// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_HEAP_INL_H_ #define V8_HEAP_HEAP_INL_H_ #include <cmath> #include "src/base/platform/platform.h" #include "src/counters-inl.h" #include "src/heap/heap.h" #include "src/heap/incremental-marking-inl.h" #include "src/heap/mark-compact.h" #include "src/heap/object-stats.h" #include "src/heap/remembered-set.h" #include "src/heap/spaces-inl.h" #include "src/heap/store-buffer.h" #include "src/isolate.h" #include "src/list-inl.h" #include "src/log.h" #include "src/msan.h" #include "src/objects-inl.h" #include "src/type-feedback-vector-inl.h" namespace v8 { namespace internal { AllocationSpace AllocationResult::RetrySpace() { DCHECK(IsRetry()); return static_cast<AllocationSpace>(Smi::cast(object_)->value()); } HeapObject* AllocationResult::ToObjectChecked() { CHECK(!IsRetry()); return HeapObject::cast(object_); } void PromotionQueue::insert(HeapObject* target, int32_t size, bool was_marked_black) { if (emergency_stack_ != NULL) { emergency_stack_->Add(Entry(target, size, was_marked_black)); return; } if ((rear_ - 1) < limit_) { RelocateQueueHead(); emergency_stack_->Add(Entry(target, size, was_marked_black)); return; } struct Entry* entry = reinterpret_cast<struct Entry*>(--rear_); entry->obj_ = target; entry->size_ = size; entry->was_marked_black_ = was_marked_black; // Assert no overflow into live objects. #ifdef DEBUG SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(), reinterpret_cast<Address>(rear_)); #endif } void PromotionQueue::remove(HeapObject** target, int32_t* size, bool* was_marked_black) { DCHECK(!is_empty()); if (front_ == rear_) { Entry e = emergency_stack_->RemoveLast(); *target = e.obj_; *size = e.size_; *was_marked_black = e.was_marked_black_; return; } struct Entry* entry = reinterpret_cast<struct Entry*>(--front_); *target = entry->obj_; *size = entry->size_; *was_marked_black = entry->was_marked_black_; // Assert no underflow. SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_), reinterpret_cast<Address>(front_)); } Page* PromotionQueue::GetHeadPage() { return Page::FromAllocationAreaAddress(reinterpret_cast<Address>(rear_)); } void PromotionQueue::SetNewLimit(Address limit) { // If we are already using an emergency stack, we can ignore it. if (emergency_stack_) return; // If the limit is not on the same page, we can ignore it. if (Page::FromAllocationAreaAddress(limit) != GetHeadPage()) return; limit_ = reinterpret_cast<struct Entry*>(limit); if (limit_ <= rear_) { return; } RelocateQueueHead(); } bool PromotionQueue::IsBelowPromotionQueue(Address to_space_top) { // If an emergency stack is used, the to-space address cannot interfere // with the promotion queue. if (emergency_stack_) return true; // If the given to-space top pointer and the head of the promotion queue // are not on the same page, then the to-space objects are below the // promotion queue. if (GetHeadPage() != Page::FromAddress(to_space_top)) { return true; } // If the to space top pointer is smaller or equal than the promotion // queue head, then the to-space objects are below the promotion queue. return reinterpret_cast<struct Entry*>(to_space_top) <= rear_; } #define ROOT_ACCESSOR(type, name, camel_name) \ type* Heap::name() { return type::cast(roots_[k##camel_name##RootIndex]); } ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \ Map* Heap::name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); } STRUCT_LIST(STRUCT_MAP_ACCESSOR) #undef STRUCT_MAP_ACCESSOR #define STRING_ACCESSOR(name, str) \ String* Heap::name() { return String::cast(roots_[k##name##RootIndex]); } INTERNALIZED_STRING_LIST(STRING_ACCESSOR) #undef STRING_ACCESSOR #define SYMBOL_ACCESSOR(name) \ Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); } PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR) #undef SYMBOL_ACCESSOR #define SYMBOL_ACCESSOR(name, description) \ Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); } PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR) WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR) #undef SYMBOL_ACCESSOR #define ROOT_ACCESSOR(type, name, camel_name) \ void Heap::set_##name(type* value) { \ /* The deserializer makes use of the fact that these common roots are */ \ /* never in new space and never on a page that is being compacted. */ \ DCHECK(!deserialization_complete() || \ RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex)); \ DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \ roots_[k##camel_name##RootIndex] = value; \ } ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR PagedSpace* Heap::paged_space(int idx) { DCHECK_NE(idx, LO_SPACE); DCHECK_NE(idx, NEW_SPACE); return static_cast<PagedSpace*>(space_[idx]); } Space* Heap::space(int idx) { return space_[idx]; } Address* Heap::NewSpaceAllocationTopAddress() { return new_space_->allocation_top_address(); } Address* Heap::NewSpaceAllocationLimitAddress() { return new_space_->allocation_limit_address(); } Address* Heap::OldSpaceAllocationTopAddress() { return old_space_->allocation_top_address(); } Address* Heap::OldSpaceAllocationLimitAddress() { return old_space_->allocation_limit_address(); } void Heap::UpdateNewSpaceAllocationCounter() { new_space_allocation_counter_ = NewSpaceAllocationCounter(); } size_t Heap::NewSpaceAllocationCounter() { return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC(); } template <> bool inline Heap::IsOneByte(Vector<const char> str, int chars) { // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported? return chars == str.length(); } template <> bool inline Heap::IsOneByte(String* str, int chars) { return str->IsOneByteRepresentation(); } AllocationResult Heap::AllocateInternalizedStringFromUtf8( Vector<const char> str, int chars, uint32_t hash_field) { if (IsOneByte(str, chars)) { return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str), hash_field); } return AllocateInternalizedStringImpl<false>(str, chars, hash_field); } template <typename T> AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field) { if (IsOneByte(t, chars)) { return AllocateInternalizedStringImpl<true>(t, chars, hash_field); } return AllocateInternalizedStringImpl<false>(t, chars, hash_field); } AllocationResult Heap::AllocateOneByteInternalizedString( Vector<const uint8_t> str, uint32_t hash_field) { CHECK_GE(String::kMaxLength, str.length()); // Compute map and object size. Map* map = one_byte_internalized_string_map(); int size = SeqOneByteString::SizeFor(str.length()); // Allocate string. HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } // String maps are all immortal immovable objects. result->set_map_no_write_barrier(map); // Set length and hash fields of the allocated string. String* answer = String::cast(result); answer->set_length(str.length()); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); // Fill in the characters. MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(), str.length()); return answer; } AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str, uint32_t hash_field) { CHECK_GE(String::kMaxLength, str.length()); // Compute map and object size. Map* map = internalized_string_map(); int size = SeqTwoByteString::SizeFor(str.length()); // Allocate string. HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map(map); // Set length and hash fields of the allocated string. String* answer = String::cast(result); answer->set_length(str.length()); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); // Fill in the characters. MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(), str.length() * kUC16Size); return answer; } AllocationResult Heap::CopyFixedArray(FixedArray* src) { if (src->length() == 0) return src; return CopyFixedArrayWithMap(src, src->map()); } AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) { if (src->length() == 0) return src; return CopyFixedDoubleArrayWithMap(src, src->map()); } AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space, AllocationAlignment alignment) { DCHECK(AllowHandleAllocation::IsAllowed()); DCHECK(AllowHeapAllocation::IsAllowed()); DCHECK(gc_state_ == NOT_IN_GC); #ifdef DEBUG if (FLAG_gc_interval >= 0 && !always_allocate() && Heap::allocation_timeout_-- <= 0) { return AllocationResult::Retry(space); } isolate_->counters()->objs_since_last_full()->Increment(); isolate_->counters()->objs_since_last_young()->Increment(); #endif bool large_object = size_in_bytes > kMaxRegularHeapObjectSize; HeapObject* object = nullptr; AllocationResult allocation; if (NEW_SPACE == space) { if (large_object) { space = LO_SPACE; } else { allocation = new_space_->AllocateRaw(size_in_bytes, alignment); if (allocation.To(&object)) { OnAllocationEvent(object, size_in_bytes); } return allocation; } } // Here we only allocate in the old generation. if (OLD_SPACE == space) { if (large_object) { allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE); } else { allocation = old_space_->AllocateRaw(size_in_bytes, alignment); } } else if (CODE_SPACE == space) { if (size_in_bytes <= code_space()->AreaSize()) { allocation = code_space_->AllocateRawUnaligned(size_in_bytes); } else { allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE); } } else if (LO_SPACE == space) { DCHECK(large_object); allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE); } else if (MAP_SPACE == space) { allocation = map_space_->AllocateRawUnaligned(size_in_bytes); } else { // NEW_SPACE is not allowed here. UNREACHABLE(); } if (allocation.To(&object)) { OnAllocationEvent(object, size_in_bytes); } return allocation; } void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) { HeapProfiler* profiler = isolate_->heap_profiler(); if (profiler->is_tracking_allocations()) { profiler->AllocationEvent(object->address(), size_in_bytes); } if (FLAG_verify_predictable) { ++allocations_count_; // Advance synthetic time by making a time request. MonotonicallyIncreasingTimeInMs(); UpdateAllocationsHash(object); UpdateAllocationsHash(size_in_bytes); if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) { PrintAlloctionsHash(); } } if (FLAG_trace_allocation_stack_interval > 0) { if (!FLAG_verify_predictable) ++allocations_count_; if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) { isolate()->PrintStack(stdout, Isolate::kPrintStackConcise); } } } void Heap::OnMoveEvent(HeapObject* target, HeapObject* source, int size_in_bytes) { HeapProfiler* heap_profiler = isolate_->heap_profiler(); if (heap_profiler->is_tracking_object_moves()) { heap_profiler->ObjectMoveEvent(source->address(), target->address(), size_in_bytes); } if (target->IsSharedFunctionInfo()) { LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source->address(), target->address())); } if (FLAG_verify_predictable) { ++allocations_count_; // Advance synthetic time by making a time request. MonotonicallyIncreasingTimeInMs(); UpdateAllocationsHash(source); UpdateAllocationsHash(target); UpdateAllocationsHash(size_in_bytes); if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) { PrintAlloctionsHash(); } } } void Heap::UpdateAllocationsHash(HeapObject* object) { Address object_address = object->address(); MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address); AllocationSpace allocation_space = memory_chunk->owner()->identity(); STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32); uint32_t value = static_cast<uint32_t>(object_address - memory_chunk->address()) | (static_cast<uint32_t>(allocation_space) << kPageSizeBits); UpdateAllocationsHash(value); } void Heap::UpdateAllocationsHash(uint32_t value) { uint16_t c1 = static_cast<uint16_t>(value); uint16_t c2 = static_cast<uint16_t>(value >> 16); raw_allocations_hash_ = StringHasher::AddCharacterCore(raw_allocations_hash_, c1); raw_allocations_hash_ = StringHasher::AddCharacterCore(raw_allocations_hash_, c2); } void Heap::RegisterExternalString(String* string) { external_string_table_.AddString(string); } void Heap::FinalizeExternalString(String* string) { DCHECK(string->IsExternalString()); v8::String::ExternalStringResourceBase** resource_addr = reinterpret_cast<v8::String::ExternalStringResourceBase**>( reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset - kHeapObjectTag); // Dispose of the C++ object if it has not already been disposed. if (*resource_addr != NULL) { (*resource_addr)->Dispose(); *resource_addr = NULL; } } Address Heap::NewSpaceTop() { return new_space_->top(); } bool Heap::DeoptMaybeTenuredAllocationSites() { return new_space_->IsAtMaximumCapacity() && maximum_size_scavenges_ == 0; } bool Heap::InNewSpace(Object* object) { // Inlined check from NewSpace::Contains. bool result = object->IsHeapObject() && Page::FromAddress(HeapObject::cast(object)->address())->InNewSpace(); DCHECK(!result || // Either not in new space gc_state_ != NOT_IN_GC || // ... or in the middle of GC InToSpace(object)); // ... or in to-space (where we allocate). return result; } bool Heap::InFromSpace(Object* object) { return object->IsHeapObject() && MemoryChunk::FromAddress(HeapObject::cast(object)->address()) ->IsFlagSet(Page::IN_FROM_SPACE); } bool Heap::InToSpace(Object* object) { return object->IsHeapObject() && MemoryChunk::FromAddress(HeapObject::cast(object)->address()) ->IsFlagSet(Page::IN_TO_SPACE); } bool Heap::InOldSpace(Object* object) { return old_space_->Contains(object); } bool Heap::InNewSpaceSlow(Address address) { return new_space_->ContainsSlow(address); } bool Heap::InOldSpaceSlow(Address address) { return old_space_->ContainsSlow(address); } bool Heap::ShouldBePromoted(Address old_address, int object_size) { Page* page = Page::FromAddress(old_address); Address age_mark = new_space_->age_mark(); return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) && (!page->ContainsLimit(age_mark) || old_address < age_mark); } void Heap::RecordWrite(Object* object, int offset, Object* o) { if (!InNewSpace(o) || !object->IsHeapObject() || InNewSpace(object)) { return; } store_buffer()->InsertEntry(HeapObject::cast(object)->address() + offset); } void Heap::RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* value) { if (InNewSpace(value)) { RecordWriteIntoCodeSlow(host, rinfo, value); } } void Heap::RecordFixedArrayElements(FixedArray* array, int offset, int length) { if (InNewSpace(array)) return; for (int i = 0; i < length; i++) { if (!InNewSpace(array->get(offset + i))) continue; store_buffer()->InsertEntry( reinterpret_cast<Address>(array->RawFieldOfElementAt(offset + i))); } } Address* Heap::store_buffer_top_address() { return store_buffer()->top_address(); } bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) { // Object migration is governed by the following rules: // // 1) Objects in new-space can be migrated to the old space // that matches their target space or they stay in new-space. // 2) Objects in old-space stay in the same space when migrating. // 3) Fillers (two or more words) can migrate due to left-trimming of // fixed arrays in new-space or old space. // 4) Fillers (one word) can never migrate, they are skipped by // incremental marking explicitly to prevent invalid pattern. // // Since this function is used for debugging only, we do not place // asserts here, but check everything explicitly. if (obj->map() == one_pointer_filler_map()) return false; InstanceType type = obj->map()->instance_type(); MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); AllocationSpace src = chunk->owner()->identity(); switch (src) { case NEW_SPACE: return dst == src || dst == OLD_SPACE; case OLD_SPACE: return dst == src && (dst == OLD_SPACE || obj->IsFiller() || obj->IsExternalString()); case CODE_SPACE: return dst == src && type == CODE_TYPE; case MAP_SPACE: case LO_SPACE: return false; } UNREACHABLE(); return false; } void Heap::CopyBlock(Address dst, Address src, int byte_size) { CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src), static_cast<size_t>(byte_size / kPointerSize)); } template <Heap::FindMementoMode mode> AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) { Address object_address = object->address(); Address memento_address = object_address + object->Size(); Address last_memento_word_address = memento_address + kPointerSize; // If the memento would be on another page, bail out immediately. if (!Page::OnSamePage(object_address, last_memento_word_address)) { return nullptr; } HeapObject* candidate = HeapObject::FromAddress(memento_address); Map* candidate_map = candidate->map(); // This fast check may peek at an uninitialized word. However, the slow check // below (memento_address == top) ensures that this is safe. Mark the word as // initialized to silence MemorySanitizer warnings. MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map)); if (candidate_map != allocation_memento_map()) { return nullptr; } // Bail out if the memento is below the age mark, which can happen when // mementos survived because a page got moved within new space. Page* object_page = Page::FromAddress(object_address); if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) { Address age_mark = reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark(); if (!object_page->Contains(age_mark)) { return nullptr; } // Do an exact check in the case where the age mark is on the same page. if (object_address < age_mark) { return nullptr; } } AllocationMemento* memento_candidate = AllocationMemento::cast(candidate); // Depending on what the memento is used for, we might need to perform // additional checks. Address top; switch (mode) { case Heap::kForGC: return memento_candidate; case Heap::kForRuntime: if (memento_candidate == nullptr) return nullptr; // Either the object is the last object in the new space, or there is // another object of at least word size (the header map word) following // it, so suffices to compare ptr and top here. top = NewSpaceTop(); DCHECK(memento_address == top || memento_address + HeapObject::kHeaderSize <= top || !Page::OnSamePage(memento_address, top - 1)); if ((memento_address != top) && memento_candidate->IsValid()) { return memento_candidate; } return nullptr; default: UNREACHABLE(); } UNREACHABLE(); return nullptr; } template <Heap::UpdateAllocationSiteMode mode> void Heap::UpdateAllocationSite(HeapObject* object, base::HashMap* pretenuring_feedback) { DCHECK(InFromSpace(object) || (InToSpace(object) && Page::FromAddress(object->address()) ->IsFlagSet(Page::PAGE_NEW_NEW_PROMOTION)) || (!InNewSpace(object) && Page::FromAddress(object->address()) ->IsFlagSet(Page::PAGE_NEW_OLD_PROMOTION))); if (!FLAG_allocation_site_pretenuring || !AllocationSite::CanTrack(object->map()->instance_type())) return; AllocationMemento* memento_candidate = FindAllocationMemento<kForGC>(object); if (memento_candidate == nullptr) return; if (mode == kGlobal) { DCHECK_EQ(pretenuring_feedback, global_pretenuring_feedback_); // Entering global pretenuring feedback is only used in the scavenger, where // we are allowed to actually touch the allocation site. if (!memento_candidate->IsValid()) return; AllocationSite* site = memento_candidate->GetAllocationSite(); DCHECK(!site->IsZombie()); // For inserting in the global pretenuring storage we need to first // increment the memento found count on the allocation site. if (site->IncrementMementoFoundCount()) { global_pretenuring_feedback_->LookupOrInsert(site, ObjectHash(site->address())); } } else { DCHECK_EQ(mode, kCached); DCHECK_NE(pretenuring_feedback, global_pretenuring_feedback_); // Entering cached feedback is used in the parallel case. We are not allowed // to dereference the allocation site and rather have to postpone all checks // till actually merging the data. Address key = memento_candidate->GetAllocationSiteUnchecked(); base::HashMap::Entry* e = pretenuring_feedback->LookupOrInsert(key, ObjectHash(key)); DCHECK(e != nullptr); (*bit_cast<intptr_t*>(&e->value))++; } } void Heap::RemoveAllocationSitePretenuringFeedback(AllocationSite* site) { global_pretenuring_feedback_->Remove( site, static_cast<uint32_t>(bit_cast<uintptr_t>(site))); } bool Heap::CollectGarbage(AllocationSpace space, GarbageCollectionReason gc_reason, const v8::GCCallbackFlags callbackFlags) { const char* collector_reason = NULL; GarbageCollector collector = SelectGarbageCollector(space, &collector_reason); return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags); } Isolate* Heap::isolate() { return reinterpret_cast<Isolate*>( reinterpret_cast<intptr_t>(this) - reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16); } void Heap::ExternalStringTable::AddString(String* string) { DCHECK(string->IsExternalString()); if (heap_->InNewSpace(string)) { new_space_strings_.Add(string); } else { old_space_strings_.Add(string); } } void Heap::ExternalStringTable::Iterate(ObjectVisitor* v) { if (!new_space_strings_.is_empty()) { Object** start = &new_space_strings_[0]; v->VisitPointers(start, start + new_space_strings_.length()); } if (!old_space_strings_.is_empty()) { Object** start = &old_space_strings_[0]; v->VisitPointers(start, start + old_space_strings_.length()); } } // Verify() is inline to avoid ifdef-s around its calls in release // mode. void Heap::ExternalStringTable::Verify() { #ifdef DEBUG for (int i = 0; i < new_space_strings_.length(); ++i) { Object* obj = Object::cast(new_space_strings_[i]); DCHECK(heap_->InNewSpace(obj)); DCHECK(!obj->IsTheHole(heap_->isolate())); } for (int i = 0; i < old_space_strings_.length(); ++i) { Object* obj = Object::cast(old_space_strings_[i]); DCHECK(!heap_->InNewSpace(obj)); DCHECK(!obj->IsTheHole(heap_->isolate())); } #endif } void Heap::ExternalStringTable::AddOldString(String* string) { DCHECK(string->IsExternalString()); DCHECK(!heap_->InNewSpace(string)); old_space_strings_.Add(string); } void Heap::ExternalStringTable::ShrinkNewStrings(int position) { new_space_strings_.Rewind(position); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } void Heap::ClearInstanceofCache() { set_instanceof_cache_function(Smi::kZero); } Oddball* Heap::ToBoolean(bool condition) { return condition ? true_value() : false_value(); } void Heap::CompletelyClearInstanceofCache() { set_instanceof_cache_map(Smi::kZero); set_instanceof_cache_function(Smi::kZero); } uint32_t Heap::HashSeed() { uint32_t seed = static_cast<uint32_t>(hash_seed()->value()); DCHECK(FLAG_randomize_hashes || seed == 0); return seed; } int Heap::NextScriptId() { int last_id = last_script_id()->value(); if (last_id == Smi::kMaxValue) { last_id = 1; } else { last_id++; } set_last_script_id(Smi::FromInt(last_id)); return last_id; } void Heap::SetArgumentsAdaptorDeoptPCOffset(int pc_offset) { DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::kZero); set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset)); } void Heap::SetConstructStubDeoptPCOffset(int pc_offset) { DCHECK(construct_stub_deopt_pc_offset() == Smi::kZero); set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset)); } void Heap::SetGetterStubDeoptPCOffset(int pc_offset) { DCHECK(getter_stub_deopt_pc_offset() == Smi::kZero); set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset)); } void Heap::SetSetterStubDeoptPCOffset(int pc_offset) { DCHECK(setter_stub_deopt_pc_offset() == Smi::kZero); set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset)); } void Heap::SetInterpreterEntryReturnPCOffset(int pc_offset) { DCHECK(interpreter_entry_return_pc_offset() == Smi::kZero); set_interpreter_entry_return_pc_offset(Smi::FromInt(pc_offset)); } int Heap::GetNextTemplateSerialNumber() { int next_serial_number = next_template_serial_number()->value() + 1; set_next_template_serial_number(Smi::FromInt(next_serial_number)); return next_serial_number; } void Heap::SetSerializedTemplates(FixedArray* templates) { DCHECK_EQ(empty_fixed_array(), serialized_templates()); set_serialized_templates(templates); } void Heap::CreateObjectStats() { if (V8_LIKELY(FLAG_gc_stats == 0)) return; if (!live_object_stats_) { live_object_stats_ = new ObjectStats(this); } if (!dead_object_stats_) { dead_object_stats_ = new ObjectStats(this); } } AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate) : heap_(isolate->heap()) { heap_->always_allocate_scope_count_.Increment(1); } AlwaysAllocateScope::~AlwaysAllocateScope() { heap_->always_allocate_scope_count_.Increment(-1); } void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*current); CHECK(object->GetIsolate()->heap()->Contains(object)); CHECK(object->map()->IsMap()); } } } void VerifySmisVisitor::VisitPointers(Object** start, Object** end) { for (Object** current = start; current < end; current++) { CHECK((*current)->IsSmi()); } } } // namespace internal } // namespace v8 #endif // V8_HEAP_HEAP_INL_H_