi(a1, &non_constructor); // Dispatch based on instance type. __ ld(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); __ lbu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset)); __ Jump(masm->isolate()->builtins()->ConstructFunction(), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); // Check if target has a [[Construct]] internal method. __ lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t3, t3, Operand(1 << Map::kIsConstructor)); __ Branch(&non_constructor, eq, t3, Operand(zero_reg)); // Only dispatch to bound functions after checking whether they are // constructors. __ Jump(masm->isolate()->builtins()->ConstructBoundFunction(), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); // Only dispatch to proxies after checking whether they are constructors. __ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_PROXY_TYPE)); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ Dlsa(at, sp, a0, kPointerSizeLog2); __ sd(a1, MemOperand(at)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : requested object size (untagged) // -- ra : return address // ----------------------------------- __ SmiTag(a0); __ Push(a0); __ Move(cp, Smi::kZero); __ TailCallRuntime(Runtime::kAllocateInNewSpace); } // static void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : requested object size (untagged) // -- ra : return address // ----------------------------------- __ SmiTag(a0); __ Move(a1, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE))); __ Push(a0, a1); __ Move(cp, Smi::kZero); __ TailCallRuntime(Runtime::kAllocateInTargetSpace); } // static void Builtins::Generate_Abort(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : message_id as Smi // -- ra : return address // ----------------------------------- __ Push(a0); __ Move(cp, Smi::kZero); __ TailCallRuntime(Runtime::kAbort); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // State setup as expected by MacroAssembler::InvokePrologue. // ----------- S t a t e ------------- // -- a0: actual arguments count // -- a1: function (passed through to callee) // -- a2: expected arguments count // -- a3: new target (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Label enough, too_few; __ Branch(&dont_adapt_arguments, eq, a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); // We use Uless as the number of argument should always be greater than 0. __ Branch(&too_few, Uless, a0, Operand(a2)); { // Enough parameters: actual >= expected. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ bind(&enough); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, a2, a5, at, &stack_overflow); // Calculate copy start address into a0 and copy end address into a4. __ SmiScale(a0, a0, kPointerSizeLog2); __ Daddu(a0, fp, a0); // Adjust for return address and receiver. __ Daddu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. __ dsll(a4, a2, kPointerSizeLog2); __ dsubu(a4, a0, a4); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) // a4: copy end address Label copy; __ bind(©); __ ld(a5, MemOperand(a0)); __ push(a5); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a4)); __ daddiu(a0, a0, -kPointerSize); // In delay slot. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, a2, a5, at, &stack_overflow); // Calculate copy start address into a0 and copy end address into a7. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ SmiScale(a0, a0, kPointerSizeLog2); __ Daddu(a0, fp, a0); // Adjust for return address and receiver. __ Daddu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. Also adjust for return address. __ Daddu(a7, fp, kPointerSize); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) // a7: copy end address Label copy; __ bind(©); __ ld(a4, MemOperand(a0)); // Adjusted above for return addr and receiver. __ Dsubu(sp, sp, kPointerSize); __ Dsubu(a0, a0, kPointerSize); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a7)); __ sd(a4, MemOperand(sp)); // In the delay slot. // Fill the remaining expected arguments with undefined. // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); __ dsll(a6, a2, kPointerSizeLog2); __ Dsubu(a4, fp, Operand(a6)); // Adjust for frame. __ Dsubu(a4, a4, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + 2 * kPointerSize)); Label fill; __ bind(&fill); __ Dsubu(sp, sp, kPointerSize); __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a4)); __ sd(a5, MemOperand(sp)); } // Call the entry point. __ bind(&invoke); __ mov(a0, a2); // a0 : expected number of arguments // a1 : function (passed through to callee) // a3: new target (passed through to callee) __ ld(a4, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ Call(a4); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // ------------------------------------------- // Don't adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ ld(a4, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ Jump(a4); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ break_(0xCC); } } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS64