// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/log.h" #include <cstdarg> #include <memory> #include <sstream> #include "src/bailout-reason.h" #include "src/base/platform/platform.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/counters.h" #include "src/deoptimizer.h" #include "src/global-handles.h" #include "src/interpreter/bytecodes.h" #include "src/interpreter/interpreter.h" #include "src/libsampler/sampler.h" #include "src/log-inl.h" #include "src/log-utils.h" #include "src/macro-assembler.h" #include "src/perf-jit.h" #include "src/profiler/profiler-listener.h" #include "src/profiler/tick-sample.h" #include "src/runtime-profiler.h" #include "src/source-position-table.h" #include "src/string-stream.h" #include "src/tracing/tracing-category-observer.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { #define DECLARE_EVENT(ignore1, name) name, static const char* kLogEventsNames[CodeEventListener::NUMBER_OF_LOG_EVENTS] = { LOG_EVENTS_AND_TAGS_LIST(DECLARE_EVENT)}; #undef DECLARE_EVENT static const char* ComputeMarker(SharedFunctionInfo* shared, AbstractCode* code) { switch (code->kind()) { case AbstractCode::FUNCTION: case AbstractCode::INTERPRETED_FUNCTION: return shared->optimization_disabled() ? "" : "~"; case AbstractCode::OPTIMIZED_FUNCTION: return "*"; default: return ""; } } class CodeEventLogger::NameBuffer { public: NameBuffer() { Reset(); } void Reset() { utf8_pos_ = 0; } void Init(CodeEventListener::LogEventsAndTags tag) { Reset(); AppendBytes(kLogEventsNames[tag]); AppendByte(':'); } void AppendName(Name* name) { if (name->IsString()) { AppendString(String::cast(name)); } else { Symbol* symbol = Symbol::cast(name); AppendBytes("symbol("); if (!symbol->name()->IsUndefined(symbol->GetIsolate())) { AppendBytes("\""); AppendString(String::cast(symbol->name())); AppendBytes("\" "); } AppendBytes("hash "); AppendHex(symbol->Hash()); AppendByte(')'); } } void AppendString(String* str) { if (str == NULL) return; int uc16_length = Min(str->length(), kUtf16BufferSize); String::WriteToFlat(str, utf16_buffer, 0, uc16_length); int previous = unibrow::Utf16::kNoPreviousCharacter; for (int i = 0; i < uc16_length && utf8_pos_ < kUtf8BufferSize; ++i) { uc16 c = utf16_buffer[i]; if (c <= unibrow::Utf8::kMaxOneByteChar) { utf8_buffer_[utf8_pos_++] = static_cast<char>(c); } else { int char_length = unibrow::Utf8::Length(c, previous); if (utf8_pos_ + char_length > kUtf8BufferSize) break; unibrow::Utf8::Encode(utf8_buffer_ + utf8_pos_, c, previous); utf8_pos_ += char_length; } previous = c; } } void AppendBytes(const char* bytes, int size) { size = Min(size, kUtf8BufferSize - utf8_pos_); MemCopy(utf8_buffer_ + utf8_pos_, bytes, size); utf8_pos_ += size; } void AppendBytes(const char* bytes) { AppendBytes(bytes, StrLength(bytes)); } void AppendByte(char c) { if (utf8_pos_ >= kUtf8BufferSize) return; utf8_buffer_[utf8_pos_++] = c; } void AppendInt(int n) { int space = kUtf8BufferSize - utf8_pos_; if (space <= 0) return; Vector<char> buffer(utf8_buffer_ + utf8_pos_, space); int size = SNPrintF(buffer, "%d", n); if (size > 0 && utf8_pos_ + size <= kUtf8BufferSize) { utf8_pos_ += size; } } void AppendHex(uint32_t n) { int space = kUtf8BufferSize - utf8_pos_; if (space <= 0) return; Vector<char> buffer(utf8_buffer_ + utf8_pos_, space); int size = SNPrintF(buffer, "%x", n); if (size > 0 && utf8_pos_ + size <= kUtf8BufferSize) { utf8_pos_ += size; } } const char* get() { return utf8_buffer_; } int size() const { return utf8_pos_; } private: static const int kUtf8BufferSize = 512; static const int kUtf16BufferSize = kUtf8BufferSize; int utf8_pos_; char utf8_buffer_[kUtf8BufferSize]; uc16 utf16_buffer[kUtf16BufferSize]; }; CodeEventLogger::CodeEventLogger() : name_buffer_(new NameBuffer) { } CodeEventLogger::~CodeEventLogger() { delete name_buffer_; } void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, const char* comment) { name_buffer_->Init(tag); name_buffer_->AppendBytes(comment); LogRecordedBuffer(code, NULL, name_buffer_->get(), name_buffer_->size()); } void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, Name* name) { name_buffer_->Init(tag); name_buffer_->AppendName(name); LogRecordedBuffer(code, NULL, name_buffer_->get(), name_buffer_->size()); } void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, SharedFunctionInfo* shared, Name* name) { name_buffer_->Init(tag); name_buffer_->AppendBytes(ComputeMarker(shared, code)); name_buffer_->AppendName(name); LogRecordedBuffer(code, shared, name_buffer_->get(), name_buffer_->size()); } void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, SharedFunctionInfo* shared, Name* source, int line, int column) { name_buffer_->Init(tag); name_buffer_->AppendBytes(ComputeMarker(shared, code)); name_buffer_->AppendString(shared->DebugName()); name_buffer_->AppendByte(' '); if (source->IsString()) { name_buffer_->AppendString(String::cast(source)); } else { name_buffer_->AppendBytes("symbol(hash "); name_buffer_->AppendHex(Name::cast(source)->Hash()); name_buffer_->AppendByte(')'); } name_buffer_->AppendByte(':'); name_buffer_->AppendInt(line); LogRecordedBuffer(code, shared, name_buffer_->get(), name_buffer_->size()); } void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, int args_count) { name_buffer_->Init(tag); name_buffer_->AppendInt(args_count); LogRecordedBuffer(code, NULL, name_buffer_->get(), name_buffer_->size()); } void CodeEventLogger::RegExpCodeCreateEvent(AbstractCode* code, String* source) { name_buffer_->Init(CodeEventListener::REG_EXP_TAG); name_buffer_->AppendString(source); LogRecordedBuffer(code, NULL, name_buffer_->get(), name_buffer_->size()); } // Linux perf tool logging support class PerfBasicLogger : public CodeEventLogger { public: PerfBasicLogger(); ~PerfBasicLogger() override; void CodeMoveEvent(AbstractCode* from, Address to) override {} void CodeDisableOptEvent(AbstractCode* code, SharedFunctionInfo* shared) override {} private: void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo* shared, const char* name, int length) override; // Extension added to V8 log file name to get the low-level log name. static const char kFilenameFormatString[]; static const int kFilenameBufferPadding; FILE* perf_output_handle_; }; const char PerfBasicLogger::kFilenameFormatString[] = "/tmp/perf-%d.map"; // Extra space for the PID in the filename const int PerfBasicLogger::kFilenameBufferPadding = 16; PerfBasicLogger::PerfBasicLogger() : perf_output_handle_(NULL) { // Open the perf JIT dump file. int bufferSize = sizeof(kFilenameFormatString) + kFilenameBufferPadding; ScopedVector<char> perf_dump_name(bufferSize); int size = SNPrintF( perf_dump_name, kFilenameFormatString, base::OS::GetCurrentProcessId()); CHECK_NE(size, -1); perf_output_handle_ = base::OS::FOpen(perf_dump_name.start(), base::OS::LogFileOpenMode); CHECK_NOT_NULL(perf_output_handle_); setvbuf(perf_output_handle_, NULL, _IOLBF, 0); } PerfBasicLogger::~PerfBasicLogger() { fclose(perf_output_handle_); perf_output_handle_ = NULL; } void PerfBasicLogger::LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*, const char* name, int length) { if (FLAG_perf_basic_prof_only_functions && (code->kind() != AbstractCode::FUNCTION && code->kind() != AbstractCode::INTERPRETED_FUNCTION && code->kind() != AbstractCode::OPTIMIZED_FUNCTION)) { return; } // Linux perf expects hex literals without a leading 0x, while some // implementations of printf might prepend one when using the %p format // for pointers, leading to wrongly formatted JIT symbols maps. // // Instead, we use V8PRIxPTR format string and cast pointer to uintpr_t, // so that we have control over the exact output format. base::OS::FPrint(perf_output_handle_, "%" V8PRIxPTR " %x %.*s\n", reinterpret_cast<uintptr_t>(code->instruction_start()), code->instruction_size(), length, name); } // Low-level logging support. #define LL_LOG(Call) if (ll_logger_) ll_logger_->Call; class LowLevelLogger : public CodeEventLogger { public: explicit LowLevelLogger(const char* file_name); ~LowLevelLogger() override; void CodeMoveEvent(AbstractCode* from, Address to) override; void CodeDisableOptEvent(AbstractCode* code, SharedFunctionInfo* shared) override {} void SnapshotPositionEvent(HeapObject* obj, int pos); void CodeMovingGCEvent() override; private: void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo* shared, const char* name, int length) override; // Low-level profiling event structures. struct CodeCreateStruct { static const char kTag = 'C'; int32_t name_size; Address code_address; int32_t code_size; }; struct CodeMoveStruct { static const char kTag = 'M'; Address from_address; Address to_address; }; static const char kCodeMovingGCTag = 'G'; // Extension added to V8 log file name to get the low-level log name. static const char kLogExt[]; void LogCodeInfo(); void LogWriteBytes(const char* bytes, int size); template <typename T> void LogWriteStruct(const T& s) { char tag = T::kTag; LogWriteBytes(reinterpret_cast<const char*>(&tag), sizeof(tag)); LogWriteBytes(reinterpret_cast<const char*>(&s), sizeof(s)); } FILE* ll_output_handle_; }; const char LowLevelLogger::kLogExt[] = ".ll"; LowLevelLogger::LowLevelLogger(const char* name) : ll_output_handle_(NULL) { // Open the low-level log file. size_t len = strlen(name); ScopedVector<char> ll_name(static_cast<int>(len + sizeof(kLogExt))); MemCopy(ll_name.start(), name, len); MemCopy(ll_name.start() + len, kLogExt, sizeof(kLogExt)); ll_output_handle_ = base::OS::FOpen(ll_name.start(), base::OS::LogFileOpenMode); setvbuf(ll_output_handle_, NULL, _IOLBF, 0); LogCodeInfo(); } LowLevelLogger::~LowLevelLogger() { fclose(ll_output_handle_); ll_output_handle_ = NULL; } void LowLevelLogger::LogCodeInfo() { #if V8_TARGET_ARCH_IA32 const char arch[] = "ia32"; #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT const char arch[] = "x64"; #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT const char arch[] = "x32"; #elif V8_TARGET_ARCH_ARM const char arch[] = "arm"; #elif V8_TARGET_ARCH_PPC const char arch[] = "ppc"; #elif V8_TARGET_ARCH_MIPS const char arch[] = "mips"; #elif V8_TARGET_ARCH_X87 const char arch[] = "x87"; #elif V8_TARGET_ARCH_ARM64 const char arch[] = "arm64"; #elif V8_TARGET_ARCH_S390 const char arch[] = "s390"; #else const char arch[] = "unknown"; #endif LogWriteBytes(arch, sizeof(arch)); } void LowLevelLogger::LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*, const char* name, int length) { CodeCreateStruct event; event.name_size = length; event.code_address = code->instruction_start(); event.code_size = code->instruction_size(); LogWriteStruct(event); LogWriteBytes(name, length); LogWriteBytes( reinterpret_cast<const char*>(code->instruction_start()), code->instruction_size()); } void LowLevelLogger::CodeMoveEvent(AbstractCode* from, Address to) { CodeMoveStruct event; event.from_address = from->instruction_start(); size_t header_size = from->instruction_start() - from->address(); event.to_address = to + header_size; LogWriteStruct(event); } void LowLevelLogger::LogWriteBytes(const char* bytes, int size) { size_t rv = fwrite(bytes, 1, size, ll_output_handle_); DCHECK(static_cast<size_t>(size) == rv); USE(rv); } void LowLevelLogger::CodeMovingGCEvent() { const char tag = kCodeMovingGCTag; LogWriteBytes(&tag, sizeof(tag)); } class JitLogger : public CodeEventLogger { public: explicit JitLogger(JitCodeEventHandler code_event_handler); void CodeMoveEvent(AbstractCode* from, Address to) override; void CodeDisableOptEvent(AbstractCode* code, SharedFunctionInfo* shared) override {} void AddCodeLinePosInfoEvent(void* jit_handler_data, int pc_offset, int position, JitCodeEvent::PositionType position_type); void* StartCodePosInfoEvent(); void EndCodePosInfoEvent(AbstractCode* code, void* jit_handler_data); private: void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo* shared, const char* name, int length) override; JitCodeEventHandler code_event_handler_; base::Mutex logger_mutex_; }; JitLogger::JitLogger(JitCodeEventHandler code_event_handler) : code_event_handler_(code_event_handler) { } void JitLogger::LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo* shared, const char* name, int length) { JitCodeEvent event; memset(&event, 0, sizeof(event)); event.type = JitCodeEvent::CODE_ADDED; event.code_start = code->instruction_start(); event.code_len = code->instruction_size(); Handle<SharedFunctionInfo> shared_function_handle; if (shared && shared->script()->IsScript()) { shared_function_handle = Handle<SharedFunctionInfo>(shared); } event.script = ToApiHandle<v8::UnboundScript>(shared_function_handle); event.name.str = name; event.name.len = length; code_event_handler_(&event); } void JitLogger::CodeMoveEvent(AbstractCode* from, Address to) { base::LockGuard<base::Mutex> guard(&logger_mutex_); JitCodeEvent event; event.type = JitCodeEvent::CODE_MOVED; event.code_start = from->instruction_start(); event.code_len = from->instruction_size(); // Calculate the header size. const size_t header_size = from->instruction_start() - from->address(); // Calculate the new start address of the instructions. event.new_code_start = to + header_size; code_event_handler_(&event); } void JitLogger::AddCodeLinePosInfoEvent( void* jit_handler_data, int pc_offset, int position, JitCodeEvent::PositionType position_type) { JitCodeEvent event; memset(&event, 0, sizeof(event)); event.type = JitCodeEvent::CODE_ADD_LINE_POS_INFO; event.user_data = jit_handler_data; event.line_info.offset = pc_offset; event.line_info.pos = position; event.line_info.position_type = position_type; code_event_handler_(&event); } void* JitLogger::StartCodePosInfoEvent() { JitCodeEvent event; memset(&event, 0, sizeof(event)); event.type = JitCodeEvent::CODE_START_LINE_INFO_RECORDING; code_event_handler_(&event); return event.user_data; } void JitLogger::EndCodePosInfoEvent(AbstractCode* code, void* jit_handler_data) { JitCodeEvent event; memset(&event, 0, sizeof(event)); event.type = JitCodeEvent::CODE_END_LINE_INFO_RECORDING; event.code_start = code->instruction_start(); event.user_data = jit_handler_data; code_event_handler_(&event); } // TODO(lpy): Keeping sampling thread inside V8 is a workaround currently, // the reason is to reduce code duplication during migration to sampler library, // sampling thread, as well as the sampler, will be moved to D8 eventually. class SamplingThread : public base::Thread { public: static const int kSamplingThreadStackSize = 64 * KB; SamplingThread(sampler::Sampler* sampler, int interval) : base::Thread(base::Thread::Options("SamplingThread", kSamplingThreadStackSize)), sampler_(sampler), interval_(interval) {} void Run() override { while (sampler_->IsProfiling()) { sampler_->DoSample(); base::OS::Sleep(base::TimeDelta::FromMilliseconds(interval_)); } } private: sampler::Sampler* sampler_; const int interval_; }; // The Profiler samples pc and sp values for the main thread. // Each sample is appended to a circular buffer. // An independent thread removes data and writes it to the log. // This design minimizes the time spent in the sampler. // class Profiler: public base::Thread { public: explicit Profiler(Isolate* isolate); void Engage(); void Disengage(); // Inserts collected profiling data into buffer. void Insert(v8::TickSample* sample) { if (paused_) return; if (Succ(head_) == static_cast<int>(base::NoBarrier_Load(&tail_))) { overflow_ = true; } else { buffer_[head_] = *sample; head_ = Succ(head_); buffer_semaphore_.Signal(); // Tell we have an element. } } virtual void Run(); // Pause and Resume TickSample data collection. void pause() { paused_ = true; } void resume() { paused_ = false; } private: // Waits for a signal and removes profiling data. bool Remove(v8::TickSample* sample) { buffer_semaphore_.Wait(); // Wait for an element. *sample = buffer_[base::NoBarrier_Load(&tail_)]; bool result = overflow_; base::NoBarrier_Store(&tail_, static_cast<base::Atomic32>( Succ(base::NoBarrier_Load(&tail_)))); overflow_ = false; return result; } // Returns the next index in the cyclic buffer. int Succ(int index) { return (index + 1) % kBufferSize; } Isolate* isolate_; // Cyclic buffer for communicating profiling samples // between the signal handler and the worker thread. static const int kBufferSize = 128; v8::TickSample buffer_[kBufferSize]; // Buffer storage. int head_; // Index to the buffer head. base::Atomic32 tail_; // Index to the buffer tail. bool overflow_; // Tell whether a buffer overflow has occurred. // Sempahore used for buffer synchronization. base::Semaphore buffer_semaphore_; // Tells whether profiler is engaged, that is, processing thread is stated. bool engaged_; // Tells whether worker thread should continue running. base::Atomic32 running_; // Tells whether we are currently recording tick samples. bool paused_; }; // // Ticker used to provide ticks to the profiler and the sliding state // window. // class Ticker: public sampler::Sampler { public: Ticker(Isolate* isolate, int interval) : sampler::Sampler(reinterpret_cast<v8::Isolate*>(isolate)), profiler_(nullptr), sampling_thread_(new SamplingThread(this, interval)) {} ~Ticker() { if (IsActive()) Stop(); delete sampling_thread_; } void SetProfiler(Profiler* profiler) { DCHECK(profiler_ == nullptr); profiler_ = profiler; IncreaseProfilingDepth(); if (!IsActive()) Start(); sampling_thread_->StartSynchronously(); } void ClearProfiler() { profiler_ = nullptr; if (IsActive()) Stop(); DecreaseProfilingDepth(); sampling_thread_->Join(); } void SampleStack(const v8::RegisterState& state) override { if (!profiler_) return; Isolate* isolate = reinterpret_cast<Isolate*>(this->isolate()); TickSample sample; sample.Init(isolate, state, TickSample::kIncludeCEntryFrame, true); profiler_->Insert(&sample); } private: Profiler* profiler_; SamplingThread* sampling_thread_; }; // // Profiler implementation. // Profiler::Profiler(Isolate* isolate) : base::Thread(Options("v8:Profiler")), isolate_(isolate), head_(0), overflow_(false), buffer_semaphore_(0), engaged_(false), paused_(false) { base::NoBarrier_Store(&tail_, 0); base::NoBarrier_Store(&running_, 0); } void Profiler::Engage() { if (engaged_) return; engaged_ = true; std::vector<base::OS::SharedLibraryAddress> addresses = base::OS::GetSharedLibraryAddresses(); for (size_t i = 0; i < addresses.size(); ++i) { LOG(isolate_, SharedLibraryEvent(addresses[i].library_path, addresses[i].start, addresses[i].end, addresses[i].aslr_slide)); } // Start thread processing the profiler buffer. base::NoBarrier_Store(&running_, 1); Start(); // Register to get ticks. Logger* logger = isolate_->logger(); logger->ticker_->SetProfiler(this); logger->ProfilerBeginEvent(); } void Profiler::Disengage() { if (!engaged_) return; // Stop receiving ticks. isolate_->logger()->ticker_->ClearProfiler(); // Terminate the worker thread by setting running_ to false, // inserting a fake element in the queue and then wait for // the thread to terminate. base::NoBarrier_Store(&running_, 0); v8::TickSample sample; // Reset 'paused_' flag, otherwise semaphore may not be signalled. resume(); Insert(&sample); Join(); LOG(isolate_, UncheckedStringEvent("profiler", "end")); } void Profiler::Run() { v8::TickSample sample; bool overflow = Remove(&sample); while (base::NoBarrier_Load(&running_)) { LOG(isolate_, TickEvent(&sample, overflow)); overflow = Remove(&sample); } } // // Logger class implementation. // Logger::Logger(Isolate* isolate) : isolate_(isolate), ticker_(NULL), profiler_(NULL), log_events_(NULL), is_logging_(false), log_(new Log(this)), perf_basic_logger_(NULL), perf_jit_logger_(NULL), ll_logger_(NULL), jit_logger_(NULL), listeners_(5), is_initialized_(false) {} Logger::~Logger() { delete log_; } void Logger::addCodeEventListener(CodeEventListener* listener) { bool result = isolate_->code_event_dispatcher()->AddListener(listener); USE(result); DCHECK(result); } void Logger::removeCodeEventListener(CodeEventListener* listener) { isolate_->code_event_dispatcher()->RemoveListener(listener); } void Logger::ProfilerBeginEvent() { if (!log_->IsEnabled()) return; Log::MessageBuilder msg(log_); msg.Append("profiler,\"begin\",%d", kSamplingIntervalMs); msg.WriteToLogFile(); } void Logger::StringEvent(const char* name, const char* value) { if (FLAG_log) UncheckedStringEvent(name, value); } void Logger::UncheckedStringEvent(const char* name, const char* value) { if (!log_->IsEnabled()) return; Log::MessageBuilder msg(log_); msg.Append("%s,\"%s\"", name, value); msg.WriteToLogFile(); } void Logger::IntEvent(const char* name, int value) { if (FLAG_log) UncheckedIntEvent(name, value); } void Logger::IntPtrTEvent(const char* name, intptr_t value) { if (FLAG_log) UncheckedIntPtrTEvent(name, value); } void Logger::UncheckedIntEvent(const char* name, int value) { if (!log_->IsEnabled()) return; Log::MessageBuilder msg(log_); msg.Append("%s,%d", name, value); msg.WriteToLogFile(); } void Logger::UncheckedIntPtrTEvent(const char* name, intptr_t value) { if (!log_->IsEnabled()) return; Log::MessageBuilder msg(log_); msg.Append("%s,%" V8PRIdPTR, name, value); msg.WriteToLogFile(); } void Logger::HandleEvent(const char* name, Object** location) { if (!log_->IsEnabled() || !FLAG_log_handles) return; Log::MessageBuilder msg(log_); msg.Append("%s,%p", name, static_cast<void*>(location)); msg.WriteToLogFile(); } // ApiEvent is private so all the calls come from the Logger class. It is the // caller's responsibility to ensure that log is enabled and that // FLAG_log_api is true. void Logger::ApiEvent(const char* format, ...) { DCHECK(log_->IsEnabled() && FLAG_log_api); Log::MessageBuilder msg(log_); va_list ap; va_start(ap, format); msg.AppendVA(format, ap); va_end(ap); msg.WriteToLogFile(); } void Logger::ApiSecurityCheck() { if (!log_->IsEnabled() || !FLAG_log_api) return; ApiEvent("api,check-security"); } void Logger::SharedLibraryEvent(const std::string& library_path, uintptr_t start, uintptr_t end, intptr_t aslr_slide) { if (!log_->IsEnabled() || !FLAG_prof_cpp) return; Log::MessageBuilder msg(log_); msg.Append("shared-library,\"%s\",0x%08" V8PRIxPTR ",0x%08" V8PRIxPTR ",%" V8PRIdPTR, library_path.c_str(), start, end, aslr_slide); msg.WriteToLogFile(); } void Logger::CodeDeoptEvent(Code* code, Address pc, int fp_to_sp_delta) { if (!log_->IsEnabled() || !FLAG_log_internal_timer_events) return; Log::MessageBuilder msg(log_); int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds()); msg.Append("code-deopt,%d,%d", since_epoch, code->CodeSize()); msg.WriteToLogFile(); } void Logger::CurrentTimeEvent() { if (!log_->IsEnabled()) return; DCHECK(FLAG_log_timer_events || FLAG_prof_cpp); Log::MessageBuilder msg(log_); int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds()); msg.Append("current-time,%d", since_epoch); msg.WriteToLogFile(); } void Logger::TimerEvent(Logger::StartEnd se, const char* name) { if (!log_->IsEnabled()) return; DCHECK(FLAG_log_internal_timer_events); Log::MessageBuilder msg(log_); int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds()); const char* format = (se == START) ? "timer-event-start,\"%s\",%ld" : "timer-event-end,\"%s\",%ld"; msg.Append(format, name, since_epoch); msg.WriteToLogFile(); } void Logger::EnterExternal(Isolate* isolate) { LOG(isolate, TimerEvent(START, TimerEventExternal::name())); DCHECK(isolate->current_vm_state() == JS); isolate->set_current_vm_state(EXTERNAL); } void Logger::LeaveExternal(Isolate* isolate) { LOG(isolate, TimerEvent(END, TimerEventExternal::name())); DCHECK(isolate->current_vm_state() == EXTERNAL); isolate->set_current_vm_state(JS); } // Instantiate template methods. #define V(TimerName, expose) \ template void TimerEventScope<TimerEvent##TimerName>::LogTimerEvent( \ Logger::StartEnd se); TIMER_EVENTS_LIST(V) #undef V void Logger::ApiNamedPropertyAccess(const char* tag, JSObject* holder, Object* name) { DCHECK(name->IsName()); if (!log_->IsEnabled() || !FLAG_log_api) return; String* class_name_obj = holder->class_name(); std::unique_ptr<char[]> class_name = class_name_obj->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); if (name->IsString()) { std::unique_ptr<char[]> property_name = String::cast(name)->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); ApiEvent("api,%s,\"%s\",\"%s\"", tag, class_name.get(), property_name.get()); } else { Symbol* symbol = Symbol::cast(name); uint32_t hash = symbol->Hash(); if (symbol->name()->IsUndefined(symbol->GetIsolate())) { ApiEvent("api,%s,\"%s\",symbol(hash %x)", tag, class_name.get(), hash); } else { std::unique_ptr<char[]> str = String::cast(symbol->name()) ->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); ApiEvent("api,%s,\"%s\",symbol(\"%s\" hash %x)", tag, class_name.get(), str.get(), hash); } } } void Logger::ApiIndexedPropertyAccess(const char* tag, JSObject* holder, uint32_t index) { if (!log_->IsEnabled() || !FLAG_log_api) return; String* class_name_obj = holder->class_name(); std::unique_ptr<char[]> class_name = class_name_obj->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); ApiEvent("api,%s,\"%s\",%u", tag, class_name.get(), index); } void Logger::ApiObjectAccess(const char* tag, JSObject* object) { if (!log_->IsEnabled() || !FLAG_log_api) return; String* class_name_obj = object->class_name(); std::unique_ptr<char[]> class_name = class_name_obj->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); ApiEvent("api,%s,\"%s\"", tag, class_name.get()); } void Logger::ApiEntryCall(const char* name) { if (!log_->IsEnabled() || !FLAG_log_api) return; ApiEvent("api,%s", name); } void Logger::NewEvent(const char* name, void* object, size_t size) { if (!log_->IsEnabled() || !FLAG_log) return; Log::MessageBuilder msg(log_); msg.Append("new,%s,%p,%u", name, object, static_cast<unsigned int>(size)); msg.WriteToLogFile(); } void Logger::DeleteEvent(const char* name, void* object) { if (!log_->IsEnabled() || !FLAG_log) return; Log::MessageBuilder msg(log_); msg.Append("delete,%s,%p", name, object); msg.WriteToLogFile(); } void Logger::CallbackEventInternal(const char* prefix, Name* name, Address entry_point) { if (!FLAG_log_code || !log_->IsEnabled()) return; Log::MessageBuilder msg(log_); msg.Append("%s,%s,-2,", kLogEventsNames[CodeEventListener::CODE_CREATION_EVENT], kLogEventsNames[CodeEventListener::CALLBACK_TAG]); msg.AppendAddress(entry_point); if (name->IsString()) { std::unique_ptr<char[]> str = String::cast(name)->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); msg.Append(",1,\"%s%s\"", prefix, str.get()); } else { Symbol* symbol = Symbol::cast(name); if (symbol->name()->IsUndefined(symbol->GetIsolate())) { msg.Append(",1,symbol(hash %x)", symbol->Hash()); } else { std::unique_ptr<char[]> str = String::cast(symbol->name()) ->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); msg.Append(",1,symbol(\"%s%s\" hash %x)", prefix, str.get(), symbol->Hash()); } } msg.WriteToLogFile(); } void Logger::CallbackEvent(Name* name, Address entry_point) { CallbackEventInternal("", name, entry_point); } void Logger::GetterCallbackEvent(Name* name, Address entry_point) { CallbackEventInternal("get ", name, entry_point); } void Logger::SetterCallbackEvent(Name* name, Address entry_point) { CallbackEventInternal("set ", name, entry_point); } static void AppendCodeCreateHeader(Log::MessageBuilder* msg, CodeEventListener::LogEventsAndTags tag, AbstractCode* code) { DCHECK(msg); msg->Append("%s,%s,%d,", kLogEventsNames[CodeEventListener::CODE_CREATION_EVENT], kLogEventsNames[tag], code->kind()); msg->AppendAddress(code->address()); msg->Append(",%d,", code->ExecutableSize()); } void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, const char* comment) { if (!is_logging_code_events()) return; if (!FLAG_log_code || !log_->IsEnabled()) return; Log::MessageBuilder msg(log_); AppendCodeCreateHeader(&msg, tag, code); msg.AppendDoubleQuotedString(comment); msg.WriteToLogFile(); } void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, Name* name) { if (!is_logging_code_events()) return; if (!FLAG_log_code || !log_->IsEnabled()) return; Log::MessageBuilder msg(log_); AppendCodeCreateHeader(&msg, tag, code); if (name->IsString()) { msg.Append('"'); msg.AppendDetailed(String::cast(name), false); msg.Append('"'); } else { msg.AppendSymbolName(Symbol::cast(name)); } msg.WriteToLogFile(); } void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, SharedFunctionInfo* shared, Name* name) { if (!is_logging_code_events()) return; if (!FLAG_log_code || !log_->IsEnabled()) return; if (code == AbstractCode::cast( isolate_->builtins()->builtin(Builtins::kCompileLazy))) { return; } Log::MessageBuilder msg(log_); AppendCodeCreateHeader(&msg, tag, code); if (name->IsString()) { std::unique_ptr<char[]> str = String::cast(name)->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); msg.Append("\"%s\"", str.get()); } else { msg.AppendSymbolName(Symbol::cast(name)); } msg.Append(','); msg.AppendAddress(shared->address()); msg.Append(",%s", ComputeMarker(shared, code)); msg.WriteToLogFile(); } // Although, it is possible to extract source and line from // the SharedFunctionInfo object, we left it to caller // to leave logging functions free from heap allocations. void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, SharedFunctionInfo* shared, Name* source, int line, int column) { if (!is_logging_code_events()) return; if (!FLAG_log_code || !log_->IsEnabled()) return; Log::MessageBuilder msg(log_); AppendCodeCreateHeader(&msg, tag, code); std::unique_ptr<char[]> name = shared->DebugName()->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); msg.Append("\"%s ", name.get()); if (source->IsString()) { std::unique_ptr<char[]> sourcestr = String::cast(source)->ToCString( DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); msg.Append("%s", sourcestr.get()); } else { msg.AppendSymbolName(Symbol::cast(source)); } msg.Append(":%d:%d\",", line, column); msg.AppendAddress(shared->address()); msg.Append(",%s", ComputeMarker(shared, code)); msg.WriteToLogFile(); } void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag, AbstractCode* code, int args_count) { if (!is_logging_code_events()) return; if (!FLAG_log_code || !log_->IsEnabled()) return; Log::MessageBuilder msg(log_); AppendCodeCreateHeader(&msg, tag, code); msg.Append("\"args_count: %d\"", args_count); msg.WriteToLogFile(); } void Logger::CodeDisableOptEvent(AbstractCode* code, SharedFunctionInfo* shared) { if (!is_logging_code_events()) return; if (!FLAG_log_code || !log_->IsEnabled()) return; Log::MessageBuilder msg(log_); msg.Append("%s,", kLogEventsNames[CodeEventListener::CODE_DISABLE_OPT_EVENT]); std::unique_ptr<char[]> name = shared->DebugName()->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); msg.Append("\"%s\",", name.get()); msg.Append("\"%s\"", GetBailoutReason(shared->disable_optimization_reason())); msg.WriteToLogFile(); } void Logger::CodeMovingGCEvent() { if (!is_logging_code_events()) return; if (!log_->IsEnabled() || !FLAG_ll_prof) return; base::OS::SignalCodeMovingGC(); } void Logger::RegExpCodeCreateEvent(AbstractCode* code, String* source) { if (!is_logging_code_events()) return; if (!FLAG_log_code || !log_->IsEnabled()) return; Log::MessageBuilder msg(log_); AppendCodeCreateHeader(&msg, CodeEventListener::REG_EXP_TAG, code); msg.Append('"'); msg.AppendDetailed(source, false); msg.Append('"'); msg.WriteToLogFile(); } void Logger::CodeMoveEvent(AbstractCode* from, Address to) { if (!is_logging_code_events()) return; MoveEventInternal(CodeEventListener::CODE_MOVE_EVENT, from->address(), to); } void Logger::CodeLinePosInfoRecordEvent(AbstractCode* code, ByteArray* source_position_table) { if (jit_logger_) { void* jit_handler_data = jit_logger_->StartCodePosInfoEvent(); for (SourcePositionTableIterator iter(source_position_table); !iter.done(); iter.Advance()) { if (iter.is_statement()) { jit_logger_->AddCodeLinePosInfoEvent( jit_handler_data, iter.code_offset(), iter.source_position().ScriptOffset(), JitCodeEvent::STATEMENT_POSITION); } jit_logger_->AddCodeLinePosInfoEvent( jit_handler_data, iter.code_offset(), iter.source_position().ScriptOffset(), JitCodeEvent::POSITION); } jit_logger_->EndCodePosInfoEvent(code, jit_handler_data); } } void Logger::CodeNameEvent(Address addr, int pos, const char* code_name) { if (code_name == NULL) return; // Not a code object. Log::MessageBuilder msg(log_); msg.Append("%s,%d,", kLogEventsNames[CodeEventListener::SNAPSHOT_CODE_NAME_EVENT], pos); msg.AppendDoubleQuotedString(code_name); msg.WriteToLogFile(); } void Logger::SharedFunctionInfoMoveEvent(Address from, Address to) { if (!is_logging_code_events()) return; MoveEventInternal(CodeEventListener::SHARED_FUNC_MOVE_EVENT, from, to); } void Logger::MoveEventInternal(CodeEventListener::LogEventsAndTags event, Address from, Address to) { if (!FLAG_log_code || !log_->IsEnabled()) return; Log::MessageBuilder msg(log_); msg.Append("%s,", kLogEventsNames[event]); msg.AppendAddress(from); msg.Append(','); msg.AppendAddress(to); msg.WriteToLogFile(); } void Logger::ResourceEvent(const char* name, const char* tag) { if (!log_->IsEnabled() || !FLAG_log) return; Log::MessageBuilder msg(log_); msg.Append("%s,%s,", name, tag); uint32_t sec, usec; if (base::OS::GetUserTime(&sec, &usec) != -1) { msg.Append("%d,%d,", sec, usec); } msg.Append("%.0f", base::OS::TimeCurrentMillis()); msg.WriteToLogFile(); } void Logger::SuspectReadEvent(Name* name, Object* obj) { if (!log_->IsEnabled() || !FLAG_log_suspect) return; Log::MessageBuilder msg(log_); String* class_name = obj->IsJSObject() ? JSObject::cast(obj)->class_name() : isolate_->heap()->empty_string(); msg.Append("suspect-read,"); msg.Append(class_name); msg.Append(','); if (name->IsString()) { msg.Append('"'); msg.Append(String::cast(name)); msg.Append('"'); } else { msg.AppendSymbolName(Symbol::cast(name)); } msg.WriteToLogFile(); } void Logger::HeapSampleBeginEvent(const char* space, const char* kind) { if (!log_->IsEnabled() || !FLAG_log_gc) return; Log::MessageBuilder msg(log_); // Using non-relative system time in order to be able to synchronize with // external memory profiling events (e.g. DOM memory size). msg.Append("heap-sample-begin,\"%s\",\"%s\",%.0f", space, kind, base::OS::TimeCurrentMillis()); msg.WriteToLogFile(); } void Logger::HeapSampleEndEvent(const char* space, const char* kind) { if (!log_->IsEnabled() || !FLAG_log_gc) return; Log::MessageBuilder msg(log_); msg.Append("heap-sample-end,\"%s\",\"%s\"", space, kind); msg.WriteToLogFile(); } void Logger::HeapSampleItemEvent(const char* type, int number, int bytes) { if (!log_->IsEnabled() || !FLAG_log_gc) return; Log::MessageBuilder msg(log_); msg.Append("heap-sample-item,%s,%d,%d", type, number, bytes); msg.WriteToLogFile(); } void Logger::DebugTag(const char* call_site_tag) { if (!log_->IsEnabled() || !FLAG_log) return; Log::MessageBuilder msg(log_); msg.Append("debug-tag,%s", call_site_tag); msg.WriteToLogFile(); } void Logger::DebugEvent(const char* event_type, Vector<uint16_t> parameter) { if (!log_->IsEnabled() || !FLAG_log) return; StringBuilder s(parameter.length() + 1); for (int i = 0; i < parameter.length(); ++i) { s.AddCharacter(static_cast<char>(parameter[i])); } char* parameter_string = s.Finalize(); Log::MessageBuilder msg(log_); msg.Append("debug-queue-event,%s,%15.3f,%s", event_type, base::OS::TimeCurrentMillis(), parameter_string); DeleteArray(parameter_string); msg.WriteToLogFile(); } void Logger::RuntimeCallTimerEvent() { RuntimeCallStats* stats = isolate_->counters()->runtime_call_stats(); RuntimeCallTimer* timer = stats->current_timer(); if (timer == nullptr) return; RuntimeCallCounter* counter = timer->counter(); if (counter == nullptr) return; Log::MessageBuilder msg(log_); msg.Append("active-runtime-timer,"); msg.AppendDoubleQuotedString(counter->name); msg.WriteToLogFile(); } void Logger::TickEvent(v8::TickSample* sample, bool overflow) { if (!log_->IsEnabled() || !FLAG_prof_cpp) return; if (V8_UNLIKELY(FLAG_runtime_stats == v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE)) { RuntimeCallTimerEvent(); } Log::MessageBuilder msg(log_); msg.Append("%s,", kLogEventsNames[CodeEventListener::TICK_EVENT]); msg.AppendAddress(reinterpret_cast<Address>(sample->pc)); msg.Append(",%d", static_cast<int>(timer_.Elapsed().InMicroseconds())); if (sample->has_external_callback) { msg.Append(",1,"); msg.AppendAddress( reinterpret_cast<Address>(sample->external_callback_entry)); } else { msg.Append(",0,"); msg.AppendAddress(reinterpret_cast<Address>(sample->tos)); } msg.Append(",%d", static_cast<int>(sample->state)); if (overflow) { msg.Append(",overflow"); } for (unsigned i = 0; i < sample->frames_count; ++i) { msg.Append(','); msg.AppendAddress(reinterpret_cast<Address>(sample->stack[i])); } msg.WriteToLogFile(); } void Logger::StopProfiler() { if (!log_->IsEnabled()) return; if (profiler_ != NULL) { profiler_->pause(); is_logging_ = false; removeCodeEventListener(this); } } // This function can be called when Log's mutex is acquired, // either from main or Profiler's thread. void Logger::LogFailure() { StopProfiler(); } class EnumerateOptimizedFunctionsVisitor: public OptimizedFunctionVisitor { public: EnumerateOptimizedFunctionsVisitor(Handle<SharedFunctionInfo>* sfis, Handle<AbstractCode>* code_objects, int* count) : sfis_(sfis), code_objects_(code_objects), count_(count) {} virtual void EnterContext(Context* context) {} virtual void LeaveContext(Context* context) {} virtual void VisitFunction(JSFunction* function) { SharedFunctionInfo* sfi = SharedFunctionInfo::cast(function->shared()); Object* maybe_script = sfi->script(); if (maybe_script->IsScript() && !Script::cast(maybe_script)->HasValidSource()) return; if (sfis_ != NULL) { sfis_[*count_] = Handle<SharedFunctionInfo>(sfi); } if (code_objects_ != NULL) { DCHECK(function->abstract_code()->kind() == AbstractCode::OPTIMIZED_FUNCTION); code_objects_[*count_] = Handle<AbstractCode>(function->abstract_code()); } *count_ = *count_ + 1; } private: Handle<SharedFunctionInfo>* sfis_; Handle<AbstractCode>* code_objects_; int* count_; }; static int EnumerateCompiledFunctions(Heap* heap, Handle<SharedFunctionInfo>* sfis, Handle<AbstractCode>* code_objects) { HeapIterator iterator(heap); DisallowHeapAllocation no_gc; int compiled_funcs_count = 0; // Iterate the heap to find shared function info objects and record // the unoptimized code for them. for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (!obj->IsSharedFunctionInfo()) continue; SharedFunctionInfo* sfi = SharedFunctionInfo::cast(obj); if (sfi->is_compiled() && (!sfi->script()->IsScript() || Script::cast(sfi->script())->HasValidSource())) { if (sfis != NULL) { sfis[compiled_funcs_count] = Handle<SharedFunctionInfo>(sfi); } if (code_objects != NULL) { code_objects[compiled_funcs_count] = Handle<AbstractCode>(sfi->abstract_code()); } ++compiled_funcs_count; } } // Iterate all optimized functions in all contexts. EnumerateOptimizedFunctionsVisitor visitor(sfis, code_objects, &compiled_funcs_count); Deoptimizer::VisitAllOptimizedFunctions(heap->isolate(), &visitor); return compiled_funcs_count; } void Logger::LogCodeObject(Object* object) { AbstractCode* code_object = AbstractCode::cast(object); CodeEventListener::LogEventsAndTags tag = CodeEventListener::STUB_TAG; const char* description = "Unknown code from the snapshot"; switch (code_object->kind()) { case AbstractCode::FUNCTION: case AbstractCode::INTERPRETED_FUNCTION: case AbstractCode::OPTIMIZED_FUNCTION: return; // We log this later using LogCompiledFunctions. case AbstractCode::BYTECODE_HANDLER: return; // We log it later by walking the dispatch table. case AbstractCode::BINARY_OP_IC: // fall through case AbstractCode::COMPARE_IC: // fall through case AbstractCode::TO_BOOLEAN_IC: // fall through case AbstractCode::STUB: description = CodeStub::MajorName(CodeStub::GetMajorKey(code_object->GetCode())); if (description == NULL) description = "A stub from the snapshot"; tag = CodeEventListener::STUB_TAG; break; case AbstractCode::REGEXP: description = "Regular expression code"; tag = CodeEventListener::REG_EXP_TAG; break; case AbstractCode::BUILTIN: description = isolate_->builtins()->name(code_object->GetCode()->builtin_index()); tag = CodeEventListener::BUILTIN_TAG; break; case AbstractCode::HANDLER: description = "An IC handler from the snapshot"; tag = CodeEventListener::HANDLER_TAG; break; case AbstractCode::KEYED_LOAD_IC: description = "A keyed load IC from the snapshot"; tag = CodeEventListener::KEYED_LOAD_IC_TAG; break; case AbstractCode::LOAD_IC: description = "A load IC from the snapshot"; tag = CodeEventListener::LOAD_IC_TAG; break; case AbstractCode::LOAD_GLOBAL_IC: description = "A load global IC from the snapshot"; tag = Logger::LOAD_GLOBAL_IC_TAG; break; case AbstractCode::CALL_IC: description = "A call IC from the snapshot"; tag = CodeEventListener::CALL_IC_TAG; break; case AbstractCode::STORE_IC: description = "A store IC from the snapshot"; tag = CodeEventListener::STORE_IC_TAG; break; case AbstractCode::KEYED_STORE_IC: description = "A keyed store IC from the snapshot"; tag = CodeEventListener::KEYED_STORE_IC_TAG; break; case AbstractCode::WASM_FUNCTION: description = "A Wasm function"; tag = CodeEventListener::STUB_TAG; break; case AbstractCode::JS_TO_WASM_FUNCTION: description = "A JavaScript to Wasm adapter"; tag = CodeEventListener::STUB_TAG; break; case AbstractCode::WASM_TO_JS_FUNCTION: description = "A Wasm to JavaScript adapter"; tag = CodeEventListener::STUB_TAG; break; case AbstractCode::NUMBER_OF_KINDS: UNIMPLEMENTED(); } PROFILE(isolate_, CodeCreateEvent(tag, code_object, description)); } void Logger::LogCodeObjects() { Heap* heap = isolate_->heap(); HeapIterator iterator(heap); DisallowHeapAllocation no_gc; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsCode()) LogCodeObject(obj); if (obj->IsBytecodeArray()) LogCodeObject(obj); } } void Logger::LogBytecodeHandlers() { const interpreter::OperandScale kOperandScales[] = { #define VALUE(Name, _) interpreter::OperandScale::k##Name, OPERAND_SCALE_LIST(VALUE) #undef VALUE }; const int last_index = static_cast<int>(interpreter::Bytecode::kLast); interpreter::Interpreter* interpreter = isolate_->interpreter(); for (auto operand_scale : kOperandScales) { for (int index = 0; index <= last_index; ++index) { interpreter::Bytecode bytecode = interpreter::Bytecodes::FromByte(index); if (interpreter::Bytecodes::BytecodeHasHandler(bytecode, operand_scale)) { Code* code = interpreter->GetBytecodeHandler(bytecode, operand_scale); std::string bytecode_name = interpreter::Bytecodes::ToString(bytecode, operand_scale); PROFILE(isolate_, CodeCreateEvent( CodeEventListener::BYTECODE_HANDLER_TAG, AbstractCode::cast(code), bytecode_name.c_str())); } } } } void Logger::LogExistingFunction(Handle<SharedFunctionInfo> shared, Handle<AbstractCode> code) { Handle<String> func_name(shared->DebugName()); if (shared->script()->IsScript()) { Handle<Script> script(Script::cast(shared->script())); int line_num = Script::GetLineNumber(script, shared->start_position()) + 1; int column_num = Script::GetColumnNumber(script, shared->start_position()) + 1; if (script->name()->IsString()) { Handle<String> script_name(String::cast(script->name())); if (line_num > 0) { PROFILE(isolate_, CodeCreateEvent( Logger::ToNativeByScript( CodeEventListener::LAZY_COMPILE_TAG, *script), *code, *shared, *script_name, line_num, column_num)); } else { // Can't distinguish eval and script here, so always use Script. PROFILE(isolate_, CodeCreateEvent(Logger::ToNativeByScript( CodeEventListener::SCRIPT_TAG, *script), *code, *shared, *script_name)); } } else { PROFILE(isolate_, CodeCreateEvent(Logger::ToNativeByScript( CodeEventListener::LAZY_COMPILE_TAG, *script), *code, *shared, isolate_->heap()->empty_string(), line_num, column_num)); } } else if (shared->IsApiFunction()) { // API function. FunctionTemplateInfo* fun_data = shared->get_api_func_data(); Object* raw_call_data = fun_data->call_code(); if (!raw_call_data->IsUndefined(isolate_)) { CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data); Object* callback_obj = call_data->callback(); Address entry_point = v8::ToCData<Address>(callback_obj); #if USES_FUNCTION_DESCRIPTORS entry_point = *FUNCTION_ENTRYPOINT_ADDRESS(entry_point); #endif PROFILE(isolate_, CallbackEvent(*func_name, entry_point)); } } else { PROFILE(isolate_, CodeCreateEvent(CodeEventListener::LAZY_COMPILE_TAG, *code, *shared, *func_name)); } } void Logger::LogCompiledFunctions() { Heap* heap = isolate_->heap(); HandleScope scope(isolate_); const int compiled_funcs_count = EnumerateCompiledFunctions(heap, NULL, NULL); ScopedVector< Handle<SharedFunctionInfo> > sfis(compiled_funcs_count); ScopedVector<Handle<AbstractCode> > code_objects(compiled_funcs_count); EnumerateCompiledFunctions(heap, sfis.start(), code_objects.start()); // During iteration, there can be heap allocation due to // GetScriptLineNumber call. for (int i = 0; i < compiled_funcs_count; ++i) { if (code_objects[i].is_identical_to(isolate_->builtins()->CompileLazy())) continue; LogExistingFunction(sfis[i], code_objects[i]); } } void Logger::LogAccessorCallbacks() { Heap* heap = isolate_->heap(); HeapIterator iterator(heap); DisallowHeapAllocation no_gc; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (!obj->IsAccessorInfo()) continue; AccessorInfo* ai = AccessorInfo::cast(obj); if (!ai->name()->IsName()) continue; Address getter_entry = v8::ToCData<Address>(ai->getter()); Name* name = Name::cast(ai->name()); if (getter_entry != 0) { #if USES_FUNCTION_DESCRIPTORS getter_entry = *FUNCTION_ENTRYPOINT_ADDRESS(getter_entry); #endif PROFILE(isolate_, GetterCallbackEvent(name, getter_entry)); } Address setter_entry = v8::ToCData<Address>(ai->setter()); if (setter_entry != 0) { #if USES_FUNCTION_DESCRIPTORS setter_entry = *FUNCTION_ENTRYPOINT_ADDRESS(setter_entry); #endif PROFILE(isolate_, SetterCallbackEvent(name, setter_entry)); } } } static void AddIsolateIdIfNeeded(std::ostream& os, // NOLINT Isolate* isolate) { if (FLAG_logfile_per_isolate) os << "isolate-" << isolate << "-"; } static void PrepareLogFileName(std::ostream& os, // NOLINT Isolate* isolate, const char* file_name) { int dir_separator_count = 0; for (const char* p = file_name; *p; p++) { if (base::OS::isDirectorySeparator(*p)) dir_separator_count++; } for (const char* p = file_name; *p; p++) { if (dir_separator_count == 0) { AddIsolateIdIfNeeded(os, isolate); dir_separator_count--; } if (*p == '%') { p++; switch (*p) { case '\0': // If there's a % at the end of the string we back up // one character so we can escape the loop properly. p--; break; case 'p': os << base::OS::GetCurrentProcessId(); break; case 't': // %t expands to the current time in milliseconds. os << static_cast<int64_t>(base::OS::TimeCurrentMillis()); break; case '%': // %% expands (contracts really) to %. os << '%'; break; default: // All other %'s expand to themselves. os << '%' << *p; break; } } else { if (base::OS::isDirectorySeparator(*p)) dir_separator_count--; os << *p; } } } bool Logger::SetUp(Isolate* isolate) { // Tests and EnsureInitialize() can call this twice in a row. It's harmless. if (is_initialized_) return true; is_initialized_ = true; std::ostringstream log_file_name; PrepareLogFileName(log_file_name, isolate, FLAG_logfile); log_->Initialize(log_file_name.str().c_str()); if (FLAG_perf_basic_prof) { perf_basic_logger_ = new PerfBasicLogger(); addCodeEventListener(perf_basic_logger_); } if (FLAG_perf_prof) { perf_jit_logger_ = new PerfJitLogger(); addCodeEventListener(perf_jit_logger_); } if (FLAG_ll_prof) { ll_logger_ = new LowLevelLogger(log_file_name.str().c_str()); addCodeEventListener(ll_logger_); } ticker_ = new Ticker(isolate, kSamplingIntervalMs); if (Log::InitLogAtStart()) { is_logging_ = true; } if (FLAG_log_internal_timer_events || FLAG_prof_cpp) timer_.Start(); if (FLAG_prof_cpp) { profiler_ = new Profiler(isolate); is_logging_ = true; profiler_->Engage(); } profiler_listener_.reset(); if (is_logging_) { addCodeEventListener(this); } return true; } void Logger::SetCodeEventHandler(uint32_t options, JitCodeEventHandler event_handler) { if (jit_logger_) { removeCodeEventListener(jit_logger_); delete jit_logger_; jit_logger_ = NULL; } if (event_handler) { jit_logger_ = new JitLogger(event_handler); addCodeEventListener(jit_logger_); if (options & kJitCodeEventEnumExisting) { HandleScope scope(isolate_); LogCodeObjects(); LogCompiledFunctions(); } } } void Logger::SetUpProfilerListener() { if (!is_initialized_) return; if (profiler_listener_.get() == nullptr) { profiler_listener_.reset(new ProfilerListener(isolate_)); } addCodeEventListener(profiler_listener_.get()); } void Logger::TearDownProfilerListener() { if (profiler_listener_->HasObservers()) return; removeCodeEventListener(profiler_listener_.get()); } sampler::Sampler* Logger::sampler() { return ticker_; } FILE* Logger::TearDown() { if (!is_initialized_) return NULL; is_initialized_ = false; // Stop the profiler before closing the file. if (profiler_ != NULL) { profiler_->Disengage(); delete profiler_; profiler_ = NULL; } delete ticker_; ticker_ = NULL; if (perf_basic_logger_) { removeCodeEventListener(perf_basic_logger_); delete perf_basic_logger_; perf_basic_logger_ = NULL; } if (perf_jit_logger_) { removeCodeEventListener(perf_jit_logger_); delete perf_jit_logger_; perf_jit_logger_ = NULL; } if (ll_logger_) { removeCodeEventListener(ll_logger_); delete ll_logger_; ll_logger_ = NULL; } if (jit_logger_) { removeCodeEventListener(jit_logger_); delete jit_logger_; jit_logger_ = NULL; } if (profiler_listener_.get() != nullptr) { removeCodeEventListener(profiler_listener_.get()); } return log_->Close(); } } // namespace internal } // namespace v8