// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ #include "src/assembler.h" #include "src/globals.h" #include "src/mips64/assembler-mips64.h" namespace v8 { namespace internal { // Give alias names to registers for calling conventions. const Register kReturnRegister0 = {Register::kCode_v0}; const Register kReturnRegister1 = {Register::kCode_v1}; const Register kReturnRegister2 = {Register::kCode_a0}; const Register kJSFunctionRegister = {Register::kCode_a1}; const Register kContextRegister = {Register::kCpRegister}; const Register kAllocateSizeRegister = {Register::kCode_a0}; const Register kInterpreterAccumulatorRegister = {Register::kCode_v0}; const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t0}; const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t1}; const Register kInterpreterDispatchTableRegister = {Register::kCode_t2}; const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0}; const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3}; const Register kRuntimeCallFunctionRegister = {Register::kCode_a1}; const Register kRuntimeCallArgCountRegister = {Register::kCode_a0}; // Forward declaration. class JumpTarget; // Reserved Register Usage Summary. // // Registers t8, t9, and at are reserved for use by the MacroAssembler. // // The programmer should know that the MacroAssembler may clobber these three, // but won't touch other registers except in special cases. // // Per the MIPS ABI, register t9 must be used for indirect function call // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when // trying to update gp register for position-independent-code. Whenever // MIPS generated code calls C code, it must be via t9 register. // Flags used for LeaveExitFrame function. enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false }; // Flags used for AllocateHeapNumber enum TaggingMode { // Tag the result. TAG_RESULT, // Don't tag DONT_TAG_RESULT }; // Flags used for the ObjectToDoubleFPURegister function. enum ObjectToDoubleFlags { // No special flags. NO_OBJECT_TO_DOUBLE_FLAGS = 0, // Object is known to be a non smi. OBJECT_NOT_SMI = 1 << 0, // Don't load NaNs or infinities, branch to the non number case instead. AVOID_NANS_AND_INFINITIES = 1 << 1 }; // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls. enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT }; // Flags used for the li macro-assembler function. enum LiFlags { // If the constant value can be represented in just 16 bits, then // optimize the li to use a single instruction, rather than lui/ori/dsll // sequence. OPTIMIZE_SIZE = 0, // Always use 6 instructions (lui/ori/dsll sequence), even if the constant // could be loaded with just one, so that this value is patchable later. CONSTANT_SIZE = 1, // For address loads only 4 instruction are required. Used to mark // constant load that will be used as address without relocation // information. It ensures predictable code size, so specific sites // in code are patchable. ADDRESS_LOAD = 2 }; enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; enum PointersToHereCheck { kPointersToHereMaybeInteresting, kPointersToHereAreAlwaysInteresting }; enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved }; Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg); bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg, Register reg7 = no_reg, Register reg8 = no_reg, Register reg9 = no_reg, Register reg10 = no_reg); // ----------------------------------------------------------------------------- // Static helper functions. #if defined(V8_TARGET_LITTLE_ENDIAN) #define SmiWordOffset(offset) (offset + kPointerSize / 2) #else #define SmiWordOffset(offset) offset #endif inline MemOperand ContextMemOperand(Register context, int index) { return MemOperand(context, Context::SlotOffset(index)); } inline MemOperand NativeContextMemOperand() { return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX); } // Generate a MemOperand for loading a field from an object. inline MemOperand FieldMemOperand(Register object, int offset) { return MemOperand(object, offset - kHeapObjectTag); } inline MemOperand UntagSmiMemOperand(Register rm, int offset) { // Assumes that Smis are shifted by 32 bits. STATIC_ASSERT(kSmiShift == 32); return MemOperand(rm, SmiWordOffset(offset)); } inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) { return UntagSmiMemOperand(rm, offset - kHeapObjectTag); } // Generate a MemOperand for storing arguments 5..N on the stack // when calling CallCFunction(). // TODO(plind): Currently ONLY used for O32. Should be fixed for // n64, and used in RegExp code, and other places // with more than 8 arguments. inline MemOperand CFunctionArgumentOperand(int index) { DCHECK(index > kCArgSlotCount); // Argument 5 takes the slot just past the four Arg-slots. int offset = (index - 5) * kPointerSize + kCArgsSlotsSize; return MemOperand(sp, offset); } // MacroAssembler implements a collection of frequently used macros. class MacroAssembler: public Assembler { public: MacroAssembler(Isolate* isolate, void* buffer, int size, CodeObjectRequired create_code_object); // Arguments macros. #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2 #define COND_ARGS cond, r1, r2 // Cases when relocation is not needed. #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \ void Name(target_type target, BranchDelaySlot bd = PROTECT); \ inline void Name(BranchDelaySlot bd, target_type target) { \ Name(target, bd); \ } \ void Name(target_type target, \ COND_TYPED_ARGS, \ BranchDelaySlot bd = PROTECT); \ inline void Name(BranchDelaySlot bd, \ target_type target, \ COND_TYPED_ARGS) { \ Name(target, COND_ARGS, bd); \ } #define DECLARE_BRANCH_PROTOTYPES(Name) \ DECLARE_NORELOC_PROTOTYPE(Name, Label*) \ DECLARE_NORELOC_PROTOTYPE(Name, int32_t) DECLARE_BRANCH_PROTOTYPES(Branch) DECLARE_BRANCH_PROTOTYPES(BranchAndLink) DECLARE_BRANCH_PROTOTYPES(BranchShort) #undef DECLARE_BRANCH_PROTOTYPES #undef COND_TYPED_ARGS #undef COND_ARGS // Jump, Call, and Ret pseudo instructions implementing inter-working. #define COND_ARGS Condition cond = al, Register rs = zero_reg, \ const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT void Jump(Register target, COND_ARGS); void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS); void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS); void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS); static int CallSize(Register target, COND_ARGS); void Call(Register target, COND_ARGS); static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS); void Call(Address target, RelocInfo::Mode rmode, COND_ARGS); int CallSize(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, TypeFeedbackId ast_id = TypeFeedbackId::None(), COND_ARGS); void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, TypeFeedbackId ast_id = TypeFeedbackId::None(), COND_ARGS); void Ret(COND_ARGS); inline void Ret(BranchDelaySlot bd, Condition cond = al, Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) { Ret(cond, rs, rt, bd); } bool IsNear(Label* L, Condition cond, int rs_reg); void Branch(Label* L, Condition cond, Register rs, Heap::RootListIndex index, BranchDelaySlot bdslot = PROTECT); // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a // functor/function with 'Label *func(size_t index)' declaration. template <typename Func> void GenerateSwitchTable(Register index, size_t case_count, Func GetLabelFunction); #undef COND_ARGS // Emit code that loads |parameter_index|'th parameter from the stack to // the register according to the CallInterfaceDescriptor definition. // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed // below the caller's sp. template <class Descriptor> void LoadParameterFromStack( Register reg, typename Descriptor::ParameterIndices parameter_index, int sp_to_ra_offset_in_words = 0) { DCHECK(Descriptor::kPassLastArgsOnStack); UNIMPLEMENTED(); } // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the sp register. void Drop(int count, Condition cond = cc_always, Register reg = no_reg, const Operand& op = Operand(no_reg)); // Trivial case of DropAndRet that utilizes the delay slot and only emits // 2 instructions. void DropAndRet(int drop); void DropAndRet(int drop, Condition cond, Register reg, const Operand& op); // Swap two registers. If the scratch register is omitted then a slightly // less efficient form using xor instead of mov is emitted. void Swap(Register reg1, Register reg2, Register scratch = no_reg); void Call(Label* target); inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); } inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); } inline void Move(Register dst, Register src) { if (!dst.is(src)) { mov(dst, src); } } inline void Move_d(FPURegister dst, FPURegister src) { if (!dst.is(src)) { mov_d(dst, src); } } inline void Move_s(FPURegister dst, FPURegister src) { if (!dst.is(src)) { mov_s(dst, src); } } inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); } inline void Move(Register dst_low, Register dst_high, FPURegister src) { mfc1(dst_low, src); mfhc1(dst_high, src); } inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); } inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); } inline void FmoveHigh(Register dst_high, FPURegister src) { mfhc1(dst_high, src); } inline void FmoveHigh(FPURegister dst, Register src_high) { mthc1(src_high, dst); } inline void FmoveLow(Register dst_low, FPURegister src) { mfc1(dst_low, src); } void FmoveLow(FPURegister dst, Register src_low); inline void Move(FPURegister dst, Register src_low, Register src_high) { mtc1(src_low, dst); mthc1(src_high, dst); } void Move(FPURegister dst, float imm); void Move(FPURegister dst, double imm); // Conditional move. void Movz(Register rd, Register rs, Register rt); void Movn(Register rd, Register rs, Register rt); void Movt(Register rd, Register rs, uint16_t cc = 0); void Movf(Register rd, Register rs, uint16_t cc = 0); // Min, Max macros. // On pre-r6 these functions may modify at and t8 registers. void MinNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2, Label* nan = nullptr); void MaxNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2, Label* nan = nullptr); void MinNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2, Label* nan = nullptr); void MaxNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2, Label* nan = nullptr); void Clz(Register rd, Register rs); // Jump unconditionally to given label. // We NEED a nop in the branch delay slot, as it used by v8, for example in // CodeGenerator::ProcessDeferred(). // Currently the branch delay slot is filled by the MacroAssembler. // Use rather b(Label) for code generation. void jmp(Label* L) { Branch(L); } void Load(Register dst, const MemOperand& src, Representation r); void Store(Register src, const MemOperand& dst, Representation r); void PushRoot(Heap::RootListIndex index) { LoadRoot(at, index); Push(at); } // Compare the object in a register to a value and jump if they are equal. void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) { LoadRoot(at, index); Branch(if_equal, eq, with, Operand(at)); } // Compare the object in a register to a value and jump if they are not equal. void JumpIfNotRoot(Register with, Heap::RootListIndex index, Label* if_not_equal) { LoadRoot(at, index); Branch(if_not_equal, ne, with, Operand(at)); } // Load an object from the root table. void LoadRoot(Register destination, Heap::RootListIndex index); void LoadRoot(Register destination, Heap::RootListIndex index, Condition cond, Register src1, const Operand& src2); // Store an object to the root table. void StoreRoot(Register source, Heap::RootListIndex index); void StoreRoot(Register source, Heap::RootListIndex index, Condition cond, Register src1, const Operand& src2); // --------------------------------------------------------------------------- // GC Support void IncrementalMarkingRecordWriteHelper(Register object, Register value, Register address); enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd }; // Record in the remembered set the fact that we have a pointer to new space // at the address pointed to by the addr register. Only works if addr is not // in new space. void RememberedSetHelper(Register object, // Used for debug code. Register addr, Register scratch, SaveFPRegsMode save_fp, RememberedSetFinalAction and_then); void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met); // Check if object is in new space. Jumps if the object is not in new space. // The register scratch can be object itself, but it will be clobbered. void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) { InNewSpace(object, scratch, eq, branch); } // Check if object is in new space. Jumps if the object is in new space. // The register scratch can be object itself, but scratch will be clobbered. void JumpIfInNewSpace(Register object, Register scratch, Label* branch) { InNewSpace(object, scratch, ne, branch); } // Check if an object has a given incremental marking color. void HasColor(Register object, Register scratch0, Register scratch1, Label* has_color, int first_bit, int second_bit); void JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black); // Checks the color of an object. If the object is white we jump to the // incremental marker. void JumpIfWhite(Register value, Register scratch1, Register scratch2, Register scratch3, Label* value_is_white); // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); // As above, but the offset has the tag presubtracted. For use with // MemOperand(reg, off). inline void RecordWriteContextSlot( Register context, int offset, Register value, Register scratch, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting) { RecordWriteField(context, offset + kHeapObjectTag, value, scratch, ra_status, save_fp, remembered_set_action, smi_check, pointers_to_here_check_for_value); } // Notify the garbage collector that we wrote a code entry into a // JSFunction. Only scratch is clobbered by the operation. void RecordWriteCodeEntryField(Register js_function, Register code_entry, Register scratch); void RecordWriteForMap( Register object, Register map, Register dst, RAStatus ra_status, SaveFPRegsMode save_fp); // For a given |object| notify the garbage collector that the slot |address| // has been written. |value| is the object being stored. The value and // address registers are clobbered by the operation. void RecordWrite( Register object, Register address, Register value, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); // --------------------------------------------------------------------------- // Inline caching support. void GetNumberHash(Register reg0, Register scratch); inline void MarkCode(NopMarkerTypes type) { nop(type); } // Check if the given instruction is a 'type' marker. // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as // nop(type)). These instructions are generated to mark special location in // the code, like some special IC code. static inline bool IsMarkedCode(Instr instr, int type) { DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)); return IsNop(instr, type); } static inline int GetCodeMarker(Instr instr) { uint32_t opcode = ((instr & kOpcodeMask)); uint32_t rt = ((instr & kRtFieldMask) >> kRtShift); uint32_t rs = ((instr & kRsFieldMask) >> kRsShift); uint32_t sa = ((instr & kSaFieldMask) >> kSaShift); // Return <n> if we have a sll zero_reg, zero_reg, n // else return -1. bool sllzz = (opcode == SLL && rt == static_cast<uint32_t>(ToNumber(zero_reg)) && rs == static_cast<uint32_t>(ToNumber(zero_reg))); int type = (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1; DCHECK((type == -1) || ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER))); return type; } // --------------------------------------------------------------------------- // Allocation support. // Allocate an object in new space or old space. The object_size is // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS // is passed. If the space is exhausted control continues at the gc_required // label. The allocated object is returned in result. If the flag // tag_allocated_object is true the result is tagged as as a heap object. // All registers are clobbered also when control continues at the gc_required // label. void Allocate(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags); void Allocate(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); // FastAllocate is right now only used for folded allocations. It just // increments the top pointer without checking against limit. This can only // be done if it was proved earlier that the allocation will succeed. void FastAllocate(int object_size, Register result, Register scratch1, Register scratch2, AllocationFlags flags); void FastAllocate(Register object_size, Register result, Register result_new, Register scratch, AllocationFlags flags); void AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); void AllocateOneByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); void AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); void AllocateOneByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); // Allocates a heap number or jumps to the gc_required label if the young // space is full and a scavenge is needed. All registers are clobbered also // when control continues at the gc_required label. void AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required, MutableMode mode = IMMUTABLE); void AllocateHeapNumberWithValue(Register result, FPURegister value, Register scratch1, Register scratch2, Label* gc_required); // Allocate and initialize a JSValue wrapper with the specified {constructor} // and {value}. void AllocateJSValue(Register result, Register constructor, Register value, Register scratch1, Register scratch2, Label* gc_required); // --------------------------------------------------------------------------- // Instruction macros. #define DEFINE_INSTRUCTION(instr) \ void instr(Register rd, Register rs, const Operand& rt); \ void instr(Register rd, Register rs, Register rt) { \ instr(rd, rs, Operand(rt)); \ } \ void instr(Register rs, Register rt, int32_t j) { \ instr(rs, rt, Operand(j)); \ } #define DEFINE_INSTRUCTION2(instr) \ void instr(Register rs, const Operand& rt); \ void instr(Register rs, Register rt) { \ instr(rs, Operand(rt)); \ } \ void instr(Register rs, int32_t j) { \ instr(rs, Operand(j)); \ } DEFINE_INSTRUCTION(Addu); DEFINE_INSTRUCTION(Daddu); DEFINE_INSTRUCTION(Div); DEFINE_INSTRUCTION(Divu); DEFINE_INSTRUCTION(Ddivu); DEFINE_INSTRUCTION(Mod); DEFINE_INSTRUCTION(Modu); DEFINE_INSTRUCTION(Ddiv); DEFINE_INSTRUCTION(Subu); DEFINE_INSTRUCTION(Dsubu); DEFINE_INSTRUCTION(Dmod); DEFINE_INSTRUCTION(Dmodu); DEFINE_INSTRUCTION(Mul); DEFINE_INSTRUCTION(Mulh); DEFINE_INSTRUCTION(Mulhu); DEFINE_INSTRUCTION(Dmul); DEFINE_INSTRUCTION(Dmulh); DEFINE_INSTRUCTION2(Mult); DEFINE_INSTRUCTION2(Dmult); DEFINE_INSTRUCTION2(Multu); DEFINE_INSTRUCTION2(Dmultu); DEFINE_INSTRUCTION2(Div); DEFINE_INSTRUCTION2(Ddiv); DEFINE_INSTRUCTION2(Divu); DEFINE_INSTRUCTION2(Ddivu); DEFINE_INSTRUCTION(And); DEFINE_INSTRUCTION(Or); DEFINE_INSTRUCTION(Xor); DEFINE_INSTRUCTION(Nor); DEFINE_INSTRUCTION2(Neg); DEFINE_INSTRUCTION(Slt); DEFINE_INSTRUCTION(Sltu); // MIPS32 R2 instruction macro. DEFINE_INSTRUCTION(Ror); DEFINE_INSTRUCTION(Dror); #undef DEFINE_INSTRUCTION #undef DEFINE_INSTRUCTION2 #undef DEFINE_INSTRUCTION3 // Load Scaled Address instructions. Parameter sa (shift argument) must be // between [1, 31] (inclusive). On pre-r6 architectures the scratch register // may be clobbered. void Lsa(Register rd, Register rs, Register rt, uint8_t sa, Register scratch = at); void Dlsa(Register rd, Register rs, Register rt, uint8_t sa, Register scratch = at); void Pref(int32_t hint, const MemOperand& rs); // --------------------------------------------------------------------------- // Pseudo-instructions. // Change endianness void ByteSwapSigned(Register dest, Register src, int operand_size); void ByteSwapUnsigned(Register dest, Register src, int operand_size); void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); } void Ulh(Register rd, const MemOperand& rs); void Ulhu(Register rd, const MemOperand& rs); void Ush(Register rd, const MemOperand& rs, Register scratch); void Ulw(Register rd, const MemOperand& rs); void Ulwu(Register rd, const MemOperand& rs); void Usw(Register rd, const MemOperand& rs); void Uld(Register rd, const MemOperand& rs); void Usd(Register rd, const MemOperand& rs); void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch); void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch); void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch); void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch); void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at); void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at); // Load int32 in the rd register. void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); inline bool LiLower32BitHelper(Register rd, Operand j); inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) { li(rd, Operand(j), mode); } void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE); // Push multiple registers on the stack. // Registers are saved in numerical order, with higher numbered registers // saved in higher memory addresses. void MultiPush(RegList regs); void MultiPushReversed(RegList regs); void MultiPushFPU(RegList regs); void MultiPushReversedFPU(RegList regs); void push(Register src) { Daddu(sp, sp, Operand(-kPointerSize)); sd(src, MemOperand(sp, 0)); } void Push(Register src) { push(src); } // Push a handle. void Push(Handle<Object> handle); void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); } // Push two registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2) { Dsubu(sp, sp, Operand(2 * kPointerSize)); sd(src1, MemOperand(sp, 1 * kPointerSize)); sd(src2, MemOperand(sp, 0 * kPointerSize)); } // Push three registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3) { Dsubu(sp, sp, Operand(3 * kPointerSize)); sd(src1, MemOperand(sp, 2 * kPointerSize)); sd(src2, MemOperand(sp, 1 * kPointerSize)); sd(src3, MemOperand(sp, 0 * kPointerSize)); } // Push four registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4) { Dsubu(sp, sp, Operand(4 * kPointerSize)); sd(src1, MemOperand(sp, 3 * kPointerSize)); sd(src2, MemOperand(sp, 2 * kPointerSize)); sd(src3, MemOperand(sp, 1 * kPointerSize)); sd(src4, MemOperand(sp, 0 * kPointerSize)); } // Push five registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4, Register src5) { Dsubu(sp, sp, Operand(5 * kPointerSize)); sd(src1, MemOperand(sp, 4 * kPointerSize)); sd(src2, MemOperand(sp, 3 * kPointerSize)); sd(src3, MemOperand(sp, 2 * kPointerSize)); sd(src4, MemOperand(sp, 1 * kPointerSize)); sd(src5, MemOperand(sp, 0 * kPointerSize)); } void Push(Register src, Condition cond, Register tst1, Register tst2) { // Since we don't have conditional execution we use a Branch. Branch(3, cond, tst1, Operand(tst2)); Dsubu(sp, sp, Operand(kPointerSize)); sd(src, MemOperand(sp, 0)); } void PushRegisterAsTwoSmis(Register src, Register scratch = at); void PopRegisterAsTwoSmis(Register dst, Register scratch = at); // Pops multiple values from the stack and load them in the // registers specified in regs. Pop order is the opposite as in MultiPush. void MultiPop(RegList regs); void MultiPopReversed(RegList regs); void MultiPopFPU(RegList regs); void MultiPopReversedFPU(RegList regs); void pop(Register dst) { ld(dst, MemOperand(sp, 0)); Daddu(sp, sp, Operand(kPointerSize)); } void Pop(Register dst) { pop(dst); } // Pop two registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2) { DCHECK(!src1.is(src2)); ld(src2, MemOperand(sp, 0 * kPointerSize)); ld(src1, MemOperand(sp, 1 * kPointerSize)); Daddu(sp, sp, 2 * kPointerSize); } // Pop three registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3) { ld(src3, MemOperand(sp, 0 * kPointerSize)); ld(src2, MemOperand(sp, 1 * kPointerSize)); ld(src1, MemOperand(sp, 2 * kPointerSize)); Daddu(sp, sp, 3 * kPointerSize); } void Pop(uint32_t count = 1) { Daddu(sp, sp, Operand(count * kPointerSize)); } // Push a fixed frame, consisting of ra, fp. void PushCommonFrame(Register marker_reg = no_reg); // Push a standard frame, consisting of ra, fp, context and JS function. void PushStandardFrame(Register function_reg); void PopCommonFrame(Register marker_reg = no_reg); // Push and pop the registers that can hold pointers, as defined by the // RegList constant kSafepointSavedRegisters. void PushSafepointRegisters(); void PopSafepointRegisters(); // Store value in register src in the safepoint stack slot for // register dst. void StoreToSafepointRegisterSlot(Register src, Register dst); // Load the value of the src register from its safepoint stack slot // into register dst. void LoadFromSafepointRegisterSlot(Register dst, Register src); // MIPS64 R2 instruction macro. void Ins(Register rt, Register rs, uint16_t pos, uint16_t size); void Dins(Register rt, Register rs, uint16_t pos, uint16_t size); void Ext(Register rt, Register rs, uint16_t pos, uint16_t size); void ExtractBits(Register rt, Register rs, uint16_t pos, uint16_t size); void Dext(Register rt, Register rs, uint16_t pos, uint16_t size); void Dextm(Register rt, Register rs, uint16_t pos, uint16_t size); void Dextu(Register rt, Register rs, uint16_t pos, uint16_t size); void Neg_s(FPURegister fd, FPURegister fs); void Neg_d(FPURegister fd, FPURegister fs); // MIPS64 R6 instruction macros. void Bovc(Register rt, Register rs, Label* L); void Bnvc(Register rt, Register rs, Label* L); // --------------------------------------------------------------------------- // FPU macros. These do not handle special cases like NaN or +- inf. // Convert unsigned word to double. void Cvt_d_uw(FPURegister fd, FPURegister fs); void Cvt_d_uw(FPURegister fd, Register rs); // Convert unsigned long to double. void Cvt_d_ul(FPURegister fd, FPURegister fs); void Cvt_d_ul(FPURegister fd, Register rs); // Convert unsigned word to float. void Cvt_s_uw(FPURegister fd, FPURegister fs); void Cvt_s_uw(FPURegister fd, Register rs); // Convert unsigned long to float. void Cvt_s_ul(FPURegister fd, FPURegister fs); void Cvt_s_ul(FPURegister fd, Register rs); // Convert double to unsigned long. void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch); void Trunc_l_d(FPURegister fd, FPURegister fs); void Round_l_d(FPURegister fd, FPURegister fs); void Floor_l_d(FPURegister fd, FPURegister fs); void Ceil_l_d(FPURegister fd, FPURegister fs); // Convert double to unsigned word. void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch); void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch); // Convert single to unsigned word. void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch); void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch); // Convert double to unsigned long. void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch, Register result = no_reg); void Trunc_ul_d(FPURegister fd, Register rs, FPURegister scratch, Register result = no_reg); // Convert single to unsigned long. void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch, Register result = no_reg); void Trunc_ul_s(FPURegister fd, Register rs, FPURegister scratch, Register result = no_reg); void Trunc_w_d(FPURegister fd, FPURegister fs); void Round_w_d(FPURegister fd, FPURegister fs); void Floor_w_d(FPURegister fd, FPURegister fs); void Ceil_w_d(FPURegister fd, FPURegister fs); // Preserve value of a NaN operand void SubNanPreservePayloadAndSign_s(FPURegister fd, FPURegister fs, FPURegister ft); void SubNanPreservePayloadAndSign_d(FPURegister fd, FPURegister fs, FPURegister ft); void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch); // Wrapper functions for the different cmp/branch types. inline void BranchF32(Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd = PROTECT) { BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd); } inline void BranchF64(Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd = PROTECT) { BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd); } // Alternate (inline) version for better readability with USE_DELAY_SLOT. inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2) { BranchF64(target, nan, cc, cmp1, cmp2, bd); } inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2) { BranchF32(target, nan, cc, cmp1, cmp2, bd); } // Alias functions for backward compatibility. inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd = PROTECT) { BranchF64(target, nan, cc, cmp1, cmp2, bd); } inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2) { BranchF64(bd, target, nan, cc, cmp1, cmp2); } // Truncates a double using a specific rounding mode, and writes the value // to the result register. // The except_flag will contain any exceptions caused by the instruction. // If check_inexact is kDontCheckForInexactConversion, then the inexact // exception is masked. void EmitFPUTruncate(FPURoundingMode rounding_mode, Register result, DoubleRegister double_input, Register scratch, DoubleRegister double_scratch, Register except_flag, CheckForInexactConversion check_inexact = kDontCheckForInexactConversion); // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it // succeeds, otherwise falls through if result is saturated. On return // 'result' either holds answer, or is clobbered on fall through. // // Only public for the test code in test-code-stubs-arm.cc. void TryInlineTruncateDoubleToI(Register result, DoubleRegister input, Label* done); // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. // Exits with 'result' holding the answer. void TruncateDoubleToI(Register result, DoubleRegister double_input); // Performs a truncating conversion of a heap number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input' // must be different registers. Exits with 'result' holding the answer. void TruncateHeapNumberToI(Register result, Register object); // Converts the smi or heap number in object to an int32 using the rules // for ToInt32 as described in ECMAScript 9.5.: the value is truncated // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be // different registers. void TruncateNumberToI(Register object, Register result, Register heap_number_map, Register scratch, Label* not_int32); // Loads the number from object into dst register. // If |object| is neither smi nor heap number, |not_number| is jumped to // with |object| still intact. void LoadNumber(Register object, FPURegister dst, Register heap_number_map, Register scratch, Label* not_number); // Loads the number from object into double_dst in the double format. // Control will jump to not_int32 if the value cannot be exactly represented // by a 32-bit integer. // Floating point value in the 32-bit integer range that are not exact integer // won't be loaded. void LoadNumberAsInt32Double(Register object, DoubleRegister double_dst, Register heap_number_map, Register scratch1, Register scratch2, FPURegister double_scratch, Label* not_int32); // Loads the number from object into dst as a 32-bit integer. // Control will jump to not_int32 if the object cannot be exactly represented // by a 32-bit integer. // Floating point value in the 32-bit integer range that are not exact integer // won't be converted. void LoadNumberAsInt32(Register object, Register dst, Register heap_number_map, Register scratch1, Register scratch2, FPURegister double_scratch0, FPURegister double_scratch1, Label* not_int32); // Enter exit frame. // argc - argument count to be dropped by LeaveExitFrame. // save_doubles - saves FPU registers on stack, currently disabled. // stack_space - extra stack space. void EnterExitFrame(bool save_doubles, int stack_space = 0, StackFrame::Type frame_type = StackFrame::EXIT); // Leave the current exit frame. void LeaveExitFrame(bool save_doubles, Register arg_count, bool restore_context, bool do_return = NO_EMIT_RETURN, bool argument_count_is_length = false); // Get the actual activation frame alignment for target environment. static int ActivationFrameAlignment(); // Make sure the stack is aligned. Only emits code in debug mode. void AssertStackIsAligned(); void LoadContext(Register dst, int context_chain_length); // Load the global object from the current context. void LoadGlobalObject(Register dst) { LoadNativeContextSlot(Context::EXTENSION_INDEX, dst); } // Load the global proxy from the current context. void LoadGlobalProxy(Register dst) { LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); } // Conditionally load the cached Array transitioned map of type // transitioned_kind from the native context if the map in register // map_in_out is the cached Array map in the native context of // expected_kind. void LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match); void LoadNativeContextSlot(int index, Register dst); // Load the initial map from the global function. The registers // function and map can be the same, function is then overwritten. void LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch); void InitializeRootRegister() { ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); li(kRootRegister, Operand(roots_array_start)); } // ------------------------------------------------------------------------- // JavaScript invokes. // Removes current frame and its arguments from the stack preserving // the arguments and a return address pushed to the stack for the next call. // Both |callee_args_count| and |caller_args_count_reg| do not include // receiver. |callee_args_count| is not modified, |caller_args_count_reg| // is trashed. void PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1); // Invoke the JavaScript function code by either calling or jumping. void InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void FloodFunctionIfStepping(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, Register new_target, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void IsObjectJSStringType(Register object, Register scratch, Label* fail); void IsObjectNameType(Register object, Register scratch, Label* fail); // ------------------------------------------------------------------------- // Debugger Support. void DebugBreak(); // ------------------------------------------------------------------------- // Exception handling. // Push a new stack handler and link into stack handler chain. void PushStackHandler(); // Unlink the stack handler on top of the stack from the stack handler chain. // Must preserve the result register. void PopStackHandler(); // Initialize fields with filler values. Fields starting at |current_address| // not including |end_address| are overwritten with the value in |filler|. At // the end the loop, |current_address| takes the value of |end_address|. void InitializeFieldsWithFiller(Register current_address, Register end_address, Register filler); // ------------------------------------------------------------------------- // Support functions. // Machine code version of Map::GetConstructor(). // |temp| holds |result|'s map when done, and |temp2| its instance type. void GetMapConstructor(Register result, Register map, Register temp, Register temp2); // Try to get function prototype of a function and puts the value in // the result register. Checks that the function really is a // function and jumps to the miss label if the fast checks fail. The // function register will be untouched; the other registers may be // clobbered. void TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss); void GetObjectType(Register function, Register map, Register type_reg); void GetInstanceType(Register object_map, Register object_instance_type) { lbu(object_instance_type, FieldMemOperand(object_map, Map::kInstanceTypeOffset)); } // Check if a map for a JSObject indicates that the object can have both smi // and HeapObject elements. Jump to the specified label if it does not. void CheckFastObjectElements(Register map, Register scratch, Label* fail); // Check if a map for a JSObject indicates that the object has fast smi only // elements. Jump to the specified label if it does not. void CheckFastSmiElements(Register map, Register scratch, Label* fail); // Check to see if maybe_number can be stored as a double in // FastDoubleElements. If it can, store it at the index specified by key in // the FastDoubleElements array elements. Otherwise jump to fail. void StoreNumberToDoubleElements(Register value_reg, Register key_reg, Register elements_reg, Register scratch1, Register scratch2, Label* fail, int elements_offset = 0); // Compare an object's map with the specified map and its transitioned // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to // "branch_to" if the result of the comparison is "cond". If multiple map // compares are required, the compare sequences branches to early_success. void CompareMapAndBranch(Register obj, Register scratch, Handle<Map> map, Label* early_success, Condition cond, Label* branch_to); // As above, but the map of the object is already loaded into the register // which is preserved by the code generated. void CompareMapAndBranch(Register obj_map, Handle<Map> map, Label* early_success, Condition cond, Label* branch_to); // Check if the map of an object is equal to a specified map and branch to // label if not. Skip the smi check if not required (object is known to be a // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match // against maps that are ElementsKind transition maps of the specificed map. void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, SmiCheckType smi_check_type); void CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type); // Check if the map of an object is equal to a specified weak map and branch // to a specified target if equal. Skip the smi check if not required // (object is known to be a heap object) void DispatchWeakMap(Register obj, Register scratch1, Register scratch2, Handle<WeakCell> cell, Handle<Code> success, SmiCheckType smi_check_type); // If the value is a NaN, canonicalize the value else, do nothing. void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); // Get value of the weak cell. void GetWeakValue(Register value, Handle<WeakCell> cell); // Load the value of the weak cell in the value register. Branch to the // given miss label is the weak cell was cleared. void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss); // Load and check the instance type of an object for being a string. // Loads the type into the second argument register. // Returns a condition that will be enabled if the object was a string. Condition IsObjectStringType(Register obj, Register type, Register result) { ld(type, FieldMemOperand(obj, HeapObject::kMapOffset)); lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset)); And(type, type, Operand(kIsNotStringMask)); DCHECK_EQ(0u, kStringTag); return eq; } // Get the number of least significant bits from a register. void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits); void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits); // Load the value of a number object into a FPU double register. If the // object is not a number a jump to the label not_number is performed // and the FPU double register is unchanged. void ObjectToDoubleFPURegister( Register object, FPURegister value, Register scratch1, Register scratch2, Register heap_number_map, Label* not_number, ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS); // Load the value of a smi object into a FPU double register. The register // scratch1 can be the same register as smi in which case smi will hold the // untagged value afterwards. void SmiToDoubleFPURegister(Register smi, FPURegister value, Register scratch1); // ------------------------------------------------------------------------- // Overflow handling functions. // Usage: first call the appropriate arithmetic function, then call one of the // jump functions with the overflow_dst register as the second parameter. inline void AddBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Register scratch = at) { AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch); } inline void AddBranchNoOvf(Register dst, Register left, const Operand& right, Label* no_overflow_label, Register scratch = at) { AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch); } void AddBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); void AddBranchOvf(Register dst, Register left, Register right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); inline void SubBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Register scratch = at) { SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch); } inline void SubBranchNoOvf(Register dst, Register left, const Operand& right, Label* no_overflow_label, Register scratch = at) { SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch); } void SubBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); void SubBranchOvf(Register dst, Register left, Register right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); inline void MulBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Register scratch = at) { MulBranchOvf(dst, left, right, overflow_label, nullptr, scratch); } inline void MulBranchNoOvf(Register dst, Register left, const Operand& right, Label* no_overflow_label, Register scratch = at) { MulBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch); } void MulBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); void MulBranchOvf(Register dst, Register left, Register right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); inline void DaddBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Register scratch = at) { DaddBranchOvf(dst, left, right, overflow_label, nullptr, scratch); } inline void DaddBranchNoOvf(Register dst, Register left, const Operand& right, Label* no_overflow_label, Register scratch = at) { DaddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch); } void DaddBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); void DaddBranchOvf(Register dst, Register left, Register right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); inline void DsubBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Register scratch = at) { DsubBranchOvf(dst, left, right, overflow_label, nullptr, scratch); } inline void DsubBranchNoOvf(Register dst, Register left, const Operand& right, Label* no_overflow_label, Register scratch = at) { DsubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch); } void DsubBranchOvf(Register dst, Register left, const Operand& right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); void DsubBranchOvf(Register dst, Register left, Register right, Label* overflow_label, Label* no_overflow_label, Register scratch = at); void BranchOnOverflow(Label* label, Register overflow_check, BranchDelaySlot bd = PROTECT) { Branch(label, lt, overflow_check, Operand(zero_reg), bd); } void BranchOnNoOverflow(Label* label, Register overflow_check, BranchDelaySlot bd = PROTECT) { Branch(label, ge, overflow_check, Operand(zero_reg), bd); } void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) { Ret(lt, overflow_check, Operand(zero_reg), bd); } void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) { Ret(ge, overflow_check, Operand(zero_reg), bd); } // ------------------------------------------------------------------------- // Runtime calls. // See comments at the beginning of CEntryStub::Generate. inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); } inline void PrepareCEntryFunction(const ExternalReference& ref) { li(a1, Operand(ref)); } #define COND_ARGS Condition cond = al, Register rs = zero_reg, \ const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT // Call a code stub. void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(), COND_ARGS); // Tail call a code stub (jump). void TailCallStub(CodeStub* stub, COND_ARGS); #undef COND_ARGS void CallJSExitStub(CodeStub* stub); // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs, BranchDelaySlot bd = PROTECT); void CallRuntimeSaveDoubles(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, kSaveFPRegs); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, SaveFPRegsMode save_doubles = kDontSaveFPRegs, BranchDelaySlot bd = PROTECT) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, save_doubles, bd); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs, BranchDelaySlot bd = PROTECT) { CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles, bd); } // Convenience function: call an external reference. void CallExternalReference(const ExternalReference& ext, int num_arguments, BranchDelaySlot bd = PROTECT); // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid); int CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments); // Before calling a C-function from generated code, align arguments on stack // and add space for the four mips argument slots. // After aligning the frame, non-register arguments must be stored on the // stack, after the argument-slots using helper: CFunctionArgumentOperand(). // The argument count assumes all arguments are word sized. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, Register scratch); void PrepareCallCFunction(int num_reg_arguments, Register scratch); // Arguments 1-4 are placed in registers a0 thru a3 respectively. // Arguments 5..n are stored to stack using following: // sw(a4, CFunctionArgumentOperand(5)); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); void CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments); void CallCFunction(Register function, int num_reg_arguments, int num_double_arguments); void MovFromFloatResult(DoubleRegister dst); void MovFromFloatParameter(DoubleRegister dst); // There are two ways of passing double arguments on MIPS, depending on // whether soft or hard floating point ABI is used. These functions // abstract parameter passing for the three different ways we call // C functions from generated code. void MovToFloatParameter(DoubleRegister src); void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); void MovToFloatResult(DoubleRegister src); // Jump to the builtin routine. void JumpToExternalReference(const ExternalReference& builtin, BranchDelaySlot bd = PROTECT, bool builtin_exit_frame = false); struct Unresolved { int pc; uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders. const char* name; }; Handle<Object> CodeObject() { DCHECK(!code_object_.is_null()); return code_object_; } // Emit code for a truncating division by a constant. The dividend register is // unchanged and at gets clobbered. Dividend and result must be different. void TruncatingDiv(Register result, Register dividend, int32_t divisor); // ------------------------------------------------------------------------- // StatsCounter support. void SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); void IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); void DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); // ------------------------------------------------------------------------- // Debugging. // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt); void AssertFastElements(Register elements); // Like Assert(), but always enabled. void Check(Condition cc, BailoutReason reason, Register rs, Operand rt); // Print a message to stdout and abort execution. void Abort(BailoutReason msg); // Verify restrictions about code generated in stubs. void set_generating_stub(bool value) { generating_stub_ = value; } bool generating_stub() { return generating_stub_; } void set_has_frame(bool value) { has_frame_ = value; } bool has_frame() { return has_frame_; } inline bool AllowThisStubCall(CodeStub* stub); // --------------------------------------------------------------------------- // Number utilities. // Check whether the value of reg is a power of two and not zero. If not // control continues at the label not_power_of_two. If reg is a power of two // the register scratch contains the value of (reg - 1) when control falls // through. void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch, Label* not_power_of_two_or_zero); // ------------------------------------------------------------------------- // Smi utilities. // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow(). void SmiTagCheckOverflow(Register reg, Register overflow); void SmiTagCheckOverflow(Register dst, Register src, Register overflow); void SmiTag(Register dst, Register src) { STATIC_ASSERT(kSmiTag == 0); if (SmiValuesAre32Bits()) { STATIC_ASSERT(kSmiShift == 32); dsll32(dst, src, 0); } else { Addu(dst, src, src); } } void SmiTag(Register reg) { SmiTag(reg, reg); } // Try to convert int32 to smi. If the value is to large, preserve // the original value and jump to not_a_smi. Destroys scratch and // sets flags. void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) { TrySmiTag(reg, reg, scratch, not_a_smi); } void TrySmiTag(Register dst, Register src, Register scratch, Label* not_a_smi) { if (SmiValuesAre32Bits()) { SmiTag(dst, src); } else { SmiTagCheckOverflow(at, src, scratch); BranchOnOverflow(not_a_smi, scratch); mov(dst, at); } } void SmiUntag(Register dst, Register src) { if (SmiValuesAre32Bits()) { STATIC_ASSERT(kSmiShift == 32); dsra32(dst, src, 0); } else { sra(dst, src, kSmiTagSize); } } void SmiUntag(Register reg) { SmiUntag(reg, reg); } // Left-shifted from int32 equivalent of Smi. void SmiScale(Register dst, Register src, int scale) { if (SmiValuesAre32Bits()) { // The int portion is upper 32-bits of 64-bit word. dsra(dst, src, kSmiShift - scale); } else { DCHECK(scale >= kSmiTagSize); sll(dst, src, scale - kSmiTagSize); } } // Combine load with untagging or scaling. void SmiLoadUntag(Register dst, MemOperand src); void SmiLoadScale(Register dst, MemOperand src, int scale); // Returns 2 values: the Smi and a scaled version of the int within the Smi. void SmiLoadWithScale(Register d_smi, Register d_scaled, MemOperand src, int scale); // Returns 2 values: the untagged Smi (int32) and scaled version of that int. void SmiLoadUntagWithScale(Register d_int, Register d_scaled, MemOperand src, int scale); // Test if the register contains a smi. inline void SmiTst(Register value, Register scratch) { And(scratch, value, Operand(kSmiTagMask)); } inline void NonNegativeSmiTst(Register value, Register scratch) { And(scratch, value, Operand(kSmiTagMask | kSmiSignMask)); } // Untag the source value into destination and jump if source is a smi. // Source and destination can be the same register. void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case); // Untag the source value into destination and jump if source is not a smi. // Source and destination can be the same register. void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case); // Jump the register contains a smi. void JumpIfSmi(Register value, Label* smi_label, Register scratch = at, BranchDelaySlot bd = PROTECT); // Jump if the register contains a non-smi. void JumpIfNotSmi(Register value, Label* not_smi_label, Register scratch = at, BranchDelaySlot bd = PROTECT); // Jump if either of the registers contain a non-smi. void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi); // Jump if either of the registers contain a smi. void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); // Abort execution if argument is a number, enabled via --debug-code. void AssertNotNumber(Register object); // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); void AssertSmi(Register object); // Abort execution if argument is not a string, enabled via --debug-code. void AssertString(Register object); // Abort execution if argument is not a name, enabled via --debug-code. void AssertName(Register object); // Abort execution if argument is not a JSFunction, enabled via --debug-code. void AssertFunction(Register object); // Abort execution if argument is not a JSBoundFunction, // enabled via --debug-code. void AssertBoundFunction(Register object); // Abort execution if argument is not a JSGeneratorObject, // enabled via --debug-code. void AssertGeneratorObject(Register object); // Abort execution if argument is not a JSReceiver, enabled via --debug-code. void AssertReceiver(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object, Register scratch); // Abort execution if reg is not the root value with the given index, // enabled via --debug-code. void AssertIsRoot(Register reg, Heap::RootListIndex index); // --------------------------------------------------------------------------- // HeapNumber utilities. void JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number); // ------------------------------------------------------------------------- // String utilities. // Checks if both instance types are sequential one-byte strings and jumps to // label if either is not. void JumpIfBothInstanceTypesAreNotSequentialOneByte( Register first_object_instance_type, Register second_object_instance_type, Register scratch1, Register scratch2, Label* failure); // Check if instance type is sequential one-byte string and jump to label if // it is not. void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, Label* failure); void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name); void EmitSeqStringSetCharCheck(Register string, Register index, Register value, Register scratch, uint32_t encoding_mask); // Checks if both objects are sequential one-byte strings and jumps to label // if either is not. Assumes that neither object is a smi. void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure); // Checks if both objects are sequential one-byte strings and jumps to label // if either is not. void JumpIfNotBothSequentialOneByteStrings(Register first, Register second, Register scratch1, Register scratch2, Label* not_flat_one_byte_strings); void ClampUint8(Register output_reg, Register input_reg); void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, DoubleRegister temp_double_reg); void LoadInstanceDescriptors(Register map, Register descriptors); void EnumLength(Register dst, Register map); void NumberOfOwnDescriptors(Register dst, Register map); void LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor); template<typename Field> void DecodeField(Register dst, Register src) { Ext(dst, src, Field::kShift, Field::kSize); } template<typename Field> void DecodeField(Register reg) { DecodeField<Field>(reg, reg); } template<typename Field> void DecodeFieldToSmi(Register dst, Register src) { static const int shift = Field::kShift; static const int mask = Field::kMask >> shift; dsrl(dst, src, shift); And(dst, dst, Operand(mask)); dsll32(dst, dst, 0); } template<typename Field> void DecodeFieldToSmi(Register reg) { DecodeField<Field>(reg, reg); } // Generates function and stub prologue code. void StubPrologue(StackFrame::Type type); void Prologue(bool code_pre_aging); // Load the type feedback vector from a JavaScript frame. void EmitLoadTypeFeedbackVector(Register vector); // Activation support. void EnterFrame(StackFrame::Type type); void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg); void LeaveFrame(StackFrame::Type type); void EnterBuiltinFrame(Register context, Register target, Register argc); void LeaveBuiltinFrame(Register context, Register target, Register argc); // Expects object in a0 and returns map with validated enum cache // in a0. Assumes that any other register can be used as a scratch. void CheckEnumCache(Label* call_runtime); // AllocationMemento support. Arrays may have an associated AllocationMemento // object that can be checked for in order to pretransition to another type. // On entry, receiver_reg should point to the array object. scratch_reg gets // clobbered. If no info is present jump to no_memento_found, otherwise fall // through. void TestJSArrayForAllocationMemento(Register receiver_reg, Register scratch_reg, Label* no_memento_found); void JumpIfJSArrayHasAllocationMemento(Register receiver_reg, Register scratch_reg, Label* memento_found) { Label no_memento_found; TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, &no_memento_found); Branch(memento_found); bind(&no_memento_found); } // Jumps to found label if a prototype map has dictionary elements. void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, Register scratch1, Label* found); bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; } private: void CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments); inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch); inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits); void BranchShortHelperR6(int32_t offset, Label* L); void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot); bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt); bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot); bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot); void BranchAndLinkShortHelperR6(int32_t offset, Label* L); void BranchAndLinkShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot); void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT); void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT); bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt); bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot); bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot); void BranchLong(Label* L, BranchDelaySlot bdslot); void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot); // Common implementation of BranchF functions for the different formats. void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd = PROTECT); void BranchShortF(SecondaryField sizeField, Label* target, Condition cc, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd = PROTECT); // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper); void InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2); // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. void InNewSpace(Register object, Register scratch, Condition cond, // ne for new space, eq otherwise. Label* branch); // Helper for finding the mark bits for an address. Afterwards, the // bitmap register points at the word with the mark bits and the mask // the position of the first bit. Leaves addr_reg unchanged. inline void GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg); // Compute memory operands for safepoint stack slots. static int SafepointRegisterStackIndex(int reg_code); MemOperand SafepointRegisterSlot(Register reg); MemOperand SafepointRegistersAndDoublesSlot(Register reg); bool generating_stub_; bool has_frame_; bool has_double_zero_reg_set_; // This handle will be patched with the code object on installation. Handle<Object> code_object_; // Needs access to SafepointRegisterStackIndex for compiled frame // traversal. friend class StandardFrame; }; // The code patcher is used to patch (typically) small parts of code e.g. for // debugging and other types of instrumentation. When using the code patcher // the exact number of bytes specified must be emitted. It is not legal to emit // relocation information. If any of these constraints are violated it causes // an assertion to fail. class CodePatcher { public: enum FlushICache { FLUSH, DONT_FLUSH }; CodePatcher(Isolate* isolate, byte* address, int instructions, FlushICache flush_cache = FLUSH); ~CodePatcher(); // Macro assembler to emit code. MacroAssembler* masm() { return &masm_; } // Emit an instruction directly. void Emit(Instr instr); // Emit an address directly. void Emit(Address addr); // Change the condition part of an instruction leaving the rest of the current // instruction unchanged. void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode); private: byte* address_; // The address of the code being patched. int size_; // Number of bytes of the expected patch size. MacroAssembler masm_; // Macro assembler used to generate the code. FlushICache flush_cache_; // Whether to flush the I cache after patching. }; template <typename Func> void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count, Func GetLabelFunction) { // Ensure that dd-ed labels following this instruction use 8 bytes aligned // addresses. if (kArchVariant >= kMips64r6) { BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 6); // Opposite of Align(8) as we have odd number of instructions in this case. if ((pc_offset() & 7) == 0) { nop(); } addiupc(at, 5); Dlsa(at, at, index, kPointerSizeLog2); ld(at, MemOperand(at)); } else { Label here; BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 11); Align(8); push(ra); bal(&here); dsll(at, index, kPointerSizeLog2); // Branch delay slot. bind(&here); daddu(at, at, ra); pop(ra); ld(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize)); } jr(at); nop(); // Branch delay slot nop. for (size_t index = 0; index < case_count; ++index) { dd(GetLabelFunction(index)); } } #define ACCESS_MASM(masm) masm-> } // namespace internal } // namespace v8 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_