// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM64 #include "src/full-codegen/full-codegen.h" #include "src/ast/compile-time-value.h" #include "src/ast/scopes.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/compilation-info.h" #include "src/compiler.h" #include "src/debug/debug.h" #include "src/ic/ic.h" #include "src/arm64/code-stubs-arm64.h" #include "src/arm64/frames-arm64.h" #include "src/arm64/macro-assembler-arm64.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm()) class JumpPatchSite BASE_EMBEDDED { public: explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm), reg_(NoReg) { #ifdef DEBUG info_emitted_ = false; #endif } ~JumpPatchSite() { if (patch_site_.is_bound()) { DCHECK(info_emitted_); } else { DCHECK(reg_.IsNone()); } } void EmitJumpIfNotSmi(Register reg, Label* target) { // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc. InstructionAccurateScope scope(masm_, 1); DCHECK(!info_emitted_); DCHECK(reg.Is64Bits()); DCHECK(!reg.Is(csp)); reg_ = reg; __ bind(&patch_site_); __ tbz(xzr, 0, target); // Always taken before patched. } void EmitJumpIfSmi(Register reg, Label* target) { // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc. InstructionAccurateScope scope(masm_, 1); DCHECK(!info_emitted_); DCHECK(reg.Is64Bits()); DCHECK(!reg.Is(csp)); reg_ = reg; __ bind(&patch_site_); __ tbnz(xzr, 0, target); // Never taken before patched. } void EmitJumpIfEitherNotSmi(Register reg1, Register reg2, Label* target) { UseScratchRegisterScope temps(masm_); Register temp = temps.AcquireX(); __ Orr(temp, reg1, reg2); EmitJumpIfNotSmi(temp, target); } void EmitPatchInfo() { Assembler::BlockPoolsScope scope(masm_); InlineSmiCheckInfo::Emit(masm_, reg_, &patch_site_); #ifdef DEBUG info_emitted_ = true; #endif } private: MacroAssembler* masm() { return masm_; } MacroAssembler* masm_; Label patch_site_; Register reg_; #ifdef DEBUG bool info_emitted_; #endif }; // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right. The actual // argument count matches the formal parameter count expected by the // function. // // The live registers are: // - x1: the JS function object being called (i.e. ourselves). // - x3: the new target value // - cp: our context. // - fp: our caller's frame pointer. // - jssp: stack pointer. // - lr: return address. // // The function builds a JS frame. See JavaScriptFrameConstants in // frames-arm.h for its layout. void FullCodeGenerator::Generate() { CompilationInfo* info = info_; profiling_counter_ = isolate()->factory()->NewCell( Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate())); SetFunctionPosition(literal()); Comment cmnt(masm_, "[ Function compiled by full code generator"); ProfileEntryHookStub::MaybeCallEntryHook(masm_); if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) { int receiver_offset = info->scope()->num_parameters() * kXRegSize; __ Peek(x10, receiver_offset); __ AssertNotSmi(x10); __ CompareObjectType(x10, x10, x11, FIRST_JS_RECEIVER_TYPE); __ Assert(ge, kSloppyFunctionExpectsJSReceiverReceiver); } // Open a frame scope to indicate that there is a frame on the stack. // The MANUAL indicates that the scope shouldn't actually generate code // to set up the frame because we do it manually below. FrameScope frame_scope(masm_, StackFrame::MANUAL); // This call emits the following sequence in a way that can be patched for // code ageing support: // Push(lr, fp, cp, x1); // Add(fp, jssp, 2 * kPointerSize); info->set_prologue_offset(masm_->pc_offset()); __ Prologue(info->GeneratePreagedPrologue()); // Increment invocation count for the function. { Comment cmnt(masm_, "[ Increment invocation count"); __ Ldr(x11, FieldMemOperand(x1, JSFunction::kLiteralsOffset)); __ Ldr(x11, FieldMemOperand(x11, LiteralsArray::kFeedbackVectorOffset)); __ Ldr(x10, FieldMemOperand(x11, TypeFeedbackVector::kInvocationCountIndex * kPointerSize + TypeFeedbackVector::kHeaderSize)); __ Add(x10, x10, Operand(Smi::FromInt(1))); __ Str(x10, FieldMemOperand(x11, TypeFeedbackVector::kInvocationCountIndex * kPointerSize + TypeFeedbackVector::kHeaderSize)); } // Reserve space on the stack for locals. { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = info->scope()->num_stack_slots(); // Generators allocate locals, if any, in context slots. DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0); OperandStackDepthIncrement(locals_count); if (locals_count > 0) { if (locals_count >= 128) { Label ok; DCHECK(jssp.Is(__ StackPointer())); __ Sub(x10, jssp, locals_count * kPointerSize); __ CompareRoot(x10, Heap::kRealStackLimitRootIndex); __ B(hs, &ok); __ CallRuntime(Runtime::kThrowStackOverflow); __ Bind(&ok); } __ LoadRoot(x10, Heap::kUndefinedValueRootIndex); if (FLAG_optimize_for_size) { __ PushMultipleTimes(x10 , locals_count); } else { const int kMaxPushes = 32; if (locals_count >= kMaxPushes) { int loop_iterations = locals_count / kMaxPushes; __ Mov(x2, loop_iterations); Label loop_header; __ Bind(&loop_header); // Do pushes. __ PushMultipleTimes(x10 , kMaxPushes); __ Subs(x2, x2, 1); __ B(ne, &loop_header); } int remaining = locals_count % kMaxPushes; // Emit the remaining pushes. __ PushMultipleTimes(x10 , remaining); } } } bool function_in_register_x1 = true; if (info->scope()->NeedsContext()) { // Argument to NewContext is the function, which is still in x1. Comment cmnt(masm_, "[ Allocate context"); bool need_write_barrier = true; int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (info->scope()->is_script_scope()) { __ Mov(x10, Operand(info->scope()->scope_info())); __ Push(x1, x10); __ CallRuntime(Runtime::kNewScriptContext); PrepareForBailoutForId(BailoutId::ScriptContext(), BailoutState::TOS_REGISTER); // The new target value is not used, clobbering is safe. DCHECK_NULL(info->scope()->new_target_var()); } else { if (info->scope()->new_target_var() != nullptr) { __ Push(x3); // Preserve new target. } if (slots <= FastNewFunctionContextStub::kMaximumSlots) { FastNewFunctionContextStub stub(isolate()); __ Mov(FastNewFunctionContextDescriptor::SlotsRegister(), slots); __ CallStub(&stub); // Result of FastNewFunctionContextStub is always in new space. need_write_barrier = false; } else { __ Push(x1); __ CallRuntime(Runtime::kNewFunctionContext); } if (info->scope()->new_target_var() != nullptr) { __ Pop(x3); // Restore new target. } } function_in_register_x1 = false; // Context is returned in x0. It replaces the context passed to us. // It's saved in the stack and kept live in cp. __ Mov(cp, x0); __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = info->scope()->num_parameters(); int first_parameter = info->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? info->scope()->receiver() : info->scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ Ldr(x10, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextMemOperand(cp, var->index()); __ Str(x10, target); // Update the write barrier. if (need_write_barrier) { __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()), x10, x11, kLRHasBeenSaved, kDontSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(cp, &done); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } } // Register holding this function and new target are both trashed in case we // bailout here. But since that can happen only when new target is not used // and we allocate a context, the value of |function_in_register| is correct. PrepareForBailoutForId(BailoutId::FunctionContext(), BailoutState::NO_REGISTERS); // Possibly set up a local binding to the this function which is used in // derived constructors with super calls. Variable* this_function_var = info->scope()->this_function_var(); if (this_function_var != nullptr) { Comment cmnt(masm_, "[ This function"); if (!function_in_register_x1) { __ Ldr(x1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); // The write barrier clobbers register again, keep it marked as such. } SetVar(this_function_var, x1, x0, x2); } // Possibly set up a local binding to the new target value. Variable* new_target_var = info->scope()->new_target_var(); if (new_target_var != nullptr) { Comment cmnt(masm_, "[ new.target"); SetVar(new_target_var, x3, x0, x2); } // Possibly allocate RestParameters Variable* rest_param = info->scope()->rest_parameter(); if (rest_param != nullptr) { Comment cmnt(masm_, "[ Allocate rest parameter array"); if (!function_in_register_x1) { __ Ldr(x1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } FastNewRestParameterStub stub(isolate()); __ CallStub(&stub); function_in_register_x1 = false; SetVar(rest_param, x0, x1, x2); } Variable* arguments = info->scope()->arguments(); if (arguments != NULL) { // Function uses arguments object. Comment cmnt(masm_, "[ Allocate arguments object"); if (!function_in_register_x1) { // Load this again, if it's used by the local context below. __ Ldr(x1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } if (is_strict(language_mode()) || !has_simple_parameters()) { FastNewStrictArgumentsStub stub(isolate()); __ CallStub(&stub); } else if (literal()->has_duplicate_parameters()) { __ Push(x1); __ CallRuntime(Runtime::kNewSloppyArguments_Generic); } else { FastNewSloppyArgumentsStub stub(isolate()); __ CallStub(&stub); } SetVar(arguments, x0, x1, x2); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter); } // Visit the declarations and body. PrepareForBailoutForId(BailoutId::FunctionEntry(), BailoutState::NO_REGISTERS); { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(scope()->declarations()); } // Assert that the declarations do not use ICs. Otherwise the debugger // won't be able to redirect a PC at an IC to the correct IC in newly // recompiled code. DCHECK_EQ(0, ic_total_count_); { Comment cmnt(masm_, "[ Stack check"); PrepareForBailoutForId(BailoutId::Declarations(), BailoutState::NO_REGISTERS); Label ok; DCHECK(jssp.Is(__ StackPointer())); __ CompareRoot(jssp, Heap::kStackLimitRootIndex); __ B(hs, &ok); PredictableCodeSizeScope predictable(masm_, Assembler::kCallSizeWithRelocation); __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET); __ Bind(&ok); } { Comment cmnt(masm_, "[ Body"); DCHECK(loop_depth() == 0); VisitStatements(literal()->body()); DCHECK(loop_depth() == 0); } // Always emit a 'return undefined' in case control fell off the end of // the body. { Comment cmnt(masm_, "[ return <undefined>;"); __ LoadRoot(x0, Heap::kUndefinedValueRootIndex); } EmitReturnSequence(); // Force emission of the pools, so they don't get emitted in the middle // of the back edge table. masm()->CheckVeneerPool(true, false); masm()->CheckConstPool(true, false); } void FullCodeGenerator::ClearAccumulator() { __ Mov(x0, Smi::kZero); } void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { __ Mov(x2, Operand(profiling_counter_)); __ Ldr(x3, FieldMemOperand(x2, Cell::kValueOffset)); __ Subs(x3, x3, Smi::FromInt(delta)); __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset)); } void FullCodeGenerator::EmitProfilingCounterReset() { int reset_value = FLAG_interrupt_budget; __ Mov(x2, Operand(profiling_counter_)); __ Mov(x3, Smi::FromInt(reset_value)); __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset)); } void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, Label* back_edge_target) { DCHECK(jssp.Is(__ StackPointer())); Comment cmnt(masm_, "[ Back edge bookkeeping"); // Block literal pools whilst emitting back edge code. Assembler::BlockPoolsScope block_const_pool(masm_); Label ok; DCHECK(back_edge_target->is_bound()); // We want to do a round rather than a floor of distance/kCodeSizeMultiplier // to reduce the absolute error due to the integer division. To do that, // we add kCodeSizeMultiplier/2 to the distance (equivalent to adding 0.5 to // the result). int distance = static_cast<int>(masm_->SizeOfCodeGeneratedSince(back_edge_target) + kCodeSizeMultiplier / 2); int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); EmitProfilingCounterDecrement(weight); __ B(pl, &ok); __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); // Record a mapping of this PC offset to the OSR id. This is used to find // the AST id from the unoptimized code in order to use it as a key into // the deoptimization input data found in the optimized code. RecordBackEdge(stmt->OsrEntryId()); EmitProfilingCounterReset(); __ Bind(&ok); PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS); // Record a mapping of the OSR id to this PC. This is used if the OSR // entry becomes the target of a bailout. We don't expect it to be, but // we want it to work if it is. PrepareForBailoutForId(stmt->OsrEntryId(), BailoutState::NO_REGISTERS); } void FullCodeGenerator::EmitProfilingCounterHandlingForReturnSequence( bool is_tail_call) { // Pretend that the exit is a backwards jump to the entry. int weight = 1; if (info_->ShouldSelfOptimize()) { weight = FLAG_interrupt_budget / FLAG_self_opt_count; } else { int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2; weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); } EmitProfilingCounterDecrement(weight); Label ok; __ B(pl, &ok); // Don't need to save result register if we are going to do a tail call. if (!is_tail_call) { __ Push(x0); } __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); if (!is_tail_call) { __ Pop(x0); } EmitProfilingCounterReset(); __ Bind(&ok); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ B(&return_label_); } else { __ Bind(&return_label_); if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in x0. __ Push(result_register()); __ CallRuntime(Runtime::kTraceExit); DCHECK(x0.Is(result_register())); } EmitProfilingCounterHandlingForReturnSequence(false); SetReturnPosition(literal()); const Register& current_sp = __ StackPointer(); // Nothing ensures 16 bytes alignment here. DCHECK(!current_sp.Is(csp)); __ Mov(current_sp, fp); __ Ldp(fp, lr, MemOperand(current_sp, 2 * kXRegSize, PostIndex)); // Drop the arguments and receiver and return. // TODO(all): This implementation is overkill as it supports 2**31+1 // arguments, consider how to improve it without creating a security // hole. __ ldr_pcrel(ip0, (3 * kInstructionSize) >> kLoadLiteralScaleLog2); __ Add(current_sp, current_sp, ip0); __ Ret(); int32_t arg_count = info_->scope()->num_parameters() + 1; __ dc64(kXRegSize * arg_count); } } void FullCodeGenerator::RestoreContext() { __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); codegen()->PushOperand(result_register()); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { // Root values have no side effects. } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); codegen()->PushOperand(result_register()); } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (index == Heap::kUndefinedValueRootIndex || index == Heap::kNullValueRootIndex || index == Heap::kFalseValueRootIndex) { if (false_label_ != fall_through_) __ B(false_label_); } else if (index == Heap::kTrueValueRootIndex) { if (true_label_ != fall_through_) __ B(true_label_); } else { __ LoadRoot(result_register(), index); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle<Object> lit) const { __ Mov(result_register(), Operand(lit)); } void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { // Immediates cannot be pushed directly. __ Mov(result_register(), Operand(lit)); codegen()->PushOperand(result_register()); } void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); DCHECK(lit->IsNull(isolate()) || lit->IsUndefined(isolate()) || !lit->IsUndetectable()); if (lit->IsUndefined(isolate()) || lit->IsNull(isolate()) || lit->IsFalse(isolate())) { if (false_label_ != fall_through_) __ B(false_label_); } else if (lit->IsTrue(isolate()) || lit->IsJSObject()) { if (true_label_ != fall_through_) __ B(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { if (false_label_ != fall_through_) __ B(false_label_); } else { if (true_label_ != fall_through_) __ B(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { if (false_label_ != fall_through_) __ B(false_label_); } else { if (true_label_ != fall_through_) __ B(true_label_); } } else { // For simplicity we always test the accumulator register. __ Mov(result_register(), Operand(lit)); codegen()->DoTest(this); } } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); if (count > 1) codegen()->DropOperands(count - 1); __ Poke(reg, 0); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == materialize_false); __ Bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ Bind(materialize_true); __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); __ B(&done); __ Bind(materialize_false); __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); __ Bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ Bind(materialize_true); __ LoadRoot(x10, Heap::kTrueValueRootIndex); __ B(&done); __ Bind(materialize_false); __ LoadRoot(x10, Heap::kFalseValueRootIndex); __ Bind(&done); codegen()->PushOperand(x10); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == true_label_); DCHECK(materialize_false == false_label_); } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(result_register(), value_root_index); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(x10, value_root_index); codegen()->PushOperand(x10); } void FullCodeGenerator::TestContext::Plug(bool flag) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (flag) { if (true_label_ != fall_through_) { __ B(true_label_); } } else { if (false_label_ != fall_through_) { __ B(false_label_); } } } void FullCodeGenerator::DoTest(Expression* condition, Label* if_true, Label* if_false, Label* fall_through) { Handle<Code> ic = ToBooleanICStub::GetUninitialized(isolate()); CallIC(ic, condition->test_id()); __ CompareRoot(result_register(), Heap::kTrueValueRootIndex); Split(eq, if_true, if_false, fall_through); } // If (cond), branch to if_true. // If (!cond), branch to if_false. // fall_through is used as an optimization in cases where only one branch // instruction is necessary. void FullCodeGenerator::Split(Condition cond, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ B(cond, if_true); } else if (if_true == fall_through) { DCHECK(if_false != fall_through); __ B(NegateCondition(cond), if_false); } else { __ B(cond, if_true); __ B(if_false); } } MemOperand FullCodeGenerator::StackOperand(Variable* var) { // Offset is negative because higher indexes are at lower addresses. int offset = -var->index() * kXRegSize; // Adjust by a (parameter or local) base offset. if (var->IsParameter()) { offset += (info_->scope()->num_parameters() + 1) * kPointerSize; } else { offset += JavaScriptFrameConstants::kLocal0Offset; } return MemOperand(fp, offset); } MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); if (var->IsContextSlot()) { int context_chain_length = scope()->ContextChainLength(var->scope()); __ LoadContext(scratch, context_chain_length); return ContextMemOperand(scratch, var->index()); } else { return StackOperand(var); } } void FullCodeGenerator::GetVar(Register dest, Variable* var) { // Use destination as scratch. MemOperand location = VarOperand(var, dest); __ Ldr(dest, location); } void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0, Register scratch1) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); DCHECK(!AreAliased(src, scratch0, scratch1)); MemOperand location = VarOperand(var, scratch0); __ Str(src, location); // Emit the write barrier code if the location is in the heap. if (var->IsContextSlot()) { // scratch0 contains the correct context. __ RecordWriteContextSlot(scratch0, static_cast<int>(location.offset()), src, scratch1, kLRHasBeenSaved, kDontSaveFPRegs); } } void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, bool should_normalize, Label* if_true, Label* if_false) { // Only prepare for bailouts before splits if we're in a test // context. Otherwise, we let the Visit function deal with the // preparation to avoid preparing with the same AST id twice. if (!context()->IsTest()) return; // TODO(all): Investigate to see if there is something to work on here. Label skip; if (should_normalize) { __ B(&skip); } PrepareForBailout(expr, BailoutState::TOS_REGISTER); if (should_normalize) { __ CompareRoot(x0, Heap::kTrueValueRootIndex); Split(eq, if_true, if_false, NULL); __ Bind(&skip); } } void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { // The variable in the declaration always resides in the current function // context. DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); if (FLAG_debug_code) { // Check that we're not inside a with or catch context. __ Ldr(x1, FieldMemOperand(cp, HeapObject::kMapOffset)); __ CompareRoot(x1, Heap::kWithContextMapRootIndex); __ Check(ne, kDeclarationInWithContext); __ CompareRoot(x1, Heap::kCatchContextMapRootIndex); __ Check(ne, kDeclarationInCatchContext); } } void FullCodeGenerator::VisitVariableDeclaration( VariableDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case VariableLocation::UNALLOCATED: { DCHECK(!variable->binding_needs_init()); FeedbackVectorSlot slot = proxy->VariableFeedbackSlot(); DCHECK(!slot.IsInvalid()); globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone()); globals_->Add(isolate()->factory()->undefined_value(), zone()); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: if (variable->binding_needs_init()) { Comment cmnt(masm_, "[ VariableDeclaration"); __ LoadRoot(x10, Heap::kTheHoleValueRootIndex); __ Str(x10, StackOperand(variable)); } break; case VariableLocation::CONTEXT: if (variable->binding_needs_init()) { Comment cmnt(masm_, "[ VariableDeclaration"); EmitDebugCheckDeclarationContext(variable); __ LoadRoot(x10, Heap::kTheHoleValueRootIndex); __ Str(x10, ContextMemOperand(cp, variable->index())); // No write barrier since the_hole_value is in old space. PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); } break; case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ VariableDeclaration"); DCHECK_EQ(VAR, variable->mode()); DCHECK(!variable->binding_needs_init()); __ Mov(x2, Operand(variable->name())); __ Push(x2); __ CallRuntime(Runtime::kDeclareEvalVar); PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); break; } case VariableLocation::MODULE: UNREACHABLE(); } } void FullCodeGenerator::VisitFunctionDeclaration( FunctionDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case VariableLocation::UNALLOCATED: { FeedbackVectorSlot slot = proxy->VariableFeedbackSlot(); DCHECK(!slot.IsInvalid()); globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone()); Handle<SharedFunctionInfo> function = Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_); // Check for stack overflow exception. if (function.is_null()) return SetStackOverflow(); globals_->Add(function, zone()); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: { Comment cmnt(masm_, "[ Function Declaration"); VisitForAccumulatorValue(declaration->fun()); __ Str(result_register(), StackOperand(variable)); break; } case VariableLocation::CONTEXT: { Comment cmnt(masm_, "[ Function Declaration"); EmitDebugCheckDeclarationContext(variable); VisitForAccumulatorValue(declaration->fun()); __ Str(result_register(), ContextMemOperand(cp, variable->index())); int offset = Context::SlotOffset(variable->index()); // We know that we have written a function, which is not a smi. __ RecordWriteContextSlot(cp, offset, result_register(), x2, kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); break; } case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ Function Declaration"); __ Mov(x2, Operand(variable->name())); PushOperand(x2); // Push initial value for function declaration. VisitForStackValue(declaration->fun()); CallRuntimeWithOperands(Runtime::kDeclareEvalFunction); PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); break; } case VariableLocation::MODULE: UNREACHABLE(); } } void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { // Call the runtime to declare the globals. __ Mov(x11, Operand(pairs)); Register flags = xzr; if (Smi::FromInt(DeclareGlobalsFlags())) { flags = x10; __ Mov(flags, Smi::FromInt(DeclareGlobalsFlags())); } __ EmitLoadTypeFeedbackVector(x12); __ Push(x11, flags, x12); __ CallRuntime(Runtime::kDeclareGlobals); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { ASM_LOCATION("FullCodeGenerator::VisitSwitchStatement"); Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS); ZoneList<CaseClause*>* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); clause->body_target()->Unuse(); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ Bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); // Perform the comparison as if via '==='. __ Peek(x1, 0); // Switch value. JumpPatchSite patch_site(masm_); if (ShouldInlineSmiCase(Token::EQ_STRICT)) { Label slow_case; patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case); __ Cmp(x1, x0); __ B(ne, &next_test); __ Drop(1); // Switch value is no longer needed. __ B(clause->body_target()); __ Bind(&slow_case); } // Record position before stub call for type feedback. SetExpressionPosition(clause); Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code(); CallIC(ic, clause->CompareId()); patch_site.EmitPatchInfo(); Label skip; __ B(&skip); PrepareForBailout(clause, BailoutState::TOS_REGISTER); __ JumpIfNotRoot(x0, Heap::kTrueValueRootIndex, &next_test); __ Drop(1); __ B(clause->body_target()); __ Bind(&skip); __ Cbnz(x0, &next_test); __ Drop(1); // Switch value is no longer needed. __ B(clause->body_target()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ Bind(&next_test); DropOperands(1); // Switch value is no longer needed. if (default_clause == NULL) { __ B(nested_statement.break_label()); } else { __ B(default_clause->body_target()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ Bind(clause->body_target()); PrepareForBailoutForId(clause->EntryId(), BailoutState::NO_REGISTERS); VisitStatements(clause->statements()); } __ Bind(nested_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { ASM_LOCATION("FullCodeGenerator::VisitForInStatement"); Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt, SKIP_BREAK); FeedbackVectorSlot slot = stmt->ForInFeedbackSlot(); // TODO(all): This visitor probably needs better comments and a revisit. // Get the object to enumerate over. SetExpressionAsStatementPosition(stmt->enumerable()); VisitForAccumulatorValue(stmt->enumerable()); OperandStackDepthIncrement(5); Label loop, exit; Iteration loop_statement(this, stmt); increment_loop_depth(); // If the object is null or undefined, skip over the loop, otherwise convert // it to a JS receiver. See ECMA-262 version 5, section 12.6.4. Label convert, done_convert; __ JumpIfSmi(x0, &convert); __ JumpIfObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE, &done_convert, ge); __ JumpIfRoot(x0, Heap::kNullValueRootIndex, &exit); __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, &exit); __ Bind(&convert); __ Call(isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET); RestoreContext(); __ Bind(&done_convert); PrepareForBailoutForId(stmt->ToObjectId(), BailoutState::TOS_REGISTER); __ Push(x0); // Check cache validity in generated code. If we cannot guarantee cache // validity, call the runtime system to check cache validity or get the // property names in a fixed array. Note: Proxies never have an enum cache, // so will always take the slow path. Label call_runtime; __ CheckEnumCache(x0, x15, x10, x11, x12, x13, &call_runtime); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. Label use_cache; __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); __ B(&use_cache); // Get the set of properties to enumerate. __ Bind(&call_runtime); __ Push(x0); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kForInEnumerate); PrepareForBailoutForId(stmt->EnumId(), BailoutState::TOS_REGISTER); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. Label fixed_array, no_descriptors; __ Ldr(x2, FieldMemOperand(x0, HeapObject::kMapOffset)); __ JumpIfNotRoot(x2, Heap::kMetaMapRootIndex, &fixed_array); // We got a map in register x0. Get the enumeration cache from it. __ Bind(&use_cache); __ EnumLengthUntagged(x1, x0); __ Cbz(x1, &no_descriptors); __ LoadInstanceDescriptors(x0, x2); __ Ldr(x2, FieldMemOperand(x2, DescriptorArray::kEnumCacheOffset)); __ Ldr(x2, FieldMemOperand(x2, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Set up the four remaining stack slots. __ SmiTag(x1); // Map, enumeration cache, enum cache length, zero (both last as smis). __ Push(x0, x2, x1, xzr); __ B(&loop); __ Bind(&no_descriptors); __ Drop(1); __ B(&exit); // We got a fixed array in register x0. Iterate through that. __ Bind(&fixed_array); __ Mov(x1, Smi::FromInt(1)); // Smi(1) indicates slow check. __ Ldr(x2, FieldMemOperand(x0, FixedArray::kLengthOffset)); __ Push(x1, x0, x2); // Smi and array, fixed array length (as smi). PrepareForBailoutForId(stmt->PrepareId(), BailoutState::NO_REGISTERS); __ Push(xzr); // Initial index. // Generate code for doing the condition check. __ Bind(&loop); SetExpressionAsStatementPosition(stmt->each()); // Load the current count to x0, load the length to x1. __ PeekPair(x0, x1, 0); __ Cmp(x0, x1); // Compare to the array length. __ B(hs, loop_statement.break_label()); // Get the current entry of the array into register x0. __ Peek(x10, 2 * kXRegSize); __ Add(x10, x10, Operand::UntagSmiAndScale(x0, kPointerSizeLog2)); __ Ldr(x0, MemOperand(x10, FixedArray::kHeaderSize - kHeapObjectTag)); // Get the expected map from the stack or a smi in the // permanent slow case into register x2. __ Peek(x2, 3 * kXRegSize); // Check if the expected map still matches that of the enumerable. // If not, we may have to filter the key. Label update_each; __ Peek(x1, 4 * kXRegSize); __ Ldr(x11, FieldMemOperand(x1, HeapObject::kMapOffset)); __ Cmp(x11, x2); __ B(eq, &update_each); // We need to filter the key, record slow-path here. int const vector_index = SmiFromSlot(slot)->value(); __ EmitLoadTypeFeedbackVector(x3); __ Mov(x10, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate()))); __ Str(x10, FieldMemOperand(x3, FixedArray::OffsetOfElementAt(vector_index))); // x0 contains the key. The receiver in x1 is the second argument to the // ForInFilter. ForInFilter returns undefined if the receiver doesn't // have the key or returns the name-converted key. __ Call(isolate()->builtins()->ForInFilter(), RelocInfo::CODE_TARGET); RestoreContext(); PrepareForBailoutForId(stmt->FilterId(), BailoutState::TOS_REGISTER); __ CompareRoot(result_register(), Heap::kUndefinedValueRootIndex); __ B(eq, loop_statement.continue_label()); // Update the 'each' property or variable from the possibly filtered // entry in register x0. __ Bind(&update_each); // Perform the assignment as if via '='. { EffectContext context(this); EmitAssignment(stmt->each(), stmt->EachFeedbackSlot()); PrepareForBailoutForId(stmt->AssignmentId(), BailoutState::NO_REGISTERS); } // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body(). PrepareForBailoutForId(stmt->BodyId(), BailoutState::NO_REGISTERS); // Generate code for the body of the loop. Visit(stmt->body()); // Generate code for going to the next element by incrementing // the index (smi) stored on top of the stack. __ Bind(loop_statement.continue_label()); PrepareForBailoutForId(stmt->IncrementId(), BailoutState::NO_REGISTERS); // TODO(all): We could use a callee saved register to avoid popping. __ Pop(x0); __ Add(x0, x0, Smi::FromInt(1)); __ Push(x0); EmitBackEdgeBookkeeping(stmt, &loop); __ B(&loop); // Remove the pointers stored on the stack. __ Bind(loop_statement.break_label()); DropOperands(5); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); __ Bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ Peek(StoreDescriptor::ReceiverRegister(), 0); __ Peek(StoreDescriptor::ValueRegister(), offset * kPointerSize); CallStoreIC(slot, isolate()->factory()->home_object_symbol()); } void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ Move(StoreDescriptor::ReceiverRegister(), x0); __ Peek(StoreDescriptor::ValueRegister(), offset * kPointerSize); CallStoreIC(slot, isolate()->factory()->home_object_symbol()); } void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow) { Register current = cp; Register next = x10; Register temp = x11; int to_check = scope()->ContextChainLengthUntilOutermostSloppyEval(); for (Scope* s = scope(); to_check > 0; s = s->outer_scope()) { if (!s->NeedsContext()) continue; if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ Ldr(temp, ContextMemOperand(current, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); } // Load next context in chain. __ Ldr(next, ContextMemOperand(current, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. current = next; to_check--; } // All extension objects were empty and it is safe to use a normal global // load machinery. EmitGlobalVariableLoad(proxy, typeof_mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, Label* slow) { DCHECK(var->IsContextSlot()); Register context = cp; Register next = x10; Register temp = x11; for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { if (s->NeedsContext()) { if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); } __ Ldr(next, ContextMemOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. context = next; } } // Check that last extension is "the hole". __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); // This function is used only for loads, not stores, so it's safe to // return an cp-based operand (the write barrier cannot be allowed to // destroy the cp register). return ContextMemOperand(context, var->index()); } void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. Variable* var = proxy->var(); if (var->mode() == DYNAMIC_GLOBAL) { EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow); __ B(done); } else if (var->mode() == DYNAMIC_LOCAL) { Variable* local = var->local_if_not_shadowed(); __ Ldr(x0, ContextSlotOperandCheckExtensions(local, slow)); if (local->binding_needs_init()) { __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, done); __ Mov(x0, Operand(var->name())); __ Push(x0); __ CallRuntime(Runtime::kThrowReferenceError); } else { __ B(done); } } } void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy, TypeofMode typeof_mode) { // Record position before possible IC call. SetExpressionPosition(proxy); PrepareForBailoutForId(proxy->BeforeId(), BailoutState::NO_REGISTERS); Variable* var = proxy->var(); // Three cases: global variables, lookup variables, and all other types of // variables. switch (var->location()) { case VariableLocation::UNALLOCATED: { Comment cmnt(masm_, "Global variable"); EmitGlobalVariableLoad(proxy, typeof_mode); context()->Plug(x0); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: case VariableLocation::CONTEXT: { DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode); Comment cmnt(masm_, var->IsContextSlot() ? "Context variable" : "Stack variable"); if (proxy->hole_check_mode() == HoleCheckMode::kRequired) { // Throw a reference error when using an uninitialized let/const // binding in harmony mode. Label done; GetVar(x0, var); __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, &done); __ Mov(x0, Operand(var->name())); __ Push(x0); __ CallRuntime(Runtime::kThrowReferenceError); __ Bind(&done); context()->Plug(x0); break; } context()->Plug(var); break; } case VariableLocation::LOOKUP: { Label done, slow; // Generate code for loading from variables potentially shadowed by // eval-introduced variables. EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done); __ Bind(&slow); Comment cmnt(masm_, "Lookup variable"); __ Push(var->name()); Runtime::FunctionId function_id = typeof_mode == NOT_INSIDE_TYPEOF ? Runtime::kLoadLookupSlot : Runtime::kLoadLookupSlotInsideTypeof; __ CallRuntime(function_id); __ Bind(&done); context()->Plug(x0); break; } case VariableLocation::MODULE: UNREACHABLE(); } } void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) { Expression* expression = (property == NULL) ? NULL : property->value(); if (expression == NULL) { __ LoadRoot(x10, Heap::kNullValueRootIndex); PushOperand(x10); } else { VisitForStackValue(expression); if (NeedsHomeObject(expression)) { DCHECK(property->kind() == ObjectLiteral::Property::GETTER || property->kind() == ObjectLiteral::Property::SETTER); int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3; EmitSetHomeObject(expression, offset, property->GetSlot()); } } } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); Handle<FixedArray> constant_properties = expr->constant_properties(); __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Mov(x2, Smi::FromInt(expr->literal_index())); __ Mov(x1, Operand(constant_properties)); int flags = expr->ComputeFlags(); __ Mov(x0, Smi::FromInt(flags)); if (MustCreateObjectLiteralWithRuntime(expr)) { __ Push(x3, x2, x1, x0); __ CallRuntime(Runtime::kCreateObjectLiteral); } else { FastCloneShallowObjectStub stub(isolate(), expr->properties_count()); __ CallStub(&stub); RestoreContext(); } PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER); // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in x0. bool result_saved = false; AccessorTable accessor_table(zone()); int property_index = 0; for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); if (property->is_computed_name()) break; if (property->IsCompileTimeValue()) continue; Literal* key = property->key()->AsLiteral(); Expression* value = property->value(); if (!result_saved) { PushOperand(x0); // Save result on stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value())); // Fall through. case ObjectLiteral::Property::COMPUTED: // It is safe to use [[Put]] here because the boilerplate already // contains computed properties with an uninitialized value. if (key->IsStringLiteral()) { DCHECK(key->IsPropertyName()); if (property->emit_store()) { VisitForAccumulatorValue(value); DCHECK(StoreDescriptor::ValueRegister().is(x0)); __ Peek(StoreDescriptor::ReceiverRegister(), 0); CallStoreIC(property->GetSlot(0), key->value()); PrepareForBailoutForId(key->id(), BailoutState::NO_REGISTERS); if (NeedsHomeObject(value)) { EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1)); } } else { VisitForEffect(value); } break; } __ Peek(x0, 0); PushOperand(x0); VisitForStackValue(key); VisitForStackValue(value); if (property->emit_store()) { if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } __ Mov(x0, Smi::FromInt(SLOPPY)); // Language mode PushOperand(x0); CallRuntimeWithOperands(Runtime::kSetProperty); } else { DropOperands(3); } break; case ObjectLiteral::Property::PROTOTYPE: DCHECK(property->emit_store()); // Duplicate receiver on stack. __ Peek(x0, 0); PushOperand(x0); VisitForStackValue(value); CallRuntimeWithOperands(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), BailoutState::NO_REGISTERS); break; case ObjectLiteral::Property::GETTER: if (property->emit_store()) { AccessorTable::Iterator it = accessor_table.lookup(key); it->second->bailout_id = expr->GetIdForPropertySet(property_index); it->second->getter = property; } break; case ObjectLiteral::Property::SETTER: if (property->emit_store()) { AccessorTable::Iterator it = accessor_table.lookup(key); it->second->bailout_id = expr->GetIdForPropertySet(property_index); it->second->setter = property; } break; } } // Emit code to define accessors, using only a single call to the runtime for // each pair of corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { __ Peek(x10, 0); // Duplicate receiver. PushOperand(x10); VisitForStackValue(it->first); EmitAccessor(it->second->getter); EmitAccessor(it->second->setter); __ Mov(x10, Smi::FromInt(NONE)); PushOperand(x10); CallRuntimeWithOperands(Runtime::kDefineAccessorPropertyUnchecked); PrepareForBailoutForId(it->second->bailout_id, BailoutState::NO_REGISTERS); } // Object literals have two parts. The "static" part on the left contains no // computed property names, and so we can compute its map ahead of time; see // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part // starts with the first computed property name, and continues with all // properties to its right. All the code from above initializes the static // component of the object literal, and arranges for the map of the result to // reflect the static order in which the keys appear. For the dynamic // properties, we compile them into a series of "SetOwnProperty" runtime // calls. This will preserve insertion order. for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); Expression* value = property->value(); if (!result_saved) { PushOperand(x0); // Save result on stack result_saved = true; } __ Peek(x10, 0); // Duplicate receiver. PushOperand(x10); if (property->kind() == ObjectLiteral::Property::PROTOTYPE) { DCHECK(!property->is_computed_name()); VisitForStackValue(value); DCHECK(property->emit_store()); CallRuntimeWithOperands(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), BailoutState::NO_REGISTERS); } else { EmitPropertyKey(property, expr->GetIdForPropertyName(property_index)); VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::COMPUTED: if (property->emit_store()) { PushOperand(Smi::FromInt(NONE)); PushOperand(Smi::FromInt(property->NeedsSetFunctionName())); CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), BailoutState::NO_REGISTERS); } else { DropOperands(3); } break; case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); break; case ObjectLiteral::Property::GETTER: PushOperand(Smi::FromInt(NONE)); CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked); break; case ObjectLiteral::Property::SETTER: PushOperand(Smi::FromInt(NONE)); CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked); break; } } } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(x0); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); Handle<FixedArray> constant_elements = expr->constant_elements(); bool has_fast_elements = IsFastObjectElementsKind(expr->constant_elements_kind()); AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; if (has_fast_elements && !FLAG_allocation_site_pretenuring) { // If the only customer of allocation sites is transitioning, then // we can turn it off if we don't have anywhere else to transition to. allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; } __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Mov(x2, Smi::FromInt(expr->literal_index())); __ Mov(x1, Operand(constant_elements)); if (MustCreateArrayLiteralWithRuntime(expr)) { __ Mov(x0, Smi::FromInt(expr->ComputeFlags())); __ Push(x3, x2, x1, x0); __ CallRuntime(Runtime::kCreateArrayLiteral); } else { FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); __ CallStub(&stub); RestoreContext(); } PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER); bool result_saved = false; // Is the result saved to the stack? ZoneList<Expression*>* subexprs = expr->values(); int length = subexprs->length(); // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int array_index = 0; array_index < length; array_index++) { Expression* subexpr = subexprs->at(array_index); DCHECK(!subexpr->IsSpread()); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; if (!result_saved) { PushOperand(x0); result_saved = true; } VisitForAccumulatorValue(subexpr); __ Mov(StoreDescriptor::NameRegister(), Smi::FromInt(array_index)); __ Peek(StoreDescriptor::ReceiverRegister(), 0); CallKeyedStoreIC(expr->LiteralFeedbackSlot()); PrepareForBailoutForId(expr->GetIdForElement(array_index), BailoutState::NO_REGISTERS); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(x0); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { DCHECK(expr->target()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ Assignment"); Property* property = expr->target()->AsProperty(); LhsKind assign_type = Property::GetAssignType(property); // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the register. VisitForStackValue(property->obj()); __ Peek(LoadDescriptor::ReceiverRegister(), 0); } else { VisitForStackValue(property->obj()); } break; case NAMED_SUPER_PROPERTY: VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( property->obj()->AsSuperPropertyReference()->home_object()); PushOperand(result_register()); if (expr->is_compound()) { const Register scratch = x10; __ Peek(scratch, kPointerSize); PushOperands(scratch, result_register()); } break; case KEYED_SUPER_PROPERTY: VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( property->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(property->key()); PushOperand(result_register()); if (expr->is_compound()) { const Register scratch1 = x10; const Register scratch2 = x11; __ Peek(scratch1, 2 * kPointerSize); __ Peek(scratch2, kPointerSize); PushOperands(scratch1, scratch2, result_register()); } break; case KEYED_PROPERTY: if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize); __ Peek(LoadDescriptor::NameRegister(), 0); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } // For compound assignments we need another deoptimization point after the // variable/property load. if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()); PrepareForBailout(expr->target(), BailoutState::TOS_REGISTER); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; } } Token::Value op = expr->binary_op(); PushOperand(x0); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr->binary_operation(), op, expr->target(), expr->value()); } else { EmitBinaryOp(expr->binary_operation(), op); } // Deoptimization point in case the binary operation may have side effects. PrepareForBailout(expr->binary_operation(), BailoutState::TOS_REGISTER); } else { VisitForAccumulatorValue(expr->value()); } SetExpressionPosition(expr); // Store the value. switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->target()->AsVariableProxy(); EmitVariableAssignment(proxy->var(), expr->op(), expr->AssignmentSlot(), proxy->hole_check_mode()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(x0); break; } case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyStore(property); context()->Plug(x0); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyStore(property); context()->Plug(x0); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, Token::Value op, Expression* left_expr, Expression* right_expr) { Label done, both_smis, stub_call; // Get the arguments. Register left = x1; Register right = x0; Register result = x0; PopOperand(left); // Perform combined smi check on both operands. __ Orr(x10, left, right); JumpPatchSite patch_site(masm_); patch_site.EmitJumpIfSmi(x10, &both_smis); __ Bind(&stub_call); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code(); { Assembler::BlockPoolsScope scope(masm_); CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); } __ B(&done); __ Bind(&both_smis); // Smi case. This code works in the same way as the smi-smi case in the type // recording binary operation stub, see // BinaryOpStub::GenerateSmiSmiOperation for comments. // TODO(all): That doesn't exist any more. Where are the comments? // // The set of operations that needs to be supported here is controlled by // FullCodeGenerator::ShouldInlineSmiCase(). switch (op) { case Token::SAR: __ Ubfx(right, right, kSmiShift, 5); __ Asr(result, left, right); __ Bic(result, result, kSmiShiftMask); break; case Token::SHL: __ Ubfx(right, right, kSmiShift, 5); __ Lsl(result, left, right); break; case Token::SHR: // If `left >>> right` >= 0x80000000, the result is not representable in a // signed 32-bit smi. __ Ubfx(right, right, kSmiShift, 5); __ Lsr(x10, left, right); __ Tbnz(x10, kXSignBit, &stub_call); __ Bic(result, x10, kSmiShiftMask); break; case Token::ADD: __ Adds(x10, left, right); __ B(vs, &stub_call); __ Mov(result, x10); break; case Token::SUB: __ Subs(x10, left, right); __ B(vs, &stub_call); __ Mov(result, x10); break; case Token::MUL: { Label not_minus_zero, done; STATIC_ASSERT(static_cast<unsigned>(kSmiShift) == (kXRegSizeInBits / 2)); STATIC_ASSERT(kSmiTag == 0); __ Smulh(x10, left, right); __ Cbnz(x10, ¬_minus_zero); __ Eor(x11, left, right); __ Tbnz(x11, kXSignBit, &stub_call); __ Mov(result, x10); __ B(&done); __ Bind(¬_minus_zero); __ Cls(x11, x10); __ Cmp(x11, kXRegSizeInBits - kSmiShift); __ B(lt, &stub_call); __ SmiTag(result, x10); __ Bind(&done); break; } case Token::BIT_OR: __ Orr(result, left, right); break; case Token::BIT_AND: __ And(result, left, right); break; case Token::BIT_XOR: __ Eor(result, left, right); break; default: UNREACHABLE(); } __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) { PopOperand(x1); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code(); JumpPatchSite patch_site(masm_); // Unbound, signals no inlined smi code. { Assembler::BlockPoolsScope scope(masm_); CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); } context()->Plug(x0); } void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) { for (int i = 0; i < lit->properties()->length(); i++) { ClassLiteral::Property* property = lit->properties()->at(i); Expression* value = property->value(); Register scratch = x1; if (property->is_static()) { __ Peek(scratch, kPointerSize); // constructor } else { __ Peek(scratch, 0); // prototype } PushOperand(scratch); EmitPropertyKey(property, lit->GetIdForProperty(i)); // The static prototype property is read only. We handle the non computed // property name case in the parser. Since this is the only case where we // need to check for an own read only property we special case this so we do // not need to do this for every property. if (property->is_static() && property->is_computed_name()) { __ CallRuntime(Runtime::kThrowIfStaticPrototype); __ Push(x0); } VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ClassLiteral::Property::METHOD: PushOperand(Smi::FromInt(DONT_ENUM)); PushOperand(Smi::FromInt(property->NeedsSetFunctionName())); CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral); break; case ClassLiteral::Property::GETTER: PushOperand(Smi::FromInt(DONT_ENUM)); CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked); break; case ClassLiteral::Property::SETTER: PushOperand(Smi::FromInt(DONT_ENUM)); CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked); break; case ClassLiteral::Property::FIELD: default: UNREACHABLE(); } } } void FullCodeGenerator::EmitAssignment(Expression* expr, FeedbackVectorSlot slot) { DCHECK(expr->IsValidReferenceExpressionOrThis()); Property* prop = expr->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->AsVariableProxy(); EffectContext context(this); EmitVariableAssignment(proxy->var(), Token::ASSIGN, slot, proxy->hole_check_mode()); break; } case NAMED_PROPERTY: { PushOperand(x0); // Preserve value. VisitForAccumulatorValue(prop->obj()); // TODO(all): We could introduce a VisitForRegValue(reg, expr) to avoid // this copy. __ Mov(StoreDescriptor::ReceiverRegister(), x0); PopOperand(StoreDescriptor::ValueRegister()); // Restore value. CallStoreIC(slot, prop->key()->AsLiteral()->value()); break; } case NAMED_SUPER_PROPERTY: { PushOperand(x0); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); // stack: value, this; x0: home_object Register scratch = x10; Register scratch2 = x11; __ mov(scratch, result_register()); // home_object __ Peek(x0, kPointerSize); // value __ Peek(scratch2, 0); // this __ Poke(scratch2, kPointerSize); // this __ Poke(scratch, 0); // home_object // stack: this, home_object; x0: value EmitNamedSuperPropertyStore(prop); break; } case KEYED_SUPER_PROPERTY: { PushOperand(x0); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( prop->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(prop->key()); Register scratch = x10; Register scratch2 = x11; __ Peek(scratch2, 2 * kPointerSize); // value // stack: value, this, home_object; x0: key, x11: value __ Peek(scratch, kPointerSize); // this __ Poke(scratch, 2 * kPointerSize); __ Peek(scratch, 0); // home_object __ Poke(scratch, kPointerSize); __ Poke(x0, 0); __ Move(x0, scratch2); // stack: this, home_object, key; x0: value. EmitKeyedSuperPropertyStore(prop); break; } case KEYED_PROPERTY: { PushOperand(x0); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ Mov(StoreDescriptor::NameRegister(), x0); PopOperands(StoreDescriptor::ReceiverRegister(), StoreDescriptor::ValueRegister()); CallKeyedStoreIC(slot); break; } } context()->Plug(x0); } void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( Variable* var, MemOperand location) { __ Str(result_register(), location); if (var->IsContextSlot()) { // RecordWrite may destroy all its register arguments. __ Mov(x10, result_register()); int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot( x1, offset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs); } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op, FeedbackVectorSlot slot, HoleCheckMode hole_check_mode) { ASM_LOCATION("FullCodeGenerator::EmitVariableAssignment"); if (var->IsUnallocated()) { // Global var, const, or let. __ LoadGlobalObject(StoreDescriptor::ReceiverRegister()); CallStoreIC(slot, var->name()); } else if (IsLexicalVariableMode(var->mode()) && op != Token::INIT) { DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand location = VarOperand(var, x1); // Perform an initialization check for lexically declared variables. if (var->binding_needs_init()) { Label assign; __ Ldr(x10, location); __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &assign); __ Mov(x10, Operand(var->name())); __ Push(x10); __ CallRuntime(Runtime::kThrowReferenceError); __ Bind(&assign); } if (var->mode() != CONST) { EmitStoreToStackLocalOrContextSlot(var, location); } else if (var->throw_on_const_assignment(language_mode())) { __ CallRuntime(Runtime::kThrowConstAssignError); } } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) { // Initializing assignment to const {this} needs a write barrier. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label uninitialized_this; MemOperand location = VarOperand(var, x1); __ Ldr(x10, location); __ JumpIfRoot(x10, Heap::kTheHoleValueRootIndex, &uninitialized_this); __ Mov(x0, Operand(var->name())); __ Push(x0); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&uninitialized_this); EmitStoreToStackLocalOrContextSlot(var, location); } else { DCHECK(var->mode() != CONST || op == Token::INIT); if (var->IsLookupSlot()) { // Assignment to var. __ Push(var->name()); __ Push(x0); __ CallRuntime(is_strict(language_mode()) ? Runtime::kStoreLookupSlot_Strict : Runtime::kStoreLookupSlot_Sloppy); } else { // Assignment to var or initializing assignment to let/const in harmony // mode. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand location = VarOperand(var, x1); if (FLAG_debug_code && var->mode() == LET && op == Token::INIT) { __ Ldr(x10, location); __ CompareRoot(x10, Heap::kTheHoleValueRootIndex); __ Check(eq, kLetBindingReInitialization); } EmitStoreToStackLocalOrContextSlot(var, location); } } } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { ASM_LOCATION("FullCodeGenerator::EmitNamedPropertyAssignment"); // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); DCHECK(prop != NULL); DCHECK(prop->key()->IsLiteral()); PopOperand(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->AssignmentSlot(), prop->key()->AsLiteral()->value()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(x0); } void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // x0 : value // stack : receiver ('this'), home_object DCHECK(prop != NULL); Literal* key = prop->key()->AsLiteral(); DCHECK(key != NULL); PushOperand(key->value()); PushOperand(x0); CallRuntimeWithOperands(is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict : Runtime::kStoreToSuper_Sloppy); } void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // x0 : value // stack : receiver ('this'), home_object, key DCHECK(prop != NULL); PushOperand(x0); CallRuntimeWithOperands(is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict : Runtime::kStoreKeyedToSuper_Sloppy); } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { ASM_LOCATION("FullCodeGenerator::EmitKeyedPropertyAssignment"); // Assignment to a property, using a keyed store IC. // TODO(all): Could we pass this in registers rather than on the stack? PopOperands(StoreDescriptor::NameRegister(), StoreDescriptor::ReceiverRegister()); DCHECK(StoreDescriptor::ValueRegister().is(x0)); CallKeyedStoreIC(expr->AssignmentSlot()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(x0); } // Code common for calls using the IC. void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { ASM_LOCATION("FullCodeGenerator::EmitCallWithLoadIC"); Expression* callee = expr->expression(); // Get the target function. ConvertReceiverMode convert_mode; if (callee->IsVariableProxy()) { { StackValueContext context(this); EmitVariableLoad(callee->AsVariableProxy()); PrepareForBailout(callee, BailoutState::NO_REGISTERS); } // Push undefined as receiver. This is patched in the method prologue if it // is a sloppy mode method. { UseScratchRegisterScope temps(masm_); Register temp = temps.AcquireX(); __ LoadRoot(temp, Heap::kUndefinedValueRootIndex); PushOperand(temp); } convert_mode = ConvertReceiverMode::kNullOrUndefined; } else { // Load the function from the receiver. DCHECK(callee->IsProperty()); DCHECK(!callee->AsProperty()->IsSuperAccess()); __ Peek(LoadDescriptor::ReceiverRegister(), 0); EmitNamedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), BailoutState::TOS_REGISTER); // Push the target function under the receiver. PopOperand(x10); PushOperands(x0, x10); convert_mode = ConvertReceiverMode::kNotNullOrUndefined; } EmitCall(expr, convert_mode); } void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) { ASM_LOCATION("FullCodeGenerator::EmitSuperCallWithLoadIC"); Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetExpressionPosition(prop); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); // Load the function from the receiver. const Register scratch = x10; SuperPropertyReference* super_ref = callee->AsProperty()->obj()->AsSuperPropertyReference(); VisitForStackValue(super_ref->home_object()); VisitForAccumulatorValue(super_ref->this_var()); PushOperand(x0); __ Peek(scratch, kPointerSize); PushOperands(x0, scratch); PushOperand(key->value()); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadFromSuper will pop here and below. // - home_object // - key CallRuntimeWithOperands(Runtime::kLoadFromSuper); PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER); // Replace home_object with target function. __ Poke(x0, kPointerSize); // Stack here: // - target function // - this (receiver) EmitCall(expr); } // Code common for calls using the IC. void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) { ASM_LOCATION("FullCodeGenerator::EmitKeyedCallWithLoadIC"); // Load the key. VisitForAccumulatorValue(key); Expression* callee = expr->expression(); // Load the function from the receiver. DCHECK(callee->IsProperty()); __ Peek(LoadDescriptor::ReceiverRegister(), 0); __ Move(LoadDescriptor::NameRegister(), x0); EmitKeyedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), BailoutState::TOS_REGISTER); // Push the target function under the receiver. PopOperand(x10); PushOperands(x0, x10); EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined); } void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) { ASM_LOCATION("FullCodeGenerator::EmitKeyedSuperCallWithLoadIC"); Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetExpressionPosition(prop); // Load the function from the receiver. const Register scratch = x10; SuperPropertyReference* super_ref = callee->AsProperty()->obj()->AsSuperPropertyReference(); VisitForStackValue(super_ref->home_object()); VisitForAccumulatorValue(super_ref->this_var()); PushOperand(x0); __ Peek(scratch, kPointerSize); PushOperands(x0, scratch); VisitForStackValue(prop->key()); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadKeyedFromSuper will pop here and below. // - home_object // - key CallRuntimeWithOperands(Runtime::kLoadKeyedFromSuper); PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER); // Replace home_object with target function. __ Poke(x0, kPointerSize); // Stack here: // - target function // - this (receiver) EmitCall(expr); } void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) { ASM_LOCATION("FullCodeGenerator::EmitCall"); // Load the arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS); SetCallPosition(expr, expr->tail_call_mode()); if (expr->tail_call_mode() == TailCallMode::kAllow) { if (FLAG_trace) { __ CallRuntime(Runtime::kTraceTailCall); } // Update profiling counters before the tail call since we will // not return to this function. EmitProfilingCounterHandlingForReturnSequence(true); } Handle<Code> code = CodeFactory::CallIC(isolate(), mode, expr->tail_call_mode()).code(); __ Mov(x3, SmiFromSlot(expr->CallFeedbackICSlot())); __ Peek(x1, (arg_count + 1) * kXRegSize); __ Mov(x0, arg_count); CallIC(code); OperandStackDepthDecrement(arg_count + 1); RecordJSReturnSite(expr); RestoreContext(); context()->DropAndPlug(1, x0); } void FullCodeGenerator::EmitResolvePossiblyDirectEval(Call* expr) { int arg_count = expr->arguments()->length(); ASM_LOCATION("FullCodeGenerator::EmitResolvePossiblyDirectEval"); // Prepare to push a copy of the first argument or undefined if it doesn't // exist. if (arg_count > 0) { __ Peek(x9, arg_count * kXRegSize); } else { __ LoadRoot(x9, Heap::kUndefinedValueRootIndex); } __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); // Prepare to push the language mode. __ Mov(x11, Smi::FromInt(language_mode())); // Prepare to push the start position of the scope the calls resides in. __ Mov(x12, Smi::FromInt(scope()->start_position())); // Prepare to push the source position of the eval call. __ Mov(x13, Smi::FromInt(expr->position())); // Push. __ Push(x9, x10, x11, x12, x13); // Do the runtime call. __ CallRuntime(Runtime::kResolvePossiblyDirectEval); } // See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls. void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) { VariableProxy* callee = expr->expression()->AsVariableProxy(); if (callee->var()->IsLookupSlot()) { Label slow, done; SetExpressionPosition(callee); // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done); __ Bind(&slow); // Call the runtime to find the function to call (returned in x0) // and the object holding it (returned in x1). __ Push(callee->name()); __ CallRuntime(Runtime::kLoadLookupSlotForCall); PushOperands(x0, x1); // Receiver, function. PrepareForBailoutForId(expr->LookupId(), BailoutState::NO_REGISTERS); // If fast case code has been generated, emit code to push the // function and receiver and have the slow path jump around this // code. if (done.is_linked()) { Label call; __ B(&call); __ Bind(&done); // Push function. // The receiver is implicitly the global receiver. Indicate this // by passing the undefined to the call function stub. __ LoadRoot(x1, Heap::kUndefinedValueRootIndex); __ Push(x0, x1); __ Bind(&call); } } else { VisitForStackValue(callee); // refEnv.WithBaseObject() __ LoadRoot(x10, Heap::kUndefinedValueRootIndex); PushOperand(x10); // Reserved receiver slot. } } void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) { ASM_LOCATION("FullCodeGenerator::EmitPossiblyEvalCall"); // In a call to eval, we first call Runtime_ResolvePossiblyDirectEval // to resolve the function we need to call. Then we call the resolved // function using the given arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); PushCalleeAndWithBaseObject(expr); // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push a copy of the function (found below the arguments) and // resolve eval. __ Peek(x10, (arg_count + 1) * kPointerSize); __ Push(x10); EmitResolvePossiblyDirectEval(expr); // Touch up the stack with the resolved function. __ Poke(x0, (arg_count + 1) * kPointerSize); PrepareForBailoutForId(expr->EvalId(), BailoutState::NO_REGISTERS); // Record source position for debugger. SetCallPosition(expr); // Call the evaluated function. Handle<Code> code = CodeFactory::CallIC(isolate(), ConvertReceiverMode::kAny, expr->tail_call_mode()) .code(); __ Mov(x3, SmiFromSlot(expr->CallFeedbackICSlot())); __ Peek(x1, (arg_count + 1) * kXRegSize); __ Mov(x0, arg_count); __ Call(code, RelocInfo::CODE_TARGET); OperandStackDepthDecrement(arg_count + 1); RecordJSReturnSite(expr); RestoreContext(); context()->DropAndPlug(1, x0); } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. DCHECK(!expr->expression()->IsSuperPropertyReference()); VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load function and argument count into x1 and x0. __ Mov(x0, arg_count); __ Peek(x1, arg_count * kXRegSize); // Record call targets in unoptimized code. __ EmitLoadTypeFeedbackVector(x2); __ Mov(x3, SmiFromSlot(expr->CallNewFeedbackSlot())); CallConstructStub stub(isolate()); CallIC(stub.GetCode()); OperandStackDepthDecrement(arg_count + 1); PrepareForBailoutForId(expr->ReturnId(), BailoutState::TOS_REGISTER); RestoreContext(); context()->Plug(x0); } void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) { ASM_LOCATION("FullCodeGenerator::EmitSuperConstructorCall"); SuperCallReference* super_call_ref = expr->expression()->AsSuperCallReference(); DCHECK_NOT_NULL(super_call_ref); // Push the super constructor target on the stack (may be null, // but the Construct builtin can deal with that properly). VisitForAccumulatorValue(super_call_ref->this_function_var()); __ AssertFunction(result_register()); __ Ldr(result_register(), FieldMemOperand(result_register(), HeapObject::kMapOffset)); __ Ldr(result_register(), FieldMemOperand(result_register(), Map::kPrototypeOffset)); PushOperand(result_register()); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load new target into x3. VisitForAccumulatorValue(super_call_ref->new_target_var()); __ Mov(x3, result_register()); // Load function and argument count into x1 and x0. __ Mov(x0, arg_count); __ Peek(x1, arg_count * kXRegSize); __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); OperandStackDepthDecrement(arg_count + 1); RecordJSReturnSite(expr); RestoreContext(); context()->Plug(x0); } void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ TestAndSplit(x0, kSmiTagMask, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(ge, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x10, x11, JS_ARRAY_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x10, x11, JS_TYPED_ARRAY_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x10, x11, JS_REGEXP_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x10, x11, JS_PROXY_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { ASM_LOCATION("FullCodeGenerator::EmitClassOf"); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is not a JSReceiver, we return null. __ JumpIfSmi(x0, &null); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE); // x10: object's map. // x11: object's type. __ B(lt, &null); // Return 'Function' for JSFunction objects. __ Cmp(x11, FIRST_FUNCTION_TYPE); STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); __ B(hs, &function); // Check if the constructor in the map is a JS function. Register instance_type = x14; __ GetMapConstructor(x12, x10, x13, instance_type); __ Cmp(instance_type, JS_FUNCTION_TYPE); __ B(ne, &non_function_constructor); // x12 now contains the constructor function. Grab the // instance class name from there. __ Ldr(x13, FieldMemOperand(x12, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x0, FieldMemOperand(x13, SharedFunctionInfo::kInstanceClassNameOffset)); __ B(&done); // Functions have class 'Function'. __ Bind(&function); __ LoadRoot(x0, Heap::kFunction_stringRootIndex); __ B(&done); // Objects with a non-function constructor have class 'Object'. __ Bind(&non_function_constructor); __ LoadRoot(x0, Heap::kObject_stringRootIndex); __ B(&done); // Non-JS objects have class null. __ Bind(&null); __ LoadRoot(x0, Heap::kNullValueRootIndex); // All done. __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = x1; Register index = x0; Register result = x3; PopOperand(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, result, &need_conversion, &need_conversion, &index_out_of_range); generator.GenerateFast(masm_); __ B(&done); __ Bind(&index_out_of_range); // When the index is out of range, the spec requires us to return NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ B(&done); __ Bind(&need_conversion); // Load the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ B(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); __ Bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitCall(CallRuntime* expr) { ASM_LOCATION("FullCodeGenerator::EmitCall"); ZoneList<Expression*>* args = expr->arguments(); DCHECK_LE(2, args->length()); // Push target, receiver and arguments onto the stack. for (Expression* const arg : *args) { VisitForStackValue(arg); } PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS); // Move target to x1. int const argc = args->length() - 2; __ Peek(x1, (argc + 1) * kXRegSize); // Call the target. __ Mov(x0, argc); __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); OperandStackDepthDecrement(argc + 1); RestoreContext(); // Discard the function left on TOS. context()->DropAndPlug(1, x0); } void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(1, args->length()); VisitForAccumulatorValue(args->at(0)); __ AssertFunction(x0); __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); __ Ldr(x0, FieldMemOperand(x0, Map::kPrototypeOffset)); context()->Plug(x0); } void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); ExternalReference debug_is_active = ExternalReference::debug_is_active_address(isolate()); __ Mov(x10, debug_is_active); __ Ldrb(x0, MemOperand(x10)); __ SmiTag(x0); context()->Plug(x0); } void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); Label runtime, done; Register result = x0; __ Allocate(JSIteratorResult::kSize, result, x10, x11, &runtime, NO_ALLOCATION_FLAGS); Register map_reg = x1; Register result_value = x2; Register boolean_done = x3; Register empty_fixed_array = x4; Register untagged_result = x5; __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, map_reg); __ Pop(boolean_done); __ Pop(result_value); __ LoadRoot(empty_fixed_array, Heap::kEmptyFixedArrayRootIndex); STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize == JSObject::kElementsOffset); STATIC_ASSERT(JSIteratorResult::kValueOffset + kPointerSize == JSIteratorResult::kDoneOffset); __ ObjectUntag(untagged_result, result); __ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset)); __ Stp(empty_fixed_array, empty_fixed_array, MemOperand(untagged_result, JSObject::kPropertiesOffset)); __ Stp(result_value, boolean_done, MemOperand(untagged_result, JSIteratorResult::kValueOffset)); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); __ B(&done); __ Bind(&runtime); CallRuntimeWithOperands(Runtime::kCreateIterResultObject); __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) { // Push function. __ LoadNativeContextSlot(expr->context_index(), x0); PushOperand(x0); // Push undefined as the receiver. __ LoadRoot(x0, Heap::kUndefinedValueRootIndex); PushOperand(x0); } void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); SetCallPosition(expr); __ Peek(x1, (arg_count + 1) * kPointerSize); __ Mov(x0, arg_count); __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined), RelocInfo::CODE_TARGET); OperandStackDepthDecrement(arg_count + 1); RestoreContext(); } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* property = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (property != NULL) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); CallRuntimeWithOperands(is_strict(language_mode()) ? Runtime::kDeleteProperty_Strict : Runtime::kDeleteProperty_Sloppy); context()->Plug(x0); } else if (proxy != NULL) { Variable* var = proxy->var(); // Delete of an unqualified identifier is disallowed in strict mode but // "delete this" is allowed. bool is_this = var->is_this(); DCHECK(is_sloppy(language_mode()) || is_this); if (var->IsUnallocated()) { __ LoadGlobalObject(x12); __ Mov(x11, Operand(var->name())); __ Push(x12, x11); __ CallRuntime(Runtime::kDeleteProperty_Sloppy); context()->Plug(x0); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global, non-dynamic variables is false. // The subexpression does not have side effects. context()->Plug(is_this); } else { // Non-global variable. Call the runtime to try to delete from the // context where the variable was introduced. __ Push(var->name()); __ CallRuntime(Runtime::kDeleteLookupSlot); context()->Plug(x0); } } else { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } break; break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Heap::kUndefinedValueRootIndex); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); if (context()->IsEffect()) { // Unary NOT has no side effects so it's only necessary to visit the // subexpression. Match the optimizing compiler by not branching. VisitForEffect(expr->expression()); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); // The labels are swapped for the recursive call. VisitForControl(expr->expression(), test->false_label(), test->true_label(), test->fall_through()); context()->Plug(test->true_label(), test->false_label()); } else { DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); // TODO(jbramley): This could be much more efficient using (for // example) the CSEL instruction. Label materialize_true, materialize_false, done; VisitForControl(expr->expression(), &materialize_false, &materialize_true, &materialize_true); if (!context()->IsAccumulatorValue()) OperandStackDepthIncrement(1); __ Bind(&materialize_true); PrepareForBailoutForId(expr->MaterializeTrueId(), BailoutState::NO_REGISTERS); __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); __ B(&done); __ Bind(&materialize_false); PrepareForBailoutForId(expr->MaterializeFalseId(), BailoutState::NO_REGISTERS); __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); __ B(&done); __ Bind(&done); if (context()->IsStackValue()) { __ Push(result_register()); } } break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { AccumulatorValueContext context(this); VisitForTypeofValue(expr->expression()); } __ Mov(x3, x0); __ Call(isolate()->builtins()->Typeof(), RelocInfo::CODE_TARGET); context()->Plug(x0); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { DCHECK(expr->expression()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ CountOperation"); Property* prop = expr->expression()->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); // Evaluate expression and get value. if (assign_type == VARIABLE) { DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { PushOperand(xzr); } switch (assign_type) { case NAMED_PROPERTY: { // Put the object both on the stack and in the register. VisitForStackValue(prop->obj()); __ Peek(LoadDescriptor::ReceiverRegister(), 0); EmitNamedPropertyLoad(prop); break; } case NAMED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); PushOperand(result_register()); const Register scratch = x10; __ Peek(scratch, kPointerSize); PushOperands(scratch, result_register()); EmitNamedSuperPropertyLoad(prop); break; } case KEYED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( prop->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(prop->key()); PushOperand(result_register()); const Register scratch1 = x10; const Register scratch2 = x11; __ Peek(scratch1, 2 * kPointerSize); __ Peek(scratch2, kPointerSize); PushOperands(scratch1, scratch2, result_register()); EmitKeyedSuperPropertyLoad(prop); break; } case KEYED_PROPERTY: { VisitForStackValue(prop->obj()); VisitForStackValue(prop->key()); __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize); __ Peek(LoadDescriptor::NameRegister(), 0); EmitKeyedPropertyLoad(prop); break; } case VARIABLE: UNREACHABLE(); } } // We need a second deoptimization point after loading the value // in case evaluating the property load my have a side effect. if (assign_type == VARIABLE) { PrepareForBailout(expr->expression(), BailoutState::TOS_REGISTER); } else { PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER); } // Inline smi case if we are in a loop. Label stub_call, done; JumpPatchSite patch_site(masm_); int count_value = expr->op() == Token::INC ? 1 : -1; if (ShouldInlineSmiCase(expr->op())) { Label slow; patch_site.EmitJumpIfNotSmi(x0, &slow); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property we // store the result under the receiver that is currently on top of the // stack. switch (assign_type) { case VARIABLE: __ Push(x0); break; case NAMED_PROPERTY: __ Poke(x0, kPointerSize); break; case NAMED_SUPER_PROPERTY: __ Poke(x0, kPointerSize * 2); break; case KEYED_PROPERTY: __ Poke(x0, kPointerSize * 2); break; case KEYED_SUPER_PROPERTY: __ Poke(x0, kPointerSize * 3); break; } } } __ Adds(x0, x0, Smi::FromInt(count_value)); __ B(vc, &done); // Call stub. Undo operation first. __ Sub(x0, x0, Smi::FromInt(count_value)); __ B(&stub_call); __ Bind(&slow); } // Convert old value into a number. __ Call(isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); RestoreContext(); PrepareForBailoutForId(expr->ToNumberId(), BailoutState::TOS_REGISTER); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: PushOperand(x0); break; case NAMED_PROPERTY: __ Poke(x0, kXRegSize); break; case NAMED_SUPER_PROPERTY: __ Poke(x0, 2 * kXRegSize); break; case KEYED_PROPERTY: __ Poke(x0, 2 * kXRegSize); break; case KEYED_SUPER_PROPERTY: __ Poke(x0, 3 * kXRegSize); break; } } } __ Bind(&stub_call); __ Mov(x1, x0); __ Mov(x0, Smi::FromInt(count_value)); SetExpressionPosition(expr); { Assembler::BlockPoolsScope scope(masm_); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), Token::ADD).code(); CallIC(code, expr->CountBinOpFeedbackId()); patch_site.EmitPatchInfo(); } __ Bind(&done); // Store the value returned in x0. switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (expr->is_postfix()) { { EffectContext context(this); EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(), proxy->hole_check_mode()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context.Plug(x0); } // For all contexts except EffectConstant We have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(), proxy->hole_check_mode()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(x0); } break; } case NAMED_PROPERTY: { PopOperand(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->CountSlot(), prop->key()->AsLiteral()->value()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(x0); } break; } case NAMED_SUPER_PROPERTY: { EmitNamedSuperPropertyStore(prop); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(x0); } break; } case KEYED_SUPER_PROPERTY: { EmitKeyedSuperPropertyStore(prop); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(x0); } break; } case KEYED_PROPERTY: { PopOperand(StoreDescriptor::NameRegister()); PopOperand(StoreDescriptor::ReceiverRegister()); CallKeyedStoreIC(expr->CountSlot()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(x0); } break; } } } void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, Expression* sub_expr, Handle<String> check) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof"); Comment cmnt(masm_, "[ EmitLiteralCompareTypeof"); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); { AccumulatorValueContext context(this); VisitForTypeofValue(sub_expr); } PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Factory* factory = isolate()->factory(); if (String::Equals(check, factory->number_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof number_string"); __ JumpIfSmi(x0, if_true); __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); __ CompareRoot(x0, Heap::kHeapNumberMapRootIndex); Split(eq, if_true, if_false, fall_through); } else if (String::Equals(check, factory->string_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof string_string"); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x0, x1, FIRST_NONSTRING_TYPE); Split(lt, if_true, if_false, fall_through); } else if (String::Equals(check, factory->symbol_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof symbol_string"); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x0, x1, SYMBOL_TYPE); Split(eq, if_true, if_false, fall_through); } else if (String::Equals(check, factory->boolean_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof boolean_string"); __ JumpIfRoot(x0, Heap::kTrueValueRootIndex, if_true); __ CompareRoot(x0, Heap::kFalseValueRootIndex); Split(eq, if_true, if_false, fall_through); } else if (String::Equals(check, factory->undefined_string())) { ASM_LOCATION( "FullCodeGenerator::EmitLiteralCompareTypeof undefined_string"); __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_false); __ JumpIfSmi(x0, if_false); // Check for undetectable objects => true. __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset)); __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_false, if_true, fall_through); } else if (String::Equals(check, factory->function_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof function_string"); __ JumpIfSmi(x0, if_false); __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset)); __ And(x1, x1, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); __ CompareAndSplit(x1, Operand(1 << Map::kIsCallable), eq, if_true, if_false, fall_through); } else if (String::Equals(check, factory->object_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof object_string"); __ JumpIfSmi(x0, if_false); __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ JumpIfObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE, if_false, lt); // Check for callable or undetectable objects => false. __ Ldrb(x10, FieldMemOperand(x10, Map::kBitFieldOffset)); __ TestAndSplit(x10, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable), if_true, if_false, fall_through); // clang-format off #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ } else if (String::Equals(check, factory->type##_string())) { \ ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof " \ #type "_string"); \ __ JumpIfSmi(x0, if_true); \ __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); \ __ CompareRoot(x0, Heap::k##Type##MapRootIndex); \ Split(eq, if_true, if_false, fall_through); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE // clang-format on } else { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof other"); if (if_false != fall_through) __ B(if_false); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); // Try to generate an optimized comparison with a literal value. // TODO(jbramley): This only checks common values like NaN or undefined. // Should it also handle ARM64 immediate operands? if (TryLiteralCompare(expr)) { return; } // Assign labels according to context()->PrepareTest. Label materialize_true; Label materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Token::Value op = expr->op(); VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); SetExpressionPosition(expr); EmitHasProperty(); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ CompareRoot(x0, Heap::kTrueValueRootIndex); Split(eq, if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForAccumulatorValue(expr->right()); SetExpressionPosition(expr); PopOperand(x1); __ Call(isolate()->builtins()->InstanceOf(), RelocInfo::CODE_TARGET); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ CompareRoot(x0, Heap::kTrueValueRootIndex); Split(eq, if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); SetExpressionPosition(expr); Condition cond = CompareIC::ComputeCondition(op); // Pop the stack value. PopOperand(x1); JumpPatchSite patch_site(masm_); if (ShouldInlineSmiCase(op)) { Label slow_case; patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case); __ Cmp(x1, x0); Split(cond, if_true, if_false, NULL); __ Bind(&slow_case); } Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); CallIC(ic, expr->CompareOperationFeedbackId()); patch_site.EmitPatchInfo(); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ CompareAndSplit(x0, 0, cond, if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, Expression* sub_expr, NilValue nil) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareNil"); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(sub_expr); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); if (expr->op() == Token::EQ_STRICT) { Heap::RootListIndex nil_value = nil == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ CompareRoot(x0, nil_value); Split(eq, if_true, if_false, fall_through); } else { __ JumpIfSmi(x0, if_false); __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset)); __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_false, if_true, fall_through); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitYield(Yield* expr) { Comment cmnt(masm_, "[ Yield"); SetExpressionPosition(expr); // Evaluate yielded value first; the initial iterator definition depends on // this. It stays on the stack while we update the iterator. VisitForStackValue(expr->expression()); // TODO(jbramley): Tidy this up once the merge is done, using named registers // and suchlike. The implementation changes a little by bleeding_edge so I // don't want to spend too much time on it now. Label suspend, continuation, post_runtime, resume, exception; __ B(&suspend); // TODO(jbramley): This label is bound here because the following code // looks at its pos(). Is it possible to do something more efficient here, // perhaps using Adr? __ Bind(&continuation); // When we arrive here, x0 holds the generator object. __ RecordGeneratorContinuation(); __ Ldr(x1, FieldMemOperand(x0, JSGeneratorObject::kResumeModeOffset)); __ Ldr(x0, FieldMemOperand(x0, JSGeneratorObject::kInputOrDebugPosOffset)); STATIC_ASSERT(JSGeneratorObject::kNext < JSGeneratorObject::kReturn); STATIC_ASSERT(JSGeneratorObject::kThrow > JSGeneratorObject::kReturn); __ Cmp(x1, Operand(Smi::FromInt(JSGeneratorObject::kReturn))); __ B(lt, &resume); __ Push(result_register()); __ B(gt, &exception); EmitCreateIteratorResult(true); EmitUnwindAndReturn(); __ Bind(&exception); __ CallRuntime(expr->rethrow_on_exception() ? Runtime::kReThrow : Runtime::kThrow); __ Bind(&suspend); OperandStackDepthIncrement(1); // Not popped on this path. VisitForAccumulatorValue(expr->generator_object()); DCHECK((continuation.pos() > 0) && Smi::IsValid(continuation.pos())); __ Mov(x1, Smi::FromInt(continuation.pos())); __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset)); __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset)); __ Mov(x1, cp); __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2, kLRHasBeenSaved, kDontSaveFPRegs); __ Add(x1, fp, StandardFrameConstants::kExpressionsOffset); __ Cmp(__ StackPointer(), x1); __ B(eq, &post_runtime); __ Push(x0); // generator object __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); RestoreContext(); __ Bind(&post_runtime); PopOperand(result_register()); EmitReturnSequence(); __ Bind(&resume); context()->Plug(result_register()); } void FullCodeGenerator::PushOperands(Register reg1, Register reg2) { OperandStackDepthIncrement(2); __ Push(reg1, reg2); } void FullCodeGenerator::PushOperands(Register reg1, Register reg2, Register reg3) { OperandStackDepthIncrement(3); __ Push(reg1, reg2, reg3); } void FullCodeGenerator::PopOperands(Register reg1, Register reg2) { OperandStackDepthDecrement(2); __ Pop(reg1, reg2); } void FullCodeGenerator::EmitOperandStackDepthCheck() { if (FLAG_debug_code) { int expected_diff = StandardFrameConstants::kFixedFrameSizeFromFp + operand_stack_depth_ * kPointerSize; __ Sub(x0, fp, jssp); __ Cmp(x0, Operand(expected_diff)); __ Assert(eq, kUnexpectedStackDepth); } } void FullCodeGenerator::EmitCreateIteratorResult(bool done) { Label allocate, done_allocate; // Allocate and populate an object with this form: { value: VAL, done: DONE } Register result = x0; __ Allocate(JSIteratorResult::kSize, result, x10, x11, &allocate, NO_ALLOCATION_FLAGS); __ B(&done_allocate); __ Bind(&allocate); __ Push(Smi::FromInt(JSIteratorResult::kSize)); __ CallRuntime(Runtime::kAllocateInNewSpace); __ Bind(&done_allocate); Register map_reg = x1; Register result_value = x2; Register boolean_done = x3; Register empty_fixed_array = x4; Register untagged_result = x5; __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, map_reg); PopOperand(result_value); __ LoadRoot(boolean_done, done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); __ LoadRoot(empty_fixed_array, Heap::kEmptyFixedArrayRootIndex); STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize == JSObject::kElementsOffset); STATIC_ASSERT(JSIteratorResult::kValueOffset + kPointerSize == JSIteratorResult::kDoneOffset); __ ObjectUntag(untagged_result, result); __ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset)); __ Stp(empty_fixed_array, empty_fixed_array, MemOperand(untagged_result, JSObject::kPropertiesOffset)); __ Stp(result_value, boolean_done, MemOperand(untagged_result, JSIteratorResult::kValueOffset)); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); } // TODO(all): I don't like this method. // It seems to me that in too many places x0 is used in place of this. // Also, this function is not suitable for all places where x0 should be // abstracted (eg. when used as an argument). But some places assume that the // first argument register is x0, and use this function instead. // Considering that most of the register allocation is hard-coded in the // FullCodeGen, that it is unlikely we will need to change it extensively, and // that abstracting the allocation through functions would not yield any // performance benefit, I think the existence of this function is debatable. Register FullCodeGenerator::result_register() { return x0; } Register FullCodeGenerator::context_register() { return cp; } void FullCodeGenerator::LoadFromFrameField(int frame_offset, Register value) { DCHECK(POINTER_SIZE_ALIGN(frame_offset) == frame_offset); __ Ldr(value, MemOperand(fp, frame_offset)); } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { DCHECK(POINTER_SIZE_ALIGN(frame_offset) == frame_offset); __ Str(value, MemOperand(fp, frame_offset)); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ Ldr(dst, ContextMemOperand(cp, context_index)); } void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { DeclarationScope* closure_scope = scope()->GetClosureScope(); if (closure_scope->is_script_scope() || closure_scope->is_module_scope()) { // Contexts nested in the native context have a canonical empty function // as their closure, not the anonymous closure containing the global // code. DCHECK(kSmiTag == 0); __ LoadNativeContextSlot(Context::CLOSURE_INDEX, x10); } else if (closure_scope->is_eval_scope()) { // Contexts created by a call to eval have the same closure as the // context calling eval, not the anonymous closure containing the eval // code. Fetch it from the context. __ Ldr(x10, ContextMemOperand(cp, Context::CLOSURE_INDEX)); } else { DCHECK(closure_scope->is_function_scope()); __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } PushOperand(x10); } void FullCodeGenerator::EnterFinallyBlock() { ASM_LOCATION("FullCodeGenerator::EnterFinallyBlock"); DCHECK(!result_register().is(x10)); // Store pending message while executing finally block. ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ Mov(x10, pending_message_obj); __ Ldr(x10, MemOperand(x10)); PushOperand(x10); ClearPendingMessage(); } void FullCodeGenerator::ExitFinallyBlock() { ASM_LOCATION("FullCodeGenerator::ExitFinallyBlock"); DCHECK(!result_register().is(x10)); // Restore pending message from stack. PopOperand(x10); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ Mov(x13, pending_message_obj); __ Str(x10, MemOperand(x13)); } void FullCodeGenerator::ClearPendingMessage() { DCHECK(!result_register().is(x10)); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ LoadRoot(x10, Heap::kTheHoleValueRootIndex); __ Mov(x13, pending_message_obj); __ Str(x10, MemOperand(x13)); } void FullCodeGenerator::DeferredCommands::EmitCommands() { __ Pop(result_register(), x1); // Restore the accumulator and get the token. for (DeferredCommand cmd : commands_) { Label skip; __ Cmp(x1, Operand(Smi::FromInt(cmd.token))); __ B(ne, &skip); switch (cmd.command) { case kReturn: codegen_->EmitUnwindAndReturn(); break; case kThrow: __ Push(result_register()); __ CallRuntime(Runtime::kReThrow); break; case kContinue: codegen_->EmitContinue(cmd.target); break; case kBreak: codegen_->EmitBreak(cmd.target); break; } __ bind(&skip); } } #undef __ void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc, BackEdgeState target_state, Code* replacement_code) { // Turn the jump into a nop. Address branch_address = pc - 3 * kInstructionSize; Isolate* isolate = unoptimized_code->GetIsolate(); PatchingAssembler patcher(isolate, branch_address, 1); DCHECK(Instruction::Cast(branch_address) ->IsNop(Assembler::INTERRUPT_CODE_NOP) || (Instruction::Cast(branch_address)->IsCondBranchImm() && Instruction::Cast(branch_address)->ImmPCOffset() == 6 * kInstructionSize)); switch (target_state) { case INTERRUPT: // <decrement profiling counter> // .. .. .. .. b.pl ok // .. .. .. .. ldr x16, pc+<interrupt stub address> // .. .. .. .. blr x16 // ... more instructions. // ok-label // Jump offset is 6 instructions. patcher.b(6, pl); break; case ON_STACK_REPLACEMENT: // <decrement profiling counter> // .. .. .. .. mov x0, x0 (NOP) // .. .. .. .. ldr x16, pc+<on-stack replacement address> // .. .. .. .. blr x16 patcher.nop(Assembler::INTERRUPT_CODE_NOP); break; } // Replace the call address. Instruction* load = Instruction::Cast(pc)->preceding(2); Address interrupt_address_pointer = reinterpret_cast<Address>(load) + load->ImmPCOffset(); DCHECK((Memory::uint64_at(interrupt_address_pointer) == reinterpret_cast<uint64_t>( isolate->builtins()->OnStackReplacement()->entry())) || (Memory::uint64_at(interrupt_address_pointer) == reinterpret_cast<uint64_t>( isolate->builtins()->InterruptCheck()->entry())) || (Memory::uint64_at(interrupt_address_pointer) == reinterpret_cast<uint64_t>( isolate->builtins()->OnStackReplacement()->entry()))); Memory::uint64_at(interrupt_address_pointer) = reinterpret_cast<uint64_t>(replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, reinterpret_cast<Address>(load), replacement_code); } BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( Isolate* isolate, Code* unoptimized_code, Address pc) { // TODO(jbramley): There should be some extra assertions here (as in the ARM // back-end), but this function is gone in bleeding_edge so it might not // matter anyway. Instruction* jump_or_nop = Instruction::Cast(pc)->preceding(3); if (jump_or_nop->IsNop(Assembler::INTERRUPT_CODE_NOP)) { Instruction* load = Instruction::Cast(pc)->preceding(2); uint64_t entry = Memory::uint64_at(reinterpret_cast<Address>(load) + load->ImmPCOffset()); if (entry == reinterpret_cast<uint64_t>( isolate->builtins()->OnStackReplacement()->entry())) { return ON_STACK_REPLACEMENT; } else { UNREACHABLE(); } } return INTERRUPT; } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM64