// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/adapters.h" #include "src/compiler/instruction-selector-impl.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-properties.h" namespace v8 { namespace internal { namespace compiler { // Adds IA32-specific methods for generating operands. class IA32OperandGenerator final : public OperandGenerator { public: explicit IA32OperandGenerator(InstructionSelector* selector) : OperandGenerator(selector) {} InstructionOperand UseByteRegister(Node* node) { // TODO(titzer): encode byte register use constraints. return UseFixed(node, edx); } InstructionOperand DefineAsByteRegister(Node* node) { // TODO(titzer): encode byte register def constraints. return DefineAsRegister(node); } bool CanBeMemoryOperand(InstructionCode opcode, Node* node, Node* input, int effect_level) { if (input->opcode() != IrOpcode::kLoad || !selector()->CanCover(node, input)) { return false; } if (effect_level != selector()->GetEffectLevel(input)) { return false; } MachineRepresentation rep = LoadRepresentationOf(input->op()).representation(); switch (opcode) { case kIA32Cmp: case kIA32Test: return rep == MachineRepresentation::kWord32 || rep == MachineRepresentation::kTagged; case kIA32Cmp16: case kIA32Test16: return rep == MachineRepresentation::kWord16; case kIA32Cmp8: case kIA32Test8: return rep == MachineRepresentation::kWord8; default: break; } return false; } bool CanBeImmediate(Node* node) { switch (node->opcode()) { case IrOpcode::kInt32Constant: case IrOpcode::kNumberConstant: case IrOpcode::kExternalConstant: case IrOpcode::kRelocatableInt32Constant: case IrOpcode::kRelocatableInt64Constant: return true; case IrOpcode::kHeapConstant: { // TODO(bmeurer): We must not dereference handles concurrently. If we // really have to this here, then we need to find a way to put this // information on the HeapConstant node already. #if 0 // Constants in new space cannot be used as immediates in V8 because // the GC does not scan code objects when collecting the new generation. Handle<HeapObject> value = OpParameter<Handle<HeapObject>>(node); Isolate* isolate = value->GetIsolate(); return !isolate->heap()->InNewSpace(*value); #endif } default: return false; } } AddressingMode GenerateMemoryOperandInputs(Node* index, int scale, Node* base, Node* displacement_node, DisplacementMode displacement_mode, InstructionOperand inputs[], size_t* input_count) { AddressingMode mode = kMode_MRI; int32_t displacement = (displacement_node == nullptr) ? 0 : OpParameter<int32_t>(displacement_node); if (displacement_mode == kNegativeDisplacement) { displacement = -displacement; } if (base != nullptr) { if (base->opcode() == IrOpcode::kInt32Constant) { displacement += OpParameter<int32_t>(base); base = nullptr; } } if (base != nullptr) { inputs[(*input_count)++] = UseRegister(base); if (index != nullptr) { DCHECK(scale >= 0 && scale <= 3); inputs[(*input_count)++] = UseRegister(index); if (displacement != 0) { inputs[(*input_count)++] = TempImmediate(displacement); static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I, kMode_MR4I, kMode_MR8I}; mode = kMRnI_modes[scale]; } else { static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2, kMode_MR4, kMode_MR8}; mode = kMRn_modes[scale]; } } else { if (displacement == 0) { mode = kMode_MR; } else { inputs[(*input_count)++] = TempImmediate(displacement); mode = kMode_MRI; } } } else { DCHECK(scale >= 0 && scale <= 3); if (index != nullptr) { inputs[(*input_count)++] = UseRegister(index); if (displacement != 0) { inputs[(*input_count)++] = TempImmediate(displacement); static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I, kMode_M4I, kMode_M8I}; mode = kMnI_modes[scale]; } else { static const AddressingMode kMn_modes[] = {kMode_MR, kMode_M2, kMode_M4, kMode_M8}; mode = kMn_modes[scale]; } } else { inputs[(*input_count)++] = TempImmediate(displacement); return kMode_MI; } } return mode; } AddressingMode GetEffectiveAddressMemoryOperand(Node* node, InstructionOperand inputs[], size_t* input_count) { BaseWithIndexAndDisplacement32Matcher m(node, AddressOption::kAllowAll); DCHECK(m.matches()); if ((m.displacement() == nullptr || CanBeImmediate(m.displacement()))) { return GenerateMemoryOperandInputs( m.index(), m.scale(), m.base(), m.displacement(), m.displacement_mode(), inputs, input_count); } else { inputs[(*input_count)++] = UseRegister(node->InputAt(0)); inputs[(*input_count)++] = UseRegister(node->InputAt(1)); return kMode_MR1; } } bool CanBeBetterLeftOperand(Node* node) const { return !selector()->IsLive(node); } }; namespace { void VisitRO(InstructionSelector* selector, Node* node, ArchOpcode opcode) { IA32OperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void VisitRR(InstructionSelector* selector, Node* node, InstructionCode opcode) { IA32OperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void VisitRROFloat(InstructionSelector* selector, Node* node, ArchOpcode avx_opcode, ArchOpcode sse_opcode) { IA32OperandGenerator g(selector); InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); InstructionOperand operand1 = g.Use(node->InputAt(1)); if (selector->IsSupported(AVX)) { selector->Emit(avx_opcode, g.DefineAsRegister(node), operand0, operand1); } else { selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0, operand1); } } void VisitFloatUnop(InstructionSelector* selector, Node* node, Node* input, ArchOpcode avx_opcode, ArchOpcode sse_opcode) { IA32OperandGenerator g(selector); if (selector->IsSupported(AVX)) { selector->Emit(avx_opcode, g.DefineAsRegister(node), g.Use(input)); } else { selector->Emit(sse_opcode, g.DefineSameAsFirst(node), g.UseRegister(input)); } } } // namespace void InstructionSelector::VisitLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kIA32Movss; break; case MachineRepresentation::kFloat64: opcode = kIA32Movsd; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kIA32Movsxbl : kIA32Movzxbl; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kIA32Movsxwl : kIA32Movzxwl; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord32: opcode = kIA32Movl; break; case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } IA32OperandGenerator g(this); InstructionOperand outputs[1]; outputs[0] = g.DefineAsRegister(node); InstructionOperand inputs[3]; size_t input_count = 0; AddressingMode mode = g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); InstructionCode code = opcode | AddressingModeField::encode(mode); Emit(code, 1, outputs, input_count, inputs); } void InstructionSelector::VisitProtectedLoad(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitStore(Node* node) { IA32OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); StoreRepresentation store_rep = StoreRepresentationOf(node->op()); WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); MachineRepresentation rep = store_rep.representation(); if (write_barrier_kind != kNoWriteBarrier) { DCHECK(CanBeTaggedPointer(rep)); AddressingMode addressing_mode; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); if (g.CanBeImmediate(index)) { inputs[input_count++] = g.UseImmediate(index); addressing_mode = kMode_MRI; } else { inputs[input_count++] = g.UseUniqueRegister(index); addressing_mode = kMode_MR1; } inputs[input_count++] = g.UseUniqueRegister(value); RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny; switch (write_barrier_kind) { case kNoWriteBarrier: UNREACHABLE(); break; case kMapWriteBarrier: record_write_mode = RecordWriteMode::kValueIsMap; break; case kPointerWriteBarrier: record_write_mode = RecordWriteMode::kValueIsPointer; break; case kFullWriteBarrier: record_write_mode = RecordWriteMode::kValueIsAny; break; } InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; size_t const temp_count = arraysize(temps); InstructionCode code = kArchStoreWithWriteBarrier; code |= AddressingModeField::encode(addressing_mode); code |= MiscField::encode(static_cast<int>(record_write_mode)); Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); } else { ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kFloat32: opcode = kIA32Movss; break; case MachineRepresentation::kFloat64: opcode = kIA32Movsd; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = kIA32Movb; break; case MachineRepresentation::kWord16: opcode = kIA32Movw; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord32: opcode = kIA32Movl; break; case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } InstructionOperand val; if (g.CanBeImmediate(value)) { val = g.UseImmediate(value); } else if (rep == MachineRepresentation::kWord8 || rep == MachineRepresentation::kBit) { val = g.UseByteRegister(value); } else { val = g.UseRegister(value); } InstructionOperand inputs[4]; size_t input_count = 0; AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); inputs[input_count++] = val; Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count, inputs); } } // Architecture supports unaligned access, therefore VisitLoad is used instead void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } // Architecture supports unaligned access, therefore VisitStore is used instead void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitCheckedLoad(Node* node) { CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op()); IA32OperandGenerator g(this); Node* const buffer = node->InputAt(0); Node* const offset = node->InputAt(1); Node* const length = node->InputAt(2); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16; break; case MachineRepresentation::kWord32: opcode = kCheckedLoadWord32; break; case MachineRepresentation::kFloat32: opcode = kCheckedLoadFloat32; break; case MachineRepresentation::kFloat64: opcode = kCheckedLoadFloat64; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } InstructionOperand offset_operand = g.UseRegister(offset); InstructionOperand length_operand = g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length); if (g.CanBeImmediate(buffer)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), offset_operand, length_operand, offset_operand, g.UseImmediate(buffer)); } else { Emit(opcode | AddressingModeField::encode(kMode_MR1), g.DefineAsRegister(node), offset_operand, length_operand, g.UseRegister(buffer), offset_operand); } } void InstructionSelector::VisitCheckedStore(Node* node) { MachineRepresentation rep = CheckedStoreRepresentationOf(node->op()); IA32OperandGenerator g(this); Node* const buffer = node->InputAt(0); Node* const offset = node->InputAt(1); Node* const length = node->InputAt(2); Node* const value = node->InputAt(3); ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kWord8: opcode = kCheckedStoreWord8; break; case MachineRepresentation::kWord16: opcode = kCheckedStoreWord16; break; case MachineRepresentation::kWord32: opcode = kCheckedStoreWord32; break; case MachineRepresentation::kFloat32: opcode = kCheckedStoreFloat32; break; case MachineRepresentation::kFloat64: opcode = kCheckedStoreFloat64; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } InstructionOperand value_operand = g.CanBeImmediate(value) ? g.UseImmediate(value) : ((rep == MachineRepresentation::kWord8 || rep == MachineRepresentation::kBit) ? g.UseByteRegister(value) : g.UseRegister(value)); InstructionOperand offset_operand = g.UseRegister(offset); InstructionOperand length_operand = g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length); if (g.CanBeImmediate(buffer)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), offset_operand, length_operand, value_operand, offset_operand, g.UseImmediate(buffer)); } else { Emit(opcode | AddressingModeField::encode(kMode_MR1), g.NoOutput(), offset_operand, length_operand, value_operand, g.UseRegister(buffer), offset_operand); } } namespace { // Shared routine for multiple binary operations. void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { IA32OperandGenerator g(selector); Int32BinopMatcher m(node); Node* left = m.left().node(); Node* right = m.right().node(); InstructionOperand inputs[4]; size_t input_count = 0; InstructionOperand outputs[2]; size_t output_count = 0; // TODO(turbofan): match complex addressing modes. if (left == right) { // If both inputs refer to the same operand, enforce allocating a register // for both of them to ensure that we don't end up generating code like // this: // // mov eax, [ebp-0x10] // add eax, [ebp-0x10] // jo label InstructionOperand const input = g.UseRegister(left); inputs[input_count++] = input; inputs[input_count++] = input; } else if (g.CanBeImmediate(right)) { inputs[input_count++] = g.UseRegister(left); inputs[input_count++] = g.UseImmediate(right); } else { if (node->op()->HasProperty(Operator::kCommutative) && g.CanBeBetterLeftOperand(right)) { std::swap(left, right); } inputs[input_count++] = g.UseRegister(left); inputs[input_count++] = g.Use(right); } if (cont->IsBranch()) { inputs[input_count++] = g.Label(cont->true_block()); inputs[input_count++] = g.Label(cont->false_block()); } outputs[output_count++] = g.DefineSameAsFirst(node); if (cont->IsSet()) { outputs[output_count++] = g.DefineAsByteRegister(cont->result()); } DCHECK_NE(0u, input_count); DCHECK_NE(0u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); opcode = cont->Encode(opcode); if (cont->IsDeoptimize()) { selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs, cont->reason(), cont->frame_state()); } else { selector->Emit(opcode, output_count, outputs, input_count, inputs); } } // Shared routine for multiple binary operations. void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode) { FlagsContinuation cont; VisitBinop(selector, node, opcode, &cont); } } // namespace void InstructionSelector::VisitWord32And(Node* node) { VisitBinop(this, node, kIA32And); } void InstructionSelector::VisitWord32Or(Node* node) { VisitBinop(this, node, kIA32Or); } void InstructionSelector::VisitWord32Xor(Node* node) { IA32OperandGenerator g(this); Int32BinopMatcher m(node); if (m.right().Is(-1)) { Emit(kIA32Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node())); } else { VisitBinop(this, node, kIA32Xor); } } // Shared routine for multiple shift operations. static inline void VisitShift(InstructionSelector* selector, Node* node, ArchOpcode opcode) { IA32OperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (g.CanBeImmediate(right)) { selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseImmediate(right)); } else { selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseFixed(right, ecx)); } } namespace { void VisitMulHigh(InstructionSelector* selector, Node* node, ArchOpcode opcode) { IA32OperandGenerator g(selector); InstructionOperand temps[] = {g.TempRegister(eax)}; selector->Emit( opcode, g.DefineAsFixed(node, edx), g.UseFixed(node->InputAt(0), eax), g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); } void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) { IA32OperandGenerator g(selector); InstructionOperand temps[] = {g.TempRegister(edx)}; selector->Emit(opcode, g.DefineAsFixed(node, eax), g.UseFixed(node->InputAt(0), eax), g.UseUnique(node->InputAt(1)), arraysize(temps), temps); } void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) { IA32OperandGenerator g(selector); InstructionOperand temps[] = {g.TempRegister(eax)}; selector->Emit(opcode, g.DefineAsFixed(node, edx), g.UseFixed(node->InputAt(0), eax), g.UseUnique(node->InputAt(1)), arraysize(temps), temps); } void EmitLea(InstructionSelector* selector, Node* result, Node* index, int scale, Node* base, Node* displacement, DisplacementMode displacement_mode) { IA32OperandGenerator g(selector); InstructionOperand inputs[4]; size_t input_count = 0; AddressingMode mode = g.GenerateMemoryOperandInputs(index, scale, base, displacement, displacement_mode, inputs, &input_count); DCHECK_NE(0u, input_count); DCHECK_GE(arraysize(inputs), input_count); InstructionOperand outputs[1]; outputs[0] = g.DefineAsRegister(result); InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea; selector->Emit(opcode, 1, outputs, input_count, inputs); } } // namespace void InstructionSelector::VisitWord32Shl(Node* node) { Int32ScaleMatcher m(node, true); if (m.matches()) { Node* index = node->InputAt(0); Node* base = m.power_of_two_plus_one() ? index : nullptr; EmitLea(this, node, index, m.scale(), base, nullptr, kPositiveDisplacement); return; } VisitShift(this, node, kIA32Shl); } void InstructionSelector::VisitWord32Shr(Node* node) { VisitShift(this, node, kIA32Shr); } void InstructionSelector::VisitWord32Sar(Node* node) { VisitShift(this, node, kIA32Sar); } void InstructionSelector::VisitInt32PairAdd(Node* node) { IA32OperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { // We use UseUniqueRegister here to avoid register sharing with the temp // register. InstructionOperand inputs[] = { g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = {g.DefineSameAsFirst(node), g.DefineAsRegister(projection1)}; InstructionOperand temps[] = {g.TempRegister()}; Emit(kIA32AddPair, 2, outputs, 4, inputs, 1, temps); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kIA32Add, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(2))); } } void InstructionSelector::VisitInt32PairSub(Node* node) { IA32OperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { // We use UseUniqueRegister here to avoid register sharing with the temp // register. InstructionOperand inputs[] = { g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = {g.DefineSameAsFirst(node), g.DefineAsRegister(projection1)}; InstructionOperand temps[] = {g.TempRegister()}; Emit(kIA32SubPair, 2, outputs, 4, inputs, 1, temps); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kIA32Sub, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(2))); } } void InstructionSelector::VisitInt32PairMul(Node* node) { IA32OperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { // InputAt(3) explicitly shares ecx with OutputRegister(1) to save one // register and one mov instruction. InstructionOperand inputs[] = {g.UseUnique(node->InputAt(0)), g.UseUnique(node->InputAt(1)), g.UseUniqueRegister(node->InputAt(2)), g.UseFixed(node->InputAt(3), ecx)}; InstructionOperand outputs[] = { g.DefineAsFixed(node, eax), g.DefineAsFixed(NodeProperties::FindProjection(node, 1), ecx)}; InstructionOperand temps[] = {g.TempRegister(edx)}; Emit(kIA32MulPair, 2, outputs, 4, inputs, 1, temps); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(2))); } } void VisitWord32PairShift(InstructionSelector* selector, InstructionCode opcode, Node* node) { IA32OperandGenerator g(selector); Node* shift = node->InputAt(2); InstructionOperand shift_operand; if (g.CanBeImmediate(shift)) { shift_operand = g.UseImmediate(shift); } else { shift_operand = g.UseFixed(shift, ecx); } InstructionOperand inputs[] = {g.UseFixed(node->InputAt(0), eax), g.UseFixed(node->InputAt(1), edx), shift_operand}; InstructionOperand outputs[2]; InstructionOperand temps[1]; int32_t output_count = 0; int32_t temp_count = 0; outputs[output_count++] = g.DefineAsFixed(node, eax); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { outputs[output_count++] = g.DefineAsFixed(projection1, edx); } else { temps[temp_count++] = g.TempRegister(edx); } selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps); } void InstructionSelector::VisitWord32PairShl(Node* node) { VisitWord32PairShift(this, kIA32ShlPair, node); } void InstructionSelector::VisitWord32PairShr(Node* node) { VisitWord32PairShift(this, kIA32ShrPair, node); } void InstructionSelector::VisitWord32PairSar(Node* node) { VisitWord32PairShift(this, kIA32SarPair, node); } void InstructionSelector::VisitWord32Ror(Node* node) { VisitShift(this, node, kIA32Ror); } void InstructionSelector::VisitWord32Clz(Node* node) { IA32OperandGenerator g(this); Emit(kIA32Lzcnt, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void InstructionSelector::VisitWord32Ctz(Node* node) { IA32OperandGenerator g(this); Emit(kIA32Tzcnt, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord32ReverseBytes(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord32Popcnt(Node* node) { IA32OperandGenerator g(this); Emit(kIA32Popcnt, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void InstructionSelector::VisitInt32Add(Node* node) { IA32OperandGenerator g(this); // Try to match the Add to a lea pattern BaseWithIndexAndDisplacement32Matcher m(node); if (m.matches() && (m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) { InstructionOperand inputs[4]; size_t input_count = 0; AddressingMode mode = g.GenerateMemoryOperandInputs( m.index(), m.scale(), m.base(), m.displacement(), m.displacement_mode(), inputs, &input_count); DCHECK_NE(0u, input_count); DCHECK_GE(arraysize(inputs), input_count); InstructionOperand outputs[1]; outputs[0] = g.DefineAsRegister(node); InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea; Emit(opcode, 1, outputs, input_count, inputs); return; } // No lea pattern match, use add VisitBinop(this, node, kIA32Add); } void InstructionSelector::VisitInt32Sub(Node* node) { IA32OperandGenerator g(this); Int32BinopMatcher m(node); if (m.left().Is(0)) { Emit(kIA32Neg, g.DefineSameAsFirst(node), g.Use(m.right().node())); } else { VisitBinop(this, node, kIA32Sub); } } void InstructionSelector::VisitInt32Mul(Node* node) { Int32ScaleMatcher m(node, true); if (m.matches()) { Node* index = node->InputAt(0); Node* base = m.power_of_two_plus_one() ? index : nullptr; EmitLea(this, node, index, m.scale(), base, nullptr, kPositiveDisplacement); return; } IA32OperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (g.CanBeImmediate(right)) { Emit(kIA32Imul, g.DefineAsRegister(node), g.Use(left), g.UseImmediate(right)); } else { if (g.CanBeBetterLeftOperand(right)) { std::swap(left, right); } Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(left), g.Use(right)); } } void InstructionSelector::VisitInt32MulHigh(Node* node) { VisitMulHigh(this, node, kIA32ImulHigh); } void InstructionSelector::VisitUint32MulHigh(Node* node) { VisitMulHigh(this, node, kIA32UmulHigh); } void InstructionSelector::VisitInt32Div(Node* node) { VisitDiv(this, node, kIA32Idiv); } void InstructionSelector::VisitUint32Div(Node* node) { VisitDiv(this, node, kIA32Udiv); } void InstructionSelector::VisitInt32Mod(Node* node) { VisitMod(this, node, kIA32Idiv); } void InstructionSelector::VisitUint32Mod(Node* node) { VisitMod(this, node, kIA32Udiv); } void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) { VisitRO(this, node, kSSEFloat32ToFloat64); } void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) { VisitRO(this, node, kSSEInt32ToFloat32); } void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) { IA32OperandGenerator g(this); InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; Emit(kSSEUint32ToFloat32, g.DefineAsRegister(node), g.Use(node->InputAt(0)), arraysize(temps), temps); } void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) { VisitRO(this, node, kSSEInt32ToFloat64); } void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) { VisitRO(this, node, kSSEUint32ToFloat64); } void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { VisitRO(this, node, kSSEFloat32ToInt32); } void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { VisitRO(this, node, kSSEFloat32ToUint32); } void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) { VisitRO(this, node, kSSEFloat64ToInt32); } void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) { VisitRO(this, node, kSSEFloat64ToUint32); } void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) { VisitRO(this, node, kSSEFloat64ToUint32); } void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) { VisitRO(this, node, kSSEFloat64ToFloat32); } void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { VisitRR(this, node, kArchTruncateDoubleToI); } void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) { VisitRO(this, node, kSSEFloat64ToInt32); } void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) { IA32OperandGenerator g(this); Emit(kIA32BitcastFI, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) { IA32OperandGenerator g(this); Emit(kIA32BitcastIF, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void InstructionSelector::VisitFloat32Add(Node* node) { VisitRROFloat(this, node, kAVXFloat32Add, kSSEFloat32Add); } void InstructionSelector::VisitFloat64Add(Node* node) { VisitRROFloat(this, node, kAVXFloat64Add, kSSEFloat64Add); } void InstructionSelector::VisitFloat32Sub(Node* node) { VisitRROFloat(this, node, kAVXFloat32Sub, kSSEFloat32Sub); } void InstructionSelector::VisitFloat64Sub(Node* node) { VisitRROFloat(this, node, kAVXFloat64Sub, kSSEFloat64Sub); } void InstructionSelector::VisitFloat32Mul(Node* node) { VisitRROFloat(this, node, kAVXFloat32Mul, kSSEFloat32Mul); } void InstructionSelector::VisitFloat64Mul(Node* node) { VisitRROFloat(this, node, kAVXFloat64Mul, kSSEFloat64Mul); } void InstructionSelector::VisitFloat32Div(Node* node) { VisitRROFloat(this, node, kAVXFloat32Div, kSSEFloat32Div); } void InstructionSelector::VisitFloat64Div(Node* node) { VisitRROFloat(this, node, kAVXFloat64Div, kSSEFloat64Div); } void InstructionSelector::VisitFloat64Mod(Node* node) { IA32OperandGenerator g(this); InstructionOperand temps[] = {g.TempRegister(eax)}; Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1, temps); } void InstructionSelector::VisitFloat32Max(Node* node) { IA32OperandGenerator g(this); InstructionOperand temps[] = {g.TempRegister()}; Emit(kSSEFloat32Max, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)), arraysize(temps), temps); } void InstructionSelector::VisitFloat64Max(Node* node) { IA32OperandGenerator g(this); InstructionOperand temps[] = {g.TempRegister()}; Emit(kSSEFloat64Max, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)), arraysize(temps), temps); } void InstructionSelector::VisitFloat32Min(Node* node) { IA32OperandGenerator g(this); InstructionOperand temps[] = {g.TempRegister()}; Emit(kSSEFloat32Min, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)), arraysize(temps), temps); } void InstructionSelector::VisitFloat64Min(Node* node) { IA32OperandGenerator g(this); InstructionOperand temps[] = {g.TempRegister()}; Emit(kSSEFloat64Min, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)), arraysize(temps), temps); } void InstructionSelector::VisitFloat32Abs(Node* node) { IA32OperandGenerator g(this); VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat32Abs, kSSEFloat32Abs); } void InstructionSelector::VisitFloat64Abs(Node* node) { IA32OperandGenerator g(this); VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat64Abs, kSSEFloat64Abs); } void InstructionSelector::VisitFloat32Sqrt(Node* node) { VisitRO(this, node, kSSEFloat32Sqrt); } void InstructionSelector::VisitFloat64Sqrt(Node* node) { VisitRO(this, node, kSSEFloat64Sqrt); } void InstructionSelector::VisitFloat32RoundDown(Node* node) { VisitRR(this, node, kSSEFloat32Round | MiscField::encode(kRoundDown)); } void InstructionSelector::VisitFloat64RoundDown(Node* node) { VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundDown)); } void InstructionSelector::VisitFloat32RoundUp(Node* node) { VisitRR(this, node, kSSEFloat32Round | MiscField::encode(kRoundUp)); } void InstructionSelector::VisitFloat64RoundUp(Node* node) { VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundUp)); } void InstructionSelector::VisitFloat32RoundTruncate(Node* node) { VisitRR(this, node, kSSEFloat32Round | MiscField::encode(kRoundToZero)); } void InstructionSelector::VisitFloat64RoundTruncate(Node* node) { VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundToZero)); } void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { VisitRR(this, node, kSSEFloat32Round | MiscField::encode(kRoundToNearest)); } void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundToNearest)); } void InstructionSelector::VisitFloat32Neg(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat32Neg, kSSEFloat32Neg); } void InstructionSelector::VisitFloat64Neg(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat64Neg, kSSEFloat64Neg); } void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, InstructionCode opcode) { IA32OperandGenerator g(this); Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, InstructionCode opcode) { IA32OperandGenerator g(this); Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))) ->MarkAsCall(); } void InstructionSelector::EmitPrepareArguments( ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor, Node* node) { IA32OperandGenerator g(this); // Prepare for C function call. if (descriptor->IsCFunctionCall()) { InstructionOperand temps[] = {g.TempRegister()}; size_t const temp_count = arraysize(temps); Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>(descriptor->ParameterCount())), 0, nullptr, 0, nullptr, temp_count, temps); // Poke any stack arguments. for (size_t n = 0; n < arguments->size(); ++n) { PushParameter input = (*arguments)[n]; if (input.node()) { int const slot = static_cast<int>(n); InstructionOperand value = g.CanBeImmediate(node) ? g.UseImmediate(input.node()) : g.UseRegister(input.node()); Emit(kIA32Poke | MiscField::encode(slot), g.NoOutput(), value); } } } else { // Push any stack arguments. for (PushParameter input : base::Reversed(*arguments)) { // Skip any alignment holes in pushed nodes. if (input.node() == nullptr) continue; InstructionOperand value = g.CanBeImmediate(input.node()) ? g.UseImmediate(input.node()) : IsSupported(ATOM) || sequence()->IsFP(GetVirtualRegister(input.node())) ? g.UseRegister(input.node()) : g.Use(input.node()); if (input.type() == MachineType::Float32()) { Emit(kIA32PushFloat32, g.NoOutput(), value); } else if (input.type() == MachineType::Float64()) { Emit(kIA32PushFloat64, g.NoOutput(), value); } else { Emit(kIA32Push, g.NoOutput(), value); } } } } bool InstructionSelector::IsTailCallAddressImmediate() { return true; } int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 0; } namespace { void VisitCompareWithMemoryOperand(InstructionSelector* selector, InstructionCode opcode, Node* left, InstructionOperand right, FlagsContinuation* cont) { DCHECK(left->opcode() == IrOpcode::kLoad); IA32OperandGenerator g(selector); size_t input_count = 0; InstructionOperand inputs[6]; AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(left, inputs, &input_count); opcode |= AddressingModeField::encode(addressing_mode); opcode = cont->Encode(opcode); inputs[input_count++] = right; if (cont->IsBranch()) { inputs[input_count++] = g.Label(cont->true_block()); inputs[input_count++] = g.Label(cont->false_block()); selector->Emit(opcode, 0, nullptr, input_count, inputs); } else if (cont->IsDeoptimize()) { selector->EmitDeoptimize(opcode, 0, nullptr, input_count, inputs, cont->reason(), cont->frame_state()); } else { DCHECK(cont->IsSet()); InstructionOperand output = g.DefineAsRegister(cont->result()); selector->Emit(opcode, 1, &output, input_count, inputs); } } // Shared routine for multiple compare operations. void VisitCompare(InstructionSelector* selector, InstructionCode opcode, InstructionOperand left, InstructionOperand right, FlagsContinuation* cont) { IA32OperandGenerator g(selector); opcode = cont->Encode(opcode); if (cont->IsBranch()) { selector->Emit(opcode, g.NoOutput(), left, right, g.Label(cont->true_block()), g.Label(cont->false_block())); } else if (cont->IsDeoptimize()) { selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->reason(), cont->frame_state()); } else { DCHECK(cont->IsSet()); selector->Emit(opcode, g.DefineAsByteRegister(cont->result()), left, right); } } // Shared routine for multiple compare operations. void VisitCompare(InstructionSelector* selector, InstructionCode opcode, Node* left, Node* right, FlagsContinuation* cont, bool commutative) { IA32OperandGenerator g(selector); if (commutative && g.CanBeBetterLeftOperand(right)) { std::swap(left, right); } VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont); } // Tries to match the size of the given opcode to that of the operands, if // possible. InstructionCode TryNarrowOpcodeSize(InstructionCode opcode, Node* left, Node* right, FlagsContinuation* cont) { // Currently, if one of the two operands is not a Load, we don't know what its // machine representation is, so we bail out. // TODO(epertoso): we can probably get some size information out of immediates // and phi nodes. if (left->opcode() != IrOpcode::kLoad || right->opcode() != IrOpcode::kLoad) { return opcode; } // If the load representations don't match, both operands will be // zero/sign-extended to 32bit. MachineType left_type = LoadRepresentationOf(left->op()); MachineType right_type = LoadRepresentationOf(right->op()); if (left_type == right_type) { switch (left_type.representation()) { case MachineRepresentation::kBit: case MachineRepresentation::kWord8: { if (opcode == kIA32Test) return kIA32Test8; if (opcode == kIA32Cmp) { if (left_type.semantic() == MachineSemantic::kUint32) { cont->OverwriteUnsignedIfSigned(); } else { CHECK_EQ(MachineSemantic::kInt32, left_type.semantic()); } return kIA32Cmp8; } break; } case MachineRepresentation::kWord16: if (opcode == kIA32Test) return kIA32Test16; if (opcode == kIA32Cmp) { if (left_type.semantic() == MachineSemantic::kUint32) { cont->OverwriteUnsignedIfSigned(); } else { CHECK_EQ(MachineSemantic::kInt32, left_type.semantic()); } return kIA32Cmp16; } break; default: break; } } return opcode; } // Shared routine for multiple float32 compare operations (inputs commuted). void VisitFloat32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { Node* const left = node->InputAt(0); Node* const right = node->InputAt(1); VisitCompare(selector, kSSEFloat32Cmp, right, left, cont, false); } // Shared routine for multiple float64 compare operations (inputs commuted). void VisitFloat64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { Node* const left = node->InputAt(0); Node* const right = node->InputAt(1); VisitCompare(selector, kSSEFloat64Cmp, right, left, cont, false); } // Shared routine for multiple word compare operations. void VisitWordCompare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { IA32OperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); InstructionCode narrowed_opcode = TryNarrowOpcodeSize(opcode, left, right, cont); int effect_level = selector->GetEffectLevel(node); if (cont->IsBranch()) { effect_level = selector->GetEffectLevel( cont->true_block()->PredecessorAt(0)->control_input()); } // If one of the two inputs is an immediate, make sure it's on the right, or // if one of the two inputs is a memory operand, make sure it's on the left. if ((!g.CanBeImmediate(right) && g.CanBeImmediate(left)) || (g.CanBeMemoryOperand(narrowed_opcode, node, right, effect_level) && !g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level))) { if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); std::swap(left, right); } // Match immediates on right side of comparison. if (g.CanBeImmediate(right)) { if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) { // TODO(epertoso): we should use `narrowed_opcode' here once we match // immediates too. return VisitCompareWithMemoryOperand(selector, opcode, left, g.UseImmediate(right), cont); } return VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right), cont); } // Match memory operands on left side of comparison. if (g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level)) { bool needs_byte_register = narrowed_opcode == kIA32Test8 || narrowed_opcode == kIA32Cmp8; return VisitCompareWithMemoryOperand( selector, narrowed_opcode, left, needs_byte_register ? g.UseByteRegister(right) : g.UseRegister(right), cont); } if (g.CanBeBetterLeftOperand(right)) { if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); std::swap(left, right); } return VisitCompare(selector, opcode, left, right, cont, node->op()->HasProperty(Operator::kCommutative)); } void VisitWordCompare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { IA32OperandGenerator g(selector); Int32BinopMatcher m(node); if (m.left().IsLoad() && m.right().IsLoadStackPointer()) { LoadMatcher<ExternalReferenceMatcher> mleft(m.left().node()); ExternalReference js_stack_limit = ExternalReference::address_of_stack_limit(selector->isolate()); if (mleft.object().Is(js_stack_limit) && mleft.index().Is(0)) { // Compare(Load(js_stack_limit), LoadStackPointer) if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); InstructionCode opcode = cont->Encode(kIA32StackCheck); if (cont->IsBranch()) { selector->Emit(opcode, g.NoOutput(), g.Label(cont->true_block()), g.Label(cont->false_block())); } else if (cont->IsDeoptimize()) { selector->EmitDeoptimize(opcode, 0, nullptr, 0, nullptr, cont->reason(), cont->frame_state()); } else { DCHECK(cont->IsSet()); selector->Emit(opcode, g.DefineAsRegister(cont->result())); } return; } } VisitWordCompare(selector, node, kIA32Cmp, cont); } // Shared routine for word comparison with zero. void VisitWordCompareZero(InstructionSelector* selector, Node* user, Node* value, FlagsContinuation* cont) { // Try to combine with comparisons against 0 by simply inverting the branch. while (value->opcode() == IrOpcode::kWord32Equal && selector->CanCover(user, value)) { Int32BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); cont->Negate(); } if (selector->CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kWord32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWordCompare(selector, value, cont); case IrOpcode::kInt32LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWordCompare(selector, value, cont); case IrOpcode::kInt32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWordCompare(selector, value, cont); case IrOpcode::kUint32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWordCompare(selector, value, cont); case IrOpcode::kUint32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWordCompare(selector, value, cont); case IrOpcode::kFloat32Equal: cont->OverwriteAndNegateIfEqual(kUnorderedEqual); return VisitFloat32Compare(selector, value, cont); case IrOpcode::kFloat32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan); return VisitFloat32Compare(selector, value, cont); case IrOpcode::kFloat32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual); return VisitFloat32Compare(selector, value, cont); case IrOpcode::kFloat64Equal: cont->OverwriteAndNegateIfEqual(kUnorderedEqual); return VisitFloat64Compare(selector, value, cont); case IrOpcode::kFloat64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan); return VisitFloat64Compare(selector, value, cont); case IrOpcode::kFloat64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual); return VisitFloat64Compare(selector, value, cont); case IrOpcode::kProjection: // Check if this is the overflow output projection of an // <Operation>WithOverflow node. if (ProjectionIndexOf(value->op()) == 1u) { // We cannot combine the <Operation>WithOverflow with this branch // unless the 0th projection (the use of the actual value of the // <Operation> is either nullptr, which means there's no use of the // actual value, or was already defined, which means it is scheduled // *AFTER* this branch). Node* const node = value->InputAt(0); Node* const result = NodeProperties::FindProjection(node, 0); if (result == nullptr || selector->IsDefined(result)) { switch (node->opcode()) { case IrOpcode::kInt32AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(selector, node, kIA32Add, cont); case IrOpcode::kInt32SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(selector, node, kIA32Sub, cont); case IrOpcode::kInt32MulWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(selector, node, kIA32Imul, cont); default: break; } } } break; case IrOpcode::kInt32Sub: return VisitWordCompare(selector, value, cont); case IrOpcode::kWord32And: return VisitWordCompare(selector, value, kIA32Test, cont); default: break; } } // Continuation could not be combined with a compare, emit compare against 0. IA32OperandGenerator g(selector); VisitCompare(selector, kIA32Cmp, g.Use(value), g.TempImmediate(0), cont); } } // namespace void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch, BasicBlock* fbranch) { FlagsContinuation cont(kNotEqual, tbranch, fbranch); VisitWordCompareZero(this, branch, branch->InputAt(0), &cont); } void InstructionSelector::VisitDeoptimizeIf(Node* node) { FlagsContinuation cont = FlagsContinuation::ForDeoptimize( kNotEqual, DeoptimizeReasonOf(node->op()), node->InputAt(1)); VisitWordCompareZero(this, node, node->InputAt(0), &cont); } void InstructionSelector::VisitDeoptimizeUnless(Node* node) { FlagsContinuation cont = FlagsContinuation::ForDeoptimize( kEqual, DeoptimizeReasonOf(node->op()), node->InputAt(1)); VisitWordCompareZero(this, node, node->InputAt(0), &cont); } void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { IA32OperandGenerator g(this); InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); // Emit either ArchTableSwitch or ArchLookupSwitch. size_t table_space_cost = 4 + sw.value_range; size_t table_time_cost = 3; size_t lookup_space_cost = 3 + 2 * sw.case_count; size_t lookup_time_cost = sw.case_count; if (sw.case_count > 4 && table_space_cost + 3 * table_time_cost <= lookup_space_cost + 3 * lookup_time_cost && sw.min_value > std::numeric_limits<int32_t>::min()) { InstructionOperand index_operand = value_operand; if (sw.min_value) { index_operand = g.TempRegister(); Emit(kIA32Lea | AddressingModeField::encode(kMode_MRI), index_operand, value_operand, g.TempImmediate(-sw.min_value)); } // Generate a table lookup. return EmitTableSwitch(sw, index_operand); } // Generate a sequence of conditional jumps. return EmitLookupSwitch(sw, value_operand); } void InstructionSelector::VisitWord32Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int32BinopMatcher m(node); if (m.right().Is(0)) { return VisitWordCompareZero(this, m.node(), m.left().node(), &cont); } VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitInt32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitUint32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kIA32Add, &cont); } FlagsContinuation cont; VisitBinop(this, node, kIA32Add, &cont); } void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kIA32Sub, &cont); } FlagsContinuation cont; VisitBinop(this, node, kIA32Sub, &cont); } void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kIA32Imul, &cont); } FlagsContinuation cont; VisitBinop(this, node, kIA32Imul, &cont); } void InstructionSelector::VisitFloat32Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedGreaterThan, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat64Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedGreaterThan, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) { IA32OperandGenerator g(this); Emit(kSSEFloat64ExtractLowWord32, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) { IA32OperandGenerator g(this); Emit(kSSEFloat64ExtractHighWord32, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { IA32OperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Float64Matcher mleft(left); if (mleft.HasValue() && (bit_cast<uint64_t>(mleft.Value()) >> 32) == 0u) { Emit(kSSEFloat64LoadLowWord32, g.DefineAsRegister(node), g.Use(right)); return; } Emit(kSSEFloat64InsertLowWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.Use(right)); } void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { IA32OperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Emit(kSSEFloat64InsertHighWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.Use(right)); } void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { IA32OperandGenerator g(this); Emit(kSSEFloat64SilenceNaN, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitAtomicLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); DCHECK(load_rep.representation() == MachineRepresentation::kWord8 || load_rep.representation() == MachineRepresentation::kWord16 || load_rep.representation() == MachineRepresentation::kWord32); USE(load_rep); VisitLoad(node); } void InstructionSelector::VisitAtomicStore(Node* node) { IA32OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kWord8: opcode = kIA32Xchgb; break; case MachineRepresentation::kWord16: opcode = kIA32Xchgw; break; case MachineRepresentation::kWord32: opcode = kIA32Xchgl; break; default: UNREACHABLE(); break; } AddressingMode addressing_mode; InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); if (g.CanBeImmediate(index)) { inputs[input_count++] = g.UseImmediate(index); addressing_mode = kMode_MRI; } else { inputs[input_count++] = g.UseUniqueRegister(index); addressing_mode = kMode_MR1; } inputs[input_count++] = g.UseUniqueRegister(value); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 0, nullptr, input_count, inputs); } // static MachineOperatorBuilder::Flags InstructionSelector::SupportedMachineOperatorFlags() { MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kWord32ShiftIsSafe | MachineOperatorBuilder::kWord32Ctz; if (CpuFeatures::IsSupported(POPCNT)) { flags |= MachineOperatorBuilder::kWord32Popcnt; } if (CpuFeatures::IsSupported(SSE4_1)) { flags |= MachineOperatorBuilder::kFloat32RoundDown | MachineOperatorBuilder::kFloat64RoundDown | MachineOperatorBuilder::kFloat32RoundUp | MachineOperatorBuilder::kFloat64RoundUp | MachineOperatorBuilder::kFloat32RoundTruncate | MachineOperatorBuilder::kFloat64RoundTruncate | MachineOperatorBuilder::kFloat32RoundTiesEven | MachineOperatorBuilder::kFloat64RoundTiesEven; } return flags; } // static MachineOperatorBuilder::AlignmentRequirements InstructionSelector::AlignmentRequirements() { return MachineOperatorBuilder::AlignmentRequirements:: FullUnalignedAccessSupport(); } } // namespace compiler } // namespace internal } // namespace v8