// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_COMPILER_INSTRUCTION_SELECTOR_H_ #define V8_COMPILER_INSTRUCTION_SELECTOR_H_ #include <map> #include "src/compiler/common-operator.h" #include "src/compiler/instruction-scheduler.h" #include "src/compiler/instruction.h" #include "src/compiler/machine-operator.h" #include "src/compiler/node.h" #include "src/globals.h" #include "src/zone/zone-containers.h" namespace v8 { namespace internal { namespace compiler { // Forward declarations. class BasicBlock; struct CallBuffer; // TODO(bmeurer): Remove this. class FlagsContinuation; class Linkage; class OperandGenerator; struct SwitchInfo; // This struct connects nodes of parameters which are going to be pushed on the // call stack with their parameter index in the call descriptor of the callee. class PushParameter { public: PushParameter() : node_(nullptr), type_(MachineType::None()) {} PushParameter(Node* node, MachineType type) : node_(node), type_(type) {} Node* node() const { return node_; } MachineType type() const { return type_; } private: Node* node_; MachineType type_; }; // Instruction selection generates an InstructionSequence for a given Schedule. class V8_EXPORT_PRIVATE InstructionSelector final { public: // Forward declarations. class Features; enum SourcePositionMode { kCallSourcePositions, kAllSourcePositions }; enum EnableScheduling { kDisableScheduling, kEnableScheduling }; enum EnableSerialization { kDisableSerialization, kEnableSerialization }; InstructionSelector( Zone* zone, size_t node_count, Linkage* linkage, InstructionSequence* sequence, Schedule* schedule, SourcePositionTable* source_positions, Frame* frame, SourcePositionMode source_position_mode = kCallSourcePositions, Features features = SupportedFeatures(), EnableScheduling enable_scheduling = FLAG_turbo_instruction_scheduling ? kEnableScheduling : kDisableScheduling, EnableSerialization enable_serialization = kDisableSerialization); // Visit code for the entire graph with the included schedule. bool SelectInstructions(); void StartBlock(RpoNumber rpo); void EndBlock(RpoNumber rpo); void AddInstruction(Instruction* instr); // =========================================================================== // ============= Architecture-independent code emission methods. ============= // =========================================================================== Instruction* Emit(InstructionCode opcode, InstructionOperand output, size_t temp_count = 0, InstructionOperand* temps = nullptr); Instruction* Emit(InstructionCode opcode, InstructionOperand output, InstructionOperand a, size_t temp_count = 0, InstructionOperand* temps = nullptr); Instruction* Emit(InstructionCode opcode, InstructionOperand output, InstructionOperand a, InstructionOperand b, size_t temp_count = 0, InstructionOperand* temps = nullptr); Instruction* Emit(InstructionCode opcode, InstructionOperand output, InstructionOperand a, InstructionOperand b, InstructionOperand c, size_t temp_count = 0, InstructionOperand* temps = nullptr); Instruction* Emit(InstructionCode opcode, InstructionOperand output, InstructionOperand a, InstructionOperand b, InstructionOperand c, InstructionOperand d, size_t temp_count = 0, InstructionOperand* temps = nullptr); Instruction* Emit(InstructionCode opcode, InstructionOperand output, InstructionOperand a, InstructionOperand b, InstructionOperand c, InstructionOperand d, InstructionOperand e, size_t temp_count = 0, InstructionOperand* temps = nullptr); Instruction* Emit(InstructionCode opcode, InstructionOperand output, InstructionOperand a, InstructionOperand b, InstructionOperand c, InstructionOperand d, InstructionOperand e, InstructionOperand f, size_t temp_count = 0, InstructionOperand* temps = nullptr); Instruction* Emit(InstructionCode opcode, size_t output_count, InstructionOperand* outputs, size_t input_count, InstructionOperand* inputs, size_t temp_count = 0, InstructionOperand* temps = nullptr); Instruction* Emit(Instruction* instr); // =========================================================================== // ===== Architecture-independent deoptimization exit emission methods. ====== // =========================================================================== Instruction* EmitDeoptimize(InstructionCode opcode, InstructionOperand output, InstructionOperand a, DeoptimizeReason reason, Node* frame_state); Instruction* EmitDeoptimize(InstructionCode opcode, InstructionOperand output, InstructionOperand a, InstructionOperand b, DeoptimizeReason reason, Node* frame_state); Instruction* EmitDeoptimize(InstructionCode opcode, size_t output_count, InstructionOperand* outputs, size_t input_count, InstructionOperand* inputs, DeoptimizeReason reason, Node* frame_state); // =========================================================================== // ============== Architecture-independent CPU feature methods. ============== // =========================================================================== class Features final { public: Features() : bits_(0) {} explicit Features(unsigned bits) : bits_(bits) {} explicit Features(CpuFeature f) : bits_(1u << f) {} Features(CpuFeature f1, CpuFeature f2) : bits_((1u << f1) | (1u << f2)) {} bool Contains(CpuFeature f) const { return (bits_ & (1u << f)); } private: unsigned bits_; }; bool IsSupported(CpuFeature feature) const { return features_.Contains(feature); } // Returns the features supported on the target platform. static Features SupportedFeatures() { return Features(CpuFeatures::SupportedFeatures()); } // TODO(sigurds) This should take a CpuFeatures argument. static MachineOperatorBuilder::Flags SupportedMachineOperatorFlags(); static MachineOperatorBuilder::AlignmentRequirements AlignmentRequirements(); // =========================================================================== // ============ Architecture-independent graph covering methods. ============= // =========================================================================== // Used in pattern matching during code generation. // Check if {node} can be covered while generating code for the current // instruction. A node can be covered if the {user} of the node has the only // edge and the two are in the same basic block. bool CanCover(Node* user, Node* node) const; // Used in pattern matching during code generation. // This function checks that {node} and {user} are in the same basic block, // and that {user} is the only user of {node} in this basic block. This // check guarantees that there are no users of {node} scheduled between // {node} and {user}, and thus we can select a single instruction for both // nodes, if such an instruction exists. This check can be used for example // when selecting instructions for: // n = Int32Add(a, b) // c = Word32Compare(n, 0, cond) // Branch(c, true_label, false_label) // Here we can generate a flag-setting add instruction, even if the add has // uses in other basic blocks, since the flag-setting add instruction will // still generate the result of the addition and not just set the flags. // However, if we had uses of the add in the same basic block, we could have: // n = Int32Add(a, b) // o = OtherOp(n, ...) // c = Word32Compare(n, 0, cond) // Branch(c, true_label, false_label) // where we cannot select the add and the compare together. If we were to // select a flag-setting add instruction for Word32Compare and Int32Add while // visiting Word32Compare, we would then have to select an instruction for // OtherOp *afterwards*, which means we would attempt to use the result of // the add before we have defined it. bool IsOnlyUserOfNodeInSameBlock(Node* user, Node* node) const; // Checks if {node} was already defined, and therefore code was already // generated for it. bool IsDefined(Node* node) const; // Checks if {node} has any uses, and therefore code has to be generated for // it. bool IsUsed(Node* node) const; // Checks if {node} is currently live. bool IsLive(Node* node) const { return !IsDefined(node) && IsUsed(node); } // Gets the effect level of {node}. int GetEffectLevel(Node* node) const; int GetVirtualRegister(const Node* node); const std::map<NodeId, int> GetVirtualRegistersForTesting() const; // Check if we can generate loads and stores of ExternalConstants relative // to the roots register, i.e. if both a root register is available for this // compilation unit and the serializer is disabled. bool CanAddressRelativeToRootsRegister() const; // Check if we can use the roots register to access GC roots. bool CanUseRootsRegister() const; Isolate* isolate() const { return sequence()->isolate(); } private: friend class OperandGenerator; bool UseInstructionScheduling() const { return (enable_scheduling_ == kEnableScheduling) && InstructionScheduler::SchedulerSupported(); } void EmitTableSwitch(const SwitchInfo& sw, InstructionOperand& index_operand); void EmitLookupSwitch(const SwitchInfo& sw, InstructionOperand& value_operand); void TryRename(InstructionOperand* op); int GetRename(int virtual_register); void SetRename(const Node* node, const Node* rename); void UpdateRenames(Instruction* instruction); void UpdateRenamesInPhi(PhiInstruction* phi); // Inform the instruction selection that {node} was just defined. void MarkAsDefined(Node* node); // Inform the instruction selection that {node} has at least one use and we // will need to generate code for it. void MarkAsUsed(Node* node); // Sets the effect level of {node}. void SetEffectLevel(Node* node, int effect_level); // Inform the register allocation of the representation of the value produced // by {node}. void MarkAsRepresentation(MachineRepresentation rep, Node* node); void MarkAsWord32(Node* node) { MarkAsRepresentation(MachineRepresentation::kWord32, node); } void MarkAsWord64(Node* node) { MarkAsRepresentation(MachineRepresentation::kWord64, node); } void MarkAsFloat32(Node* node) { MarkAsRepresentation(MachineRepresentation::kFloat32, node); } void MarkAsFloat64(Node* node) { MarkAsRepresentation(MachineRepresentation::kFloat64, node); } void MarkAsSimd128(Node* node) { MarkAsRepresentation(MachineRepresentation::kSimd128, node); } void MarkAsReference(Node* node) { MarkAsRepresentation(MachineRepresentation::kTagged, node); } // Inform the register allocation of the representation of the unallocated // operand {op}. void MarkAsRepresentation(MachineRepresentation rep, const InstructionOperand& op); enum CallBufferFlag { kCallCodeImmediate = 1u << 0, kCallAddressImmediate = 1u << 1, kCallTail = 1u << 2 }; typedef base::Flags<CallBufferFlag> CallBufferFlags; // Initialize the call buffer with the InstructionOperands, nodes, etc, // corresponding // to the inputs and outputs of the call. // {call_code_immediate} to generate immediate operands to calls of code. // {call_address_immediate} to generate immediate operands to address calls. void InitializeCallBuffer(Node* call, CallBuffer* buffer, CallBufferFlags flags, int stack_slot_delta = 0); bool IsTailCallAddressImmediate(); int GetTempsCountForTailCallFromJSFunction(); FrameStateDescriptor* GetFrameStateDescriptor(Node* node); // =========================================================================== // ============= Architecture-specific graph covering methods. =============== // =========================================================================== // Visit nodes in the given block and generate code. void VisitBlock(BasicBlock* block); // Visit the node for the control flow at the end of the block, generating // code if necessary. void VisitControl(BasicBlock* block); // Visit the node and generate code, if any. void VisitNode(Node* node); // Visit the node and generate code for IEEE 754 functions. void VisitFloat64Ieee754Binop(Node*, InstructionCode code); void VisitFloat64Ieee754Unop(Node*, InstructionCode code); #define DECLARE_GENERATOR(x) void Visit##x(Node* node); MACHINE_OP_LIST(DECLARE_GENERATOR) MACHINE_SIMD_RETURN_NUM_OP_LIST(DECLARE_GENERATOR) MACHINE_SIMD_RETURN_SIMD_OP_LIST(DECLARE_GENERATOR) #undef DECLARE_GENERATOR void VisitFinishRegion(Node* node); void VisitParameter(Node* node); void VisitIfException(Node* node); void VisitOsrValue(Node* node); void VisitPhi(Node* node); void VisitProjection(Node* node); void VisitConstant(Node* node); void VisitCall(Node* call, BasicBlock* handler = nullptr); void VisitDeoptimizeIf(Node* node); void VisitDeoptimizeUnless(Node* node); void VisitTailCall(Node* call); void VisitGoto(BasicBlock* target); void VisitBranch(Node* input, BasicBlock* tbranch, BasicBlock* fbranch); void VisitSwitch(Node* node, const SwitchInfo& sw); void VisitDeoptimize(DeoptimizeKind kind, DeoptimizeReason reason, Node* value); void VisitReturn(Node* ret); void VisitThrow(Node* value); void VisitRetain(Node* node); void EmitPrepareArguments(ZoneVector<compiler::PushParameter>* arguments, const CallDescriptor* descriptor, Node* node); void EmitIdentity(Node* node); bool CanProduceSignalingNaN(Node* node); // =========================================================================== Schedule* schedule() const { return schedule_; } Linkage* linkage() const { return linkage_; } InstructionSequence* sequence() const { return sequence_; } Zone* instruction_zone() const { return sequence()->zone(); } Zone* zone() const { return zone_; } void set_instruction_selection_failed() { instruction_selection_failed_ = true; } bool instruction_selection_failed() { return instruction_selection_failed_; } void MarkPairProjectionsAsWord32(Node* node); // =========================================================================== Zone* const zone_; Linkage* const linkage_; InstructionSequence* const sequence_; SourcePositionTable* const source_positions_; SourcePositionMode const source_position_mode_; Features features_; Schedule* const schedule_; BasicBlock* current_block_; ZoneVector<Instruction*> instructions_; BoolVector defined_; BoolVector used_; IntVector effect_level_; IntVector virtual_registers_; IntVector virtual_register_rename_; InstructionScheduler* scheduler_; EnableScheduling enable_scheduling_; EnableSerialization enable_serialization_; Frame* frame_; bool instruction_selection_failed_; }; } // namespace compiler } // namespace internal } // namespace v8 #endif // V8_COMPILER_INSTRUCTION_SELECTOR_H_