// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/incremental-marking.h" #include "src/code-stubs.h" #include "src/compilation-cache.h" #include "src/conversions.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/tracing/trace-event.h" #include "src/v8.h" namespace v8 { namespace internal { IncrementalMarking::IncrementalMarking(Heap* heap) : heap_(heap), state_(STOPPED), initial_old_generation_size_(0), bytes_marked_ahead_of_schedule_(0), unscanned_bytes_of_large_object_(0), idle_marking_delay_counter_(0), incremental_marking_finalization_rounds_(0), is_compacting_(false), should_hurry_(false), was_activated_(false), black_allocation_(false), finalize_marking_completed_(false), request_type_(NONE), new_generation_observer_(*this, kAllocatedThreshold), old_generation_observer_(*this, kAllocatedThreshold) {} bool IncrementalMarking::BaseRecordWrite(HeapObject* obj, Object* value) { HeapObject* value_heap_obj = HeapObject::cast(value); MarkBit value_bit = ObjectMarking::MarkBitFrom(value_heap_obj); DCHECK(!Marking::IsImpossible(value_bit)); MarkBit obj_bit = ObjectMarking::MarkBitFrom(obj); DCHECK(!Marking::IsImpossible(obj_bit)); bool is_black = Marking::IsBlack(obj_bit); if (is_black && Marking::IsWhite(value_bit)) { WhiteToGreyAndPush(value_heap_obj, value_bit); RestartIfNotMarking(); } return is_compacting_ && is_black; } void IncrementalMarking::RecordWriteSlow(HeapObject* obj, Object** slot, Object* value) { if (BaseRecordWrite(obj, value) && slot != NULL) { // Object is not going to be rescanned we need to record the slot. heap_->mark_compact_collector()->RecordSlot(obj, slot, value); } } void IncrementalMarking::RecordWriteFromCode(HeapObject* obj, Object** slot, Isolate* isolate) { DCHECK(obj->IsHeapObject()); isolate->heap()->incremental_marking()->RecordWrite(obj, slot, *slot); } // static void IncrementalMarking::RecordWriteOfCodeEntryFromCode(JSFunction* host, Object** slot, Isolate* isolate) { DCHECK(host->IsJSFunction()); IncrementalMarking* marking = isolate->heap()->incremental_marking(); Code* value = Code::cast( Code::GetObjectFromEntryAddress(reinterpret_cast<Address>(slot))); marking->RecordWriteOfCodeEntry(host, slot, value); } void IncrementalMarking::RecordCodeTargetPatch(Code* host, Address pc, HeapObject* value) { if (IsMarking()) { RelocInfo rinfo(heap_->isolate(), pc, RelocInfo::CODE_TARGET, 0, host); RecordWriteIntoCode(host, &rinfo, value); } } void IncrementalMarking::RecordCodeTargetPatch(Address pc, HeapObject* value) { if (IsMarking()) { Code* host = heap_->isolate() ->inner_pointer_to_code_cache() ->GcSafeFindCodeForInnerPointer(pc); RelocInfo rinfo(heap_->isolate(), pc, RelocInfo::CODE_TARGET, 0, host); RecordWriteIntoCode(host, &rinfo, value); } } void IncrementalMarking::RecordWriteOfCodeEntrySlow(JSFunction* host, Object** slot, Code* value) { if (BaseRecordWrite(host, value)) { DCHECK(slot != NULL); heap_->mark_compact_collector()->RecordCodeEntrySlot( host, reinterpret_cast<Address>(slot), value); } } void IncrementalMarking::RecordWriteIntoCodeSlow(Code* host, RelocInfo* rinfo, Object* value) { if (BaseRecordWrite(host, value)) { // Object is not going to be rescanned. We need to record the slot. heap_->mark_compact_collector()->RecordRelocSlot(host, rinfo, value); } } void IncrementalMarking::WhiteToGreyAndPush(HeapObject* obj, MarkBit mark_bit) { Marking::WhiteToGrey(mark_bit); heap_->mark_compact_collector()->marking_deque()->Push(obj); } static void MarkObjectGreyDoNotEnqueue(Object* obj) { if (obj->IsHeapObject()) { HeapObject* heap_obj = HeapObject::cast(obj); MarkBit mark_bit = ObjectMarking::MarkBitFrom(HeapObject::cast(obj)); if (Marking::IsBlack(mark_bit)) { MemoryChunk::IncrementLiveBytesFromGC(heap_obj, -heap_obj->Size()); } Marking::AnyToGrey(mark_bit); } } void IncrementalMarking::TransferMark(Heap* heap, Address old_start, Address new_start) { // This is only used when resizing an object. DCHECK(MemoryChunk::FromAddress(old_start) == MemoryChunk::FromAddress(new_start)); if (!heap->incremental_marking()->IsMarking()) return; // If the mark doesn't move, we don't check the color of the object. // It doesn't matter whether the object is black, since it hasn't changed // size, so the adjustment to the live data count will be zero anyway. if (old_start == new_start) return; MarkBit new_mark_bit = ObjectMarking::MarkBitFrom(new_start); MarkBit old_mark_bit = ObjectMarking::MarkBitFrom(old_start); #ifdef DEBUG Marking::ObjectColor old_color = Marking::Color(old_mark_bit); #endif if (Marking::IsBlack(old_mark_bit)) { Marking::BlackToWhite(old_mark_bit); Marking::MarkBlack(new_mark_bit); return; } else if (Marking::IsGrey(old_mark_bit)) { Marking::GreyToWhite(old_mark_bit); heap->incremental_marking()->WhiteToGreyAndPush( HeapObject::FromAddress(new_start), new_mark_bit); heap->incremental_marking()->RestartIfNotMarking(); } #ifdef DEBUG Marking::ObjectColor new_color = Marking::Color(new_mark_bit); DCHECK(new_color == old_color); #endif } class IncrementalMarkingMarkingVisitor : public StaticMarkingVisitor<IncrementalMarkingMarkingVisitor> { public: static void Initialize() { StaticMarkingVisitor<IncrementalMarkingMarkingVisitor>::Initialize(); table_.Register(kVisitFixedArray, &VisitFixedArrayIncremental); table_.Register(kVisitNativeContext, &VisitNativeContextIncremental); } static const int kProgressBarScanningChunk = 32 * 1024; static void VisitFixedArrayIncremental(Map* map, HeapObject* object) { MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); if (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) { DCHECK(!FLAG_use_marking_progress_bar || chunk->owner()->identity() == LO_SPACE); Heap* heap = map->GetHeap(); // When using a progress bar for large fixed arrays, scan only a chunk of // the array and try to push it onto the marking deque again until it is // fully scanned. Fall back to scanning it through to the end in case this // fails because of a full deque. int object_size = FixedArray::BodyDescriptor::SizeOf(map, object); int start_offset = Max(FixedArray::BodyDescriptor::kStartOffset, chunk->progress_bar()); int end_offset = Min(object_size, start_offset + kProgressBarScanningChunk); int already_scanned_offset = start_offset; bool scan_until_end = false; do { VisitPointers(heap, object, HeapObject::RawField(object, start_offset), HeapObject::RawField(object, end_offset)); start_offset = end_offset; end_offset = Min(object_size, end_offset + kProgressBarScanningChunk); scan_until_end = heap->mark_compact_collector()->marking_deque()->IsFull(); } while (scan_until_end && start_offset < object_size); chunk->set_progress_bar(start_offset); if (start_offset < object_size) { if (Marking::IsGrey(ObjectMarking::MarkBitFrom(object))) { heap->mark_compact_collector()->marking_deque()->Unshift(object); } else { DCHECK(Marking::IsBlack(ObjectMarking::MarkBitFrom(object))); heap->mark_compact_collector()->UnshiftBlack(object); } heap->incremental_marking()->NotifyIncompleteScanOfObject( object_size - (start_offset - already_scanned_offset)); } } else { FixedArrayVisitor::Visit(map, object); } } static void VisitNativeContextIncremental(Map* map, HeapObject* object) { Context* context = Context::cast(object); // We will mark cache black with a separate pass when we finish marking. // Note that GC can happen when the context is not fully initialized, // so the cache can be undefined. Object* cache = context->get(Context::NORMALIZED_MAP_CACHE_INDEX); if (!cache->IsUndefined(map->GetIsolate())) { MarkObjectGreyDoNotEnqueue(cache); } VisitNativeContext(map, context); } INLINE(static void VisitPointer(Heap* heap, HeapObject* object, Object** p)) { Object* target = *p; if (target->IsHeapObject()) { heap->mark_compact_collector()->RecordSlot(object, p, target); MarkObject(heap, target); } } INLINE(static void VisitPointers(Heap* heap, HeapObject* object, Object** start, Object** end)) { for (Object** p = start; p < end; p++) { Object* target = *p; if (target->IsHeapObject()) { heap->mark_compact_collector()->RecordSlot(object, p, target); MarkObject(heap, target); } } } // Marks the object grey and pushes it on the marking stack. INLINE(static void MarkObject(Heap* heap, Object* obj)) { IncrementalMarking::MarkGrey(heap, HeapObject::cast(obj)); } // Marks the object black without pushing it on the marking stack. // Returns true if object needed marking and false otherwise. INLINE(static bool MarkObjectWithoutPush(Heap* heap, Object* obj)) { HeapObject* heap_object = HeapObject::cast(obj); MarkBit mark_bit = ObjectMarking::MarkBitFrom(heap_object); if (Marking::IsWhite(mark_bit)) { Marking::MarkBlack(mark_bit); MemoryChunk::IncrementLiveBytesFromGC(heap_object, heap_object->Size()); return true; } return false; } }; void IncrementalMarking::IterateBlackObject(HeapObject* object) { if (IsMarking() && Marking::IsBlack(ObjectMarking::MarkBitFrom(object))) { Page* page = Page::FromAddress(object->address()); if ((page->owner() != nullptr) && (page->owner()->identity() == LO_SPACE)) { // IterateBlackObject requires us to visit the whole object. page->ResetProgressBar(); } Map* map = object->map(); MarkGrey(heap_, map); IncrementalMarkingMarkingVisitor::IterateBody(map, object); } } class IncrementalMarkingRootMarkingVisitor : public ObjectVisitor { public: explicit IncrementalMarkingRootMarkingVisitor( IncrementalMarking* incremental_marking) : heap_(incremental_marking->heap()) {} void VisitPointer(Object** p) override { MarkObjectByPointer(p); } void VisitPointers(Object** start, Object** end) override { for (Object** p = start; p < end; p++) MarkObjectByPointer(p); } private: void MarkObjectByPointer(Object** p) { Object* obj = *p; if (!obj->IsHeapObject()) return; IncrementalMarking::MarkGrey(heap_, HeapObject::cast(obj)); } Heap* heap_; }; void IncrementalMarking::Initialize() { IncrementalMarkingMarkingVisitor::Initialize(); } void IncrementalMarking::SetOldSpacePageFlags(MemoryChunk* chunk, bool is_marking, bool is_compacting) { if (is_marking) { chunk->SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING); chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); } else { chunk->ClearFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING); chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); } } void IncrementalMarking::SetNewSpacePageFlags(MemoryChunk* chunk, bool is_marking) { chunk->SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING); if (is_marking) { chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); } else { chunk->ClearFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); } } void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace( PagedSpace* space) { for (Page* p : *space) { SetOldSpacePageFlags(p, false, false); } } void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace( NewSpace* space) { for (Page* p : *space) { SetNewSpacePageFlags(p, false); } } void IncrementalMarking::DeactivateIncrementalWriteBarrier() { DeactivateIncrementalWriteBarrierForSpace(heap_->old_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->map_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->code_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->new_space()); for (LargePage* lop : *heap_->lo_space()) { SetOldSpacePageFlags(lop, false, false); } } void IncrementalMarking::ActivateIncrementalWriteBarrier(PagedSpace* space) { for (Page* p : *space) { SetOldSpacePageFlags(p, true, is_compacting_); } } void IncrementalMarking::ActivateIncrementalWriteBarrier(NewSpace* space) { for (Page* p : *space) { SetNewSpacePageFlags(p, true); } } void IncrementalMarking::ActivateIncrementalWriteBarrier() { ActivateIncrementalWriteBarrier(heap_->old_space()); ActivateIncrementalWriteBarrier(heap_->map_space()); ActivateIncrementalWriteBarrier(heap_->code_space()); ActivateIncrementalWriteBarrier(heap_->new_space()); for (LargePage* lop : *heap_->lo_space()) { SetOldSpacePageFlags(lop, true, is_compacting_); } } bool IncrementalMarking::WasActivated() { return was_activated_; } bool IncrementalMarking::CanBeActivated() { // Only start incremental marking in a safe state: 1) when incremental // marking is turned on, 2) when we are currently not in a GC, and // 3) when we are currently not serializing or deserializing the heap. return FLAG_incremental_marking && heap_->gc_state() == Heap::NOT_IN_GC && heap_->deserialization_complete() && !heap_->isolate()->serializer_enabled(); } void IncrementalMarking::ActivateGeneratedStub(Code* stub) { DCHECK(RecordWriteStub::GetMode(stub) == RecordWriteStub::STORE_BUFFER_ONLY); if (!IsMarking()) { // Initially stub is generated in STORE_BUFFER_ONLY mode thus // we don't need to do anything if incremental marking is // not active. } else if (IsCompacting()) { RecordWriteStub::Patch(stub, RecordWriteStub::INCREMENTAL_COMPACTION); } else { RecordWriteStub::Patch(stub, RecordWriteStub::INCREMENTAL); } } static void PatchIncrementalMarkingRecordWriteStubs( Heap* heap, RecordWriteStub::Mode mode) { UnseededNumberDictionary* stubs = heap->code_stubs(); int capacity = stubs->Capacity(); Isolate* isolate = heap->isolate(); for (int i = 0; i < capacity; i++) { Object* k = stubs->KeyAt(i); if (stubs->IsKey(isolate, k)) { uint32_t key = NumberToUint32(k); if (CodeStub::MajorKeyFromKey(key) == CodeStub::RecordWrite) { Object* e = stubs->ValueAt(i); if (e->IsCode()) { RecordWriteStub::Patch(Code::cast(e), mode); } } } } } void IncrementalMarking::Start(GarbageCollectionReason gc_reason) { if (FLAG_trace_incremental_marking) { int old_generation_size_mb = static_cast<int>(heap()->PromotedSpaceSizeOfObjects() / MB); int old_generation_limit_mb = static_cast<int>(heap()->old_generation_allocation_limit() / MB); heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start (%s): old generation %dMB, limit %dMB, " "slack %dMB\n", Heap::GarbageCollectionReasonToString(gc_reason), old_generation_size_mb, old_generation_limit_mb, Max(0, old_generation_limit_mb - old_generation_size_mb)); } DCHECK(FLAG_incremental_marking); DCHECK(state_ == STOPPED); DCHECK(heap_->gc_state() == Heap::NOT_IN_GC); DCHECK(!heap_->isolate()->serializer_enabled()); Counters* counters = heap_->isolate()->counters(); counters->incremental_marking_reason()->AddSample( static_cast<int>(gc_reason)); HistogramTimerScope incremental_marking_scope( counters->gc_incremental_marking_start()); TRACE_EVENT0("v8", "V8.GCIncrementalMarkingStart"); heap_->tracer()->NotifyIncrementalMarkingStart(); start_time_ms_ = heap()->MonotonicallyIncreasingTimeInMs(); initial_old_generation_size_ = heap_->PromotedSpaceSizeOfObjects(); old_generation_allocation_counter_ = heap_->OldGenerationAllocationCounter(); bytes_allocated_ = 0; bytes_marked_ahead_of_schedule_ = 0; should_hurry_ = false; was_activated_ = true; if (!heap_->mark_compact_collector()->sweeping_in_progress()) { StartMarking(); } else { if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start sweeping.\n"); } state_ = SWEEPING; } SpaceIterator it(heap_); while (it.has_next()) { Space* space = it.next(); if (space == heap_->new_space()) { space->AddAllocationObserver(&new_generation_observer_); } else { space->AddAllocationObserver(&old_generation_observer_); } } incremental_marking_job()->Start(heap_); } void IncrementalMarking::StartMarking() { if (heap_->isolate()->serializer_enabled()) { // Black allocation currently starts when we start incremental marking, // but we cannot enable black allocation while deserializing. Hence, we // have to delay the start of incremental marking in that case. if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start delayed - serializer\n"); } return; } if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start marking\n"); } is_compacting_ = !FLAG_never_compact && heap_->mark_compact_collector()->StartCompaction(); state_ = MARKING; if (heap_->UsingEmbedderHeapTracer()) { TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_WRAPPER_PROLOGUE); heap_->embedder_heap_tracer()->TracePrologue(); } RecordWriteStub::Mode mode = is_compacting_ ? RecordWriteStub::INCREMENTAL_COMPACTION : RecordWriteStub::INCREMENTAL; PatchIncrementalMarkingRecordWriteStubs(heap_, mode); heap_->mark_compact_collector()->marking_deque()->StartUsing(); ActivateIncrementalWriteBarrier(); // Marking bits are cleared by the sweeper. #ifdef VERIFY_HEAP if (FLAG_verify_heap) { heap_->mark_compact_collector()->VerifyMarkbitsAreClean(); } #endif heap_->CompletelyClearInstanceofCache(); heap_->isolate()->compilation_cache()->MarkCompactPrologue(); // Mark strong roots grey. IncrementalMarkingRootMarkingVisitor visitor(this); heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); // Ready to start incremental marking. if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Running\n"); } } void IncrementalMarking::StartBlackAllocation() { DCHECK(FLAG_black_allocation); DCHECK(IsMarking()); black_allocation_ = true; heap()->old_space()->MarkAllocationInfoBlack(); heap()->map_space()->MarkAllocationInfoBlack(); heap()->code_space()->MarkAllocationInfoBlack(); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation started\n"); } } void IncrementalMarking::FinishBlackAllocation() { if (black_allocation_) { black_allocation_ = false; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation finished\n"); } } } void IncrementalMarking::AbortBlackAllocation() { if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation aborted\n"); } } void IncrementalMarking::MarkRoots() { DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); IncrementalMarkingRootMarkingVisitor visitor(this); heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); } void IncrementalMarking::MarkObjectGroups() { TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE_OBJECT_GROUPING); DCHECK(!heap_->UsingEmbedderHeapTracer()); DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); IncrementalMarkingRootMarkingVisitor visitor(this); heap_->mark_compact_collector()->MarkImplicitRefGroups(&MarkGrey); heap_->isolate()->global_handles()->IterateObjectGroups( &visitor, &MarkCompactCollector::IsUnmarkedHeapObjectWithHeap); heap_->isolate()->global_handles()->RemoveImplicitRefGroups(); heap_->isolate()->global_handles()->RemoveObjectGroups(); } void IncrementalMarking::ProcessWeakCells() { DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); Object* the_hole_value = heap()->the_hole_value(); Object* weak_cell_obj = heap()->encountered_weak_cells(); Object* weak_cell_head = Smi::kZero; WeakCell* prev_weak_cell_obj = NULL; while (weak_cell_obj != Smi::kZero) { WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj); // We do not insert cleared weak cells into the list, so the value // cannot be a Smi here. HeapObject* value = HeapObject::cast(weak_cell->value()); // Remove weak cells with live objects from the list, they do not need // clearing. if (MarkCompactCollector::IsMarked(value)) { // Record slot, if value is pointing to an evacuation candidate. Object** slot = HeapObject::RawField(weak_cell, WeakCell::kValueOffset); heap_->mark_compact_collector()->RecordSlot(weak_cell, slot, *slot); // Remove entry somewhere after top. if (prev_weak_cell_obj != NULL) { prev_weak_cell_obj->set_next(weak_cell->next()); } weak_cell_obj = weak_cell->next(); weak_cell->clear_next(the_hole_value); } else { if (weak_cell_head == Smi::kZero) { weak_cell_head = weak_cell; } prev_weak_cell_obj = weak_cell; weak_cell_obj = weak_cell->next(); } } // Top may have changed. heap()->set_encountered_weak_cells(weak_cell_head); } bool ShouldRetainMap(Map* map, int age) { if (age == 0) { // The map has aged. Do not retain this map. return false; } Object* constructor = map->GetConstructor(); if (!constructor->IsHeapObject() || Marking::IsWhite( ObjectMarking::MarkBitFrom(HeapObject::cast(constructor)))) { // The constructor is dead, no new objects with this map can // be created. Do not retain this map. return false; } return true; } void IncrementalMarking::RetainMaps() { // Do not retain dead maps if flag disables it or there is // - memory pressure (reduce_memory_footprint_), // - GC is requested by tests or dev-tools (abort_incremental_marking_). bool map_retaining_is_disabled = heap()->ShouldReduceMemory() || heap()->ShouldAbortIncrementalMarking() || FLAG_retain_maps_for_n_gc == 0; ArrayList* retained_maps = heap()->retained_maps(); int length = retained_maps->Length(); // The number_of_disposed_maps separates maps in the retained_maps // array that were created before and after context disposal. // We do not age and retain disposed maps to avoid memory leaks. int number_of_disposed_maps = heap()->number_of_disposed_maps_; for (int i = 0; i < length; i += 2) { DCHECK(retained_maps->Get(i)->IsWeakCell()); WeakCell* cell = WeakCell::cast(retained_maps->Get(i)); if (cell->cleared()) continue; int age = Smi::cast(retained_maps->Get(i + 1))->value(); int new_age; Map* map = Map::cast(cell->value()); MarkBit map_mark = ObjectMarking::MarkBitFrom(map); if (i >= number_of_disposed_maps && !map_retaining_is_disabled && Marking::IsWhite(map_mark)) { if (ShouldRetainMap(map, age)) { MarkGrey(heap(), map); } Object* prototype = map->prototype(); if (age > 0 && prototype->IsHeapObject() && Marking::IsWhite( ObjectMarking::MarkBitFrom(HeapObject::cast(prototype)))) { // The prototype is not marked, age the map. new_age = age - 1; } else { // The prototype and the constructor are marked, this map keeps only // transition tree alive, not JSObjects. Do not age the map. new_age = age; } } else { new_age = FLAG_retain_maps_for_n_gc; } // Compact the array and update the age. if (new_age != age) { retained_maps->Set(i + 1, Smi::FromInt(new_age)); } } } void IncrementalMarking::FinalizeIncrementally() { TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE_BODY); DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); double start = heap_->MonotonicallyIncreasingTimeInMs(); int old_marking_deque_top = heap_->mark_compact_collector()->marking_deque()->top(); // After finishing incremental marking, we try to discover all unmarked // objects to reduce the marking load in the final pause. // 1) We scan and mark the roots again to find all changes to the root set. // 2) We mark the object groups. // 3) Age and retain maps embedded in optimized code. // 4) Remove weak cell with live values from the list of weak cells, they // do not need processing during GC. MarkRoots(); if (!heap_->UsingEmbedderHeapTracer()) { MarkObjectGroups(); } if (incremental_marking_finalization_rounds_ == 0) { // Map retaining is needed for perfromance, not correctness, // so we can do it only once at the beginning of the finalization. RetainMaps(); } ProcessWeakCells(); int marking_progress = abs(old_marking_deque_top - heap_->mark_compact_collector()->marking_deque()->top()); marking_progress += static_cast<int>(heap_->wrappers_to_trace()); double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Finalize incrementally round %d, " "spent %d ms, marking progress %d.\n", static_cast<int>(delta), incremental_marking_finalization_rounds_, marking_progress); } ++incremental_marking_finalization_rounds_; if ((incremental_marking_finalization_rounds_ >= FLAG_max_incremental_marking_finalization_rounds) || (marking_progress < FLAG_min_progress_during_incremental_marking_finalization)) { finalize_marking_completed_ = true; } if (FLAG_black_allocation && !heap()->ShouldReduceMemory() && !black_allocation_) { // TODO(hpayer): Move to an earlier point as soon as we make faster marking // progress. StartBlackAllocation(); } } void IncrementalMarking::UpdateMarkingDequeAfterScavenge() { if (!IsMarking()) return; MarkingDeque* marking_deque = heap_->mark_compact_collector()->marking_deque(); int current = marking_deque->bottom(); int mask = marking_deque->mask(); int limit = marking_deque->top(); HeapObject** array = marking_deque->array(); int new_top = current; Map* filler_map = heap_->one_pointer_filler_map(); while (current != limit) { HeapObject* obj = array[current]; DCHECK(obj->IsHeapObject()); current = ((current + 1) & mask); // Only pointers to from space have to be updated. if (heap_->InFromSpace(obj)) { MapWord map_word = obj->map_word(); // There may be objects on the marking deque that do not exist anymore, // e.g. left trimmed objects or objects from the root set (frames). // If these object are dead at scavenging time, their marking deque // entries will not point to forwarding addresses. Hence, we can discard // them. if (map_word.IsForwardingAddress()) { HeapObject* dest = map_word.ToForwardingAddress(); if (Marking::IsBlack(ObjectMarking::MarkBitFrom(dest->address()))) continue; array[new_top] = dest; new_top = ((new_top + 1) & mask); DCHECK(new_top != marking_deque->bottom()); #ifdef DEBUG MarkBit mark_bit = ObjectMarking::MarkBitFrom(obj); DCHECK(Marking::IsGrey(mark_bit) || (obj->IsFiller() && Marking::IsWhite(mark_bit))); #endif } } else if (obj->map() != filler_map) { // Skip one word filler objects that appear on the // stack when we perform in place array shift. array[new_top] = obj; new_top = ((new_top + 1) & mask); DCHECK(new_top != marking_deque->bottom()); #ifdef DEBUG MarkBit mark_bit = ObjectMarking::MarkBitFrom(obj); MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); DCHECK(Marking::IsGrey(mark_bit) || (obj->IsFiller() && Marking::IsWhite(mark_bit)) || (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR) && Marking::IsBlack(mark_bit))); #endif } } marking_deque->set_top(new_top); } void IncrementalMarking::VisitObject(Map* map, HeapObject* obj, int size) { MarkGrey(heap_, map); IncrementalMarkingMarkingVisitor::IterateBody(map, obj); #if ENABLE_SLOW_DCHECKS MarkBit mark_bit = ObjectMarking::MarkBitFrom(obj); MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); SLOW_DCHECK(Marking::IsGrey(mark_bit) || (obj->IsFiller() && Marking::IsWhite(mark_bit)) || (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR) && Marking::IsBlack(mark_bit))); #endif MarkBlack(obj, size); } void IncrementalMarking::MarkGrey(Heap* heap, HeapObject* object) { MarkBit mark_bit = ObjectMarking::MarkBitFrom(object); if (Marking::IsWhite(mark_bit)) { heap->incremental_marking()->WhiteToGreyAndPush(object, mark_bit); } } void IncrementalMarking::MarkBlack(HeapObject* obj, int size) { MarkBit mark_bit = ObjectMarking::MarkBitFrom(obj); if (Marking::IsBlack(mark_bit)) return; Marking::GreyToBlack(mark_bit); MemoryChunk::IncrementLiveBytesFromGC(obj, size); } intptr_t IncrementalMarking::ProcessMarkingDeque( intptr_t bytes_to_process, ForceCompletionAction completion) { intptr_t bytes_processed = 0; MarkingDeque* marking_deque = heap_->mark_compact_collector()->marking_deque(); while (!marking_deque->IsEmpty() && (bytes_processed < bytes_to_process || completion == FORCE_COMPLETION)) { HeapObject* obj = marking_deque->Pop(); // Left trimming may result in white filler objects on the marking deque. // Ignore these objects. if (obj->IsFiller()) { DCHECK(Marking::IsImpossible(ObjectMarking::MarkBitFrom(obj)) || Marking::IsWhite(ObjectMarking::MarkBitFrom(obj))); continue; } Map* map = obj->map(); int size = obj->SizeFromMap(map); unscanned_bytes_of_large_object_ = 0; VisitObject(map, obj, size); bytes_processed += size - unscanned_bytes_of_large_object_; } return bytes_processed; } void IncrementalMarking::Hurry() { // A scavenge may have pushed new objects on the marking deque (due to black // allocation) even in COMPLETE state. This may happen if scavenges are // forced e.g. in tests. It should not happen when COMPLETE was set when // incremental marking finished and a regular GC was triggered after that // because should_hurry_ will force a full GC. if (!heap_->mark_compact_collector()->marking_deque()->IsEmpty()) { double start = 0.0; if (FLAG_trace_incremental_marking) { start = heap_->MonotonicallyIncreasingTimeInMs(); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Hurry\n"); } } // TODO(gc) hurry can mark objects it encounters black as mutator // was stopped. ProcessMarkingDeque(0, FORCE_COMPLETION); state_ = COMPLETE; if (FLAG_trace_incremental_marking) { double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Complete (hurry), spent %d ms.\n", static_cast<int>(delta)); } } } Object* context = heap_->native_contexts_list(); while (!context->IsUndefined(heap_->isolate())) { // GC can happen when the context is not fully initialized, // so the cache can be undefined. HeapObject* cache = HeapObject::cast( Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX)); if (!cache->IsUndefined(heap_->isolate())) { MarkBit mark_bit = ObjectMarking::MarkBitFrom(cache); if (Marking::IsGrey(mark_bit)) { Marking::GreyToBlack(mark_bit); MemoryChunk::IncrementLiveBytesFromGC(cache, cache->Size()); } } context = Context::cast(context)->next_context_link(); } } void IncrementalMarking::Stop() { if (IsStopped()) return; if (FLAG_trace_incremental_marking) { int old_generation_size_mb = static_cast<int>(heap()->PromotedSpaceSizeOfObjects() / MB); int old_generation_limit_mb = static_cast<int>(heap()->old_generation_allocation_limit() / MB); heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Stopping: old generation %dMB, limit %dMB, " "overshoot %dMB\n", old_generation_size_mb, old_generation_limit_mb, Max(0, old_generation_size_mb - old_generation_limit_mb)); } SpaceIterator it(heap_); while (it.has_next()) { Space* space = it.next(); if (space == heap_->new_space()) { space->RemoveAllocationObserver(&new_generation_observer_); } else { space->RemoveAllocationObserver(&old_generation_observer_); } } IncrementalMarking::set_should_hurry(false); if (IsMarking()) { PatchIncrementalMarkingRecordWriteStubs(heap_, RecordWriteStub::STORE_BUFFER_ONLY); DeactivateIncrementalWriteBarrier(); } heap_->isolate()->stack_guard()->ClearGC(); state_ = STOPPED; is_compacting_ = false; FinishBlackAllocation(); } void IncrementalMarking::Finalize() { Hurry(); Stop(); } void IncrementalMarking::FinalizeMarking(CompletionAction action) { DCHECK(!finalize_marking_completed_); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] requesting finalization of incremental " "marking.\n"); } request_type_ = FINALIZATION; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } void IncrementalMarking::MarkingComplete(CompletionAction action) { state_ = COMPLETE; // We will set the stack guard to request a GC now. This will mean the rest // of the GC gets performed as soon as possible (we can't do a GC here in a // record-write context). If a few things get allocated between now and then // that shouldn't make us do a scavenge and keep being incremental, so we set // the should-hurry flag to indicate that there can't be much work left to do. set_should_hurry(true); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Complete (normal).\n"); } request_type_ = COMPLETE_MARKING; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } void IncrementalMarking::Epilogue() { was_activated_ = false; finalize_marking_completed_ = false; incremental_marking_finalization_rounds_ = 0; } double IncrementalMarking::AdvanceIncrementalMarking( double deadline_in_ms, CompletionAction completion_action, ForceCompletionAction force_completion, StepOrigin step_origin) { DCHECK(!IsStopped()); double remaining_time_in_ms = 0.0; intptr_t step_size_in_bytes = GCIdleTimeHandler::EstimateMarkingStepSize( kStepSizeInMs, heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond()); do { Step(step_size_in_bytes, completion_action, force_completion, step_origin); remaining_time_in_ms = deadline_in_ms - heap()->MonotonicallyIncreasingTimeInMs(); } while (remaining_time_in_ms >= kStepSizeInMs && !IsComplete() && !heap()->mark_compact_collector()->marking_deque()->IsEmpty()); return remaining_time_in_ms; } void IncrementalMarking::FinalizeSweeping() { DCHECK(state_ == SWEEPING); if (heap_->mark_compact_collector()->sweeping_in_progress() && (!FLAG_concurrent_sweeping || !heap_->mark_compact_collector()->sweeper().AreSweeperTasksRunning())) { heap_->mark_compact_collector()->EnsureSweepingCompleted(); } if (!heap_->mark_compact_collector()->sweeping_in_progress()) { StartMarking(); } } size_t IncrementalMarking::StepSizeToKeepUpWithAllocations() { // Update bytes_allocated_ based on the allocation counter. size_t current_counter = heap_->OldGenerationAllocationCounter(); bytes_allocated_ += current_counter - old_generation_allocation_counter_; old_generation_allocation_counter_ = current_counter; return bytes_allocated_; } size_t IncrementalMarking::StepSizeToMakeProgress() { // We increase step size gradually based on the time passed in order to // leave marking work to standalone tasks. The ramp up duration and the // target step count are chosen based on benchmarks. const int kRampUpIntervalMs = 300; const size_t kTargetStepCount = 128; const size_t kTargetStepCountAtOOM = 16; size_t oom_slack = heap()->new_space()->Capacity() + 64 * MB; if (heap()->IsCloseToOutOfMemory(oom_slack)) { return heap()->PromotedSpaceSizeOfObjects() / kTargetStepCountAtOOM; } size_t step_size = Max(initial_old_generation_size_ / kTargetStepCount, IncrementalMarking::kAllocatedThreshold); double time_passed_ms = heap_->MonotonicallyIncreasingTimeInMs() - start_time_ms_; double factor = Min(time_passed_ms / kRampUpIntervalMs, 1.0); return static_cast<size_t>(factor * step_size); } void IncrementalMarking::AdvanceIncrementalMarkingOnAllocation() { if (heap_->gc_state() != Heap::NOT_IN_GC || !FLAG_incremental_marking || (state_ != SWEEPING && state_ != MARKING)) { return; } size_t bytes_to_process = StepSizeToKeepUpWithAllocations() + StepSizeToMakeProgress(); if (bytes_to_process >= IncrementalMarking::kAllocatedThreshold) { // The first step after Scavenge will see many allocated bytes. // Cap the step size to distribute the marking work more uniformly. size_t max_step_size = GCIdleTimeHandler::EstimateMarkingStepSize( kMaxStepSizeInMs, heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond()); bytes_to_process = Min(bytes_to_process, max_step_size); size_t bytes_processed = 0; if (bytes_marked_ahead_of_schedule_ >= bytes_to_process) { // Steps performed in tasks have put us ahead of schedule. // We skip processing of marking dequeue here and thus // shift marking time from inside V8 to standalone tasks. bytes_marked_ahead_of_schedule_ -= bytes_to_process; bytes_processed = bytes_to_process; } else { bytes_processed = Step(bytes_to_process, GC_VIA_STACK_GUARD, FORCE_COMPLETION, StepOrigin::kV8); } bytes_allocated_ -= Min(bytes_allocated_, bytes_processed); } } size_t IncrementalMarking::Step(size_t bytes_to_process, CompletionAction action, ForceCompletionAction completion, StepOrigin step_origin) { HistogramTimerScope incremental_marking_scope( heap_->isolate()->counters()->gc_incremental_marking()); TRACE_EVENT0("v8", "V8.GCIncrementalMarking"); TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL); double start = heap_->MonotonicallyIncreasingTimeInMs(); if (state_ == SWEEPING) { TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL_SWEEPING); FinalizeSweeping(); } size_t bytes_processed = 0; if (state_ == MARKING) { const bool incremental_wrapper_tracing = FLAG_incremental_marking_wrappers && heap_->UsingEmbedderHeapTracer(); const bool process_wrappers = incremental_wrapper_tracing && (heap_->RequiresImmediateWrapperProcessing() || heap_->mark_compact_collector()->marking_deque()->IsEmpty()); bool wrapper_work_left = incremental_wrapper_tracing; if (!process_wrappers) { bytes_processed = ProcessMarkingDeque(bytes_to_process); if (step_origin == StepOrigin::kTask) { bytes_marked_ahead_of_schedule_ += bytes_processed; } } else { const double wrapper_deadline = heap_->MonotonicallyIncreasingTimeInMs() + kStepSizeInMs; TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_WRAPPER_TRACING); heap_->RegisterWrappersWithEmbedderHeapTracer(); wrapper_work_left = heap_->embedder_heap_tracer()->AdvanceTracing( wrapper_deadline, EmbedderHeapTracer::AdvanceTracingActions( EmbedderHeapTracer::ForceCompletionAction:: DO_NOT_FORCE_COMPLETION)); } if (heap_->mark_compact_collector()->marking_deque()->IsEmpty() && !wrapper_work_left) { if (completion == FORCE_COMPLETION || IsIdleMarkingDelayCounterLimitReached()) { if (!finalize_marking_completed_) { FinalizeMarking(action); } else { MarkingComplete(action); } } else { IncrementIdleMarkingDelayCounter(); } } } double end = heap_->MonotonicallyIncreasingTimeInMs(); double duration = (end - start); // Note that we report zero bytes here when sweeping was in progress or // when we just started incremental marking. In these cases we did not // process the marking deque. heap_->tracer()->AddIncrementalMarkingStep(duration, bytes_processed); if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Step %s %zu bytes (%zu) in %.1f\n", step_origin == StepOrigin::kV8 ? "in v8" : "in task", bytes_processed, bytes_to_process, duration); } return bytes_processed; } bool IncrementalMarking::IsIdleMarkingDelayCounterLimitReached() { return idle_marking_delay_counter_ > kMaxIdleMarkingDelayCounter; } void IncrementalMarking::IncrementIdleMarkingDelayCounter() { idle_marking_delay_counter_++; } void IncrementalMarking::ClearIdleMarkingDelayCounter() { idle_marking_delay_counter_ = 0; } } // namespace internal } // namespace v8