// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Review notes: // // - The use of macros in these inline functions may seem superfluous // but it is absolutely needed to make sure gcc generates optimal // code. gcc is not happy when attempting to inline too deep. // #ifndef V8_OBJECTS_INL_H_ #define V8_OBJECTS_INL_H_ #include "src/base/atomicops.h" #include "src/base/bits.h" #include "src/builtins/builtins.h" #include "src/contexts-inl.h" #include "src/conversions-inl.h" #include "src/factory.h" #include "src/field-index-inl.h" #include "src/field-type.h" #include "src/handles-inl.h" #include "src/heap/heap-inl.h" #include "src/heap/heap.h" #include "src/isolate-inl.h" #include "src/isolate.h" #include "src/keys.h" #include "src/layout-descriptor-inl.h" #include "src/lookup-cache-inl.h" #include "src/lookup.h" #include "src/objects.h" #include "src/property.h" #include "src/prototype.h" #include "src/transitions-inl.h" #include "src/type-feedback-vector-inl.h" #include "src/v8memory.h" namespace v8 { namespace internal { PropertyDetails::PropertyDetails(Smi* smi) { value_ = smi->value(); } Smi* PropertyDetails::AsSmi() const { // Ensure the upper 2 bits have the same value by sign extending it. This is // necessary to be able to use the 31st bit of the property details. int value = value_ << 1; return Smi::FromInt(value >> 1); } int PropertyDetails::field_width_in_words() const { DCHECK(location() == kField); if (!FLAG_unbox_double_fields) return 1; if (kDoubleSize == kPointerSize) return 1; return representation().IsDouble() ? kDoubleSize / kPointerSize : 1; } #define TYPE_CHECKER(type, instancetype) \ bool HeapObject::Is##type() const { \ return map()->instance_type() == instancetype; \ } #define CAST_ACCESSOR(type) \ type* type::cast(Object* object) { \ SLOW_DCHECK(object->Is##type()); \ return reinterpret_cast<type*>(object); \ } \ const type* type::cast(const Object* object) { \ SLOW_DCHECK(object->Is##type()); \ return reinterpret_cast<const type*>(object); \ } #define INT_ACCESSORS(holder, name, offset) \ int holder::name() const { return READ_INT_FIELD(this, offset); } \ void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); } #define ACCESSORS_CHECKED(holder, name, type, offset, condition) \ type* holder::name() const { \ DCHECK(condition); \ return type::cast(READ_FIELD(this, offset)); \ } \ void holder::set_##name(type* value, WriteBarrierMode mode) { \ DCHECK(condition); \ WRITE_FIELD(this, offset, value); \ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \ } #define ACCESSORS(holder, name, type, offset) \ ACCESSORS_CHECKED(holder, name, type, offset, true) // Getter that returns a Smi as an int and writes an int as a Smi. #define SMI_ACCESSORS_CHECKED(holder, name, offset, condition) \ int holder::name() const { \ DCHECK(condition); \ Object* value = READ_FIELD(this, offset); \ return Smi::cast(value)->value(); \ } \ void holder::set_##name(int value) { \ DCHECK(condition); \ WRITE_FIELD(this, offset, Smi::FromInt(value)); \ } #define SMI_ACCESSORS(holder, name, offset) \ SMI_ACCESSORS_CHECKED(holder, name, offset, true) #define SYNCHRONIZED_SMI_ACCESSORS(holder, name, offset) \ int holder::synchronized_##name() const { \ Object* value = ACQUIRE_READ_FIELD(this, offset); \ return Smi::cast(value)->value(); \ } \ void holder::synchronized_set_##name(int value) { \ RELEASE_WRITE_FIELD(this, offset, Smi::FromInt(value)); \ } #define NOBARRIER_SMI_ACCESSORS(holder, name, offset) \ int holder::nobarrier_##name() const { \ Object* value = NOBARRIER_READ_FIELD(this, offset); \ return Smi::cast(value)->value(); \ } \ void holder::nobarrier_set_##name(int value) { \ NOBARRIER_WRITE_FIELD(this, offset, Smi::FromInt(value)); \ } #define BOOL_GETTER(holder, field, name, offset) \ bool holder::name() const { \ return BooleanBit::get(field(), offset); \ } \ #define BOOL_ACCESSORS(holder, field, name, offset) \ bool holder::name() const { \ return BooleanBit::get(field(), offset); \ } \ void holder::set_##name(bool value) { \ set_##field(BooleanBit::set(field(), offset, value)); \ } bool HeapObject::IsFixedArrayBase() const { return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase(); } bool HeapObject::IsFixedArray() const { InstanceType instance_type = map()->instance_type(); return instance_type == FIXED_ARRAY_TYPE || instance_type == TRANSITION_ARRAY_TYPE; } // External objects are not extensible, so the map check is enough. bool HeapObject::IsExternal() const { return map() == GetHeap()->external_map(); } TYPE_CHECKER(HeapNumber, HEAP_NUMBER_TYPE) TYPE_CHECKER(MutableHeapNumber, MUTABLE_HEAP_NUMBER_TYPE) TYPE_CHECKER(Symbol, SYMBOL_TYPE) TYPE_CHECKER(Simd128Value, SIMD128_VALUE_TYPE) #define SIMD128_TYPE_CHECKER(TYPE, Type, type, lane_count, lane_type) \ bool HeapObject::Is##Type() const { return map() == GetHeap()->type##_map(); } SIMD128_TYPES(SIMD128_TYPE_CHECKER) #undef SIMD128_TYPE_CHECKER #define IS_TYPE_FUNCTION_DEF(type_) \ bool Object::Is##type_() const { \ return IsHeapObject() && HeapObject::cast(this)->Is##type_(); \ } HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DEF) #undef IS_TYPE_FUNCTION_DEF #define IS_TYPE_FUNCTION_DEF(Type, Value) \ bool Object::Is##Type(Isolate* isolate) const { \ return this == isolate->heap()->Value(); \ } \ bool HeapObject::Is##Type(Isolate* isolate) const { \ return this == isolate->heap()->Value(); \ } ODDBALL_LIST(IS_TYPE_FUNCTION_DEF) #undef IS_TYPE_FUNCTION_DEF bool HeapObject::IsString() const { return map()->instance_type() < FIRST_NONSTRING_TYPE; } bool HeapObject::IsName() const { return map()->instance_type() <= LAST_NAME_TYPE; } bool HeapObject::IsUniqueName() const { return IsInternalizedString() || IsSymbol(); } bool Name::IsUniqueName() const { uint32_t type = map()->instance_type(); return (type & (kIsNotStringMask | kIsNotInternalizedMask)) != (kStringTag | kNotInternalizedTag); } bool HeapObject::IsFunction() const { STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); return map()->instance_type() >= FIRST_FUNCTION_TYPE; } bool HeapObject::IsCallable() const { return map()->is_callable(); } bool HeapObject::IsConstructor() const { return map()->is_constructor(); } bool HeapObject::IsTemplateInfo() const { return IsObjectTemplateInfo() || IsFunctionTemplateInfo(); } bool HeapObject::IsInternalizedString() const { uint32_t type = map()->instance_type(); STATIC_ASSERT(kNotInternalizedTag != 0); return (type & (kIsNotStringMask | kIsNotInternalizedMask)) == (kStringTag | kInternalizedTag); } bool HeapObject::IsConsString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsCons(); } bool HeapObject::IsSlicedString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSliced(); } bool HeapObject::IsSeqString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential(); } bool HeapObject::IsSeqOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsOneByteRepresentation(); } bool HeapObject::IsSeqTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsTwoByteRepresentation(); } bool HeapObject::IsExternalString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal(); } bool HeapObject::IsExternalOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsOneByteRepresentation(); } bool HeapObject::IsExternalTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsTwoByteRepresentation(); } bool Object::HasValidElements() { // Dictionary is covered under FixedArray. return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase(); } bool Object::KeyEquals(Object* second) { Object* first = this; if (second->IsNumber()) { if (first->IsNumber()) return first->Number() == second->Number(); Object* temp = first; first = second; second = temp; } if (first->IsNumber()) { DCHECK_LE(0, first->Number()); uint32_t expected = static_cast<uint32_t>(first->Number()); uint32_t index; return Name::cast(second)->AsArrayIndex(&index) && index == expected; } return Name::cast(first)->Equals(Name::cast(second)); } bool Object::FilterKey(PropertyFilter filter) { if (IsSymbol()) { if (filter & SKIP_SYMBOLS) return true; if (Symbol::cast(this)->is_private()) return true; } else { if (filter & SKIP_STRINGS) return true; } return false; } Handle<Object> Object::NewStorageFor(Isolate* isolate, Handle<Object> object, Representation representation) { if (representation.IsSmi() && object->IsUninitialized(isolate)) { return handle(Smi::kZero, isolate); } if (!representation.IsDouble()) return object; double value; if (object->IsUninitialized(isolate)) { value = 0; } else if (object->IsMutableHeapNumber()) { value = HeapNumber::cast(*object)->value(); } else { value = object->Number(); } return isolate->factory()->NewHeapNumber(value, MUTABLE); } Handle<Object> Object::WrapForRead(Isolate* isolate, Handle<Object> object, Representation representation) { DCHECK(!object->IsUninitialized(isolate)); if (!representation.IsDouble()) { DCHECK(object->FitsRepresentation(representation)); return object; } return isolate->factory()->NewHeapNumber(HeapNumber::cast(*object)->value()); } StringShape::StringShape(const String* str) : type_(str->map()->instance_type()) { set_valid(); DCHECK((type_ & kIsNotStringMask) == kStringTag); } StringShape::StringShape(Map* map) : type_(map->instance_type()) { set_valid(); DCHECK((type_ & kIsNotStringMask) == kStringTag); } StringShape::StringShape(InstanceType t) : type_(static_cast<uint32_t>(t)) { set_valid(); DCHECK((type_ & kIsNotStringMask) == kStringTag); } bool StringShape::IsInternalized() { DCHECK(valid()); STATIC_ASSERT(kNotInternalizedTag != 0); return (type_ & (kIsNotStringMask | kIsNotInternalizedMask)) == (kStringTag | kInternalizedTag); } bool String::IsOneByteRepresentation() const { uint32_t type = map()->instance_type(); return (type & kStringEncodingMask) == kOneByteStringTag; } bool String::IsTwoByteRepresentation() const { uint32_t type = map()->instance_type(); return (type & kStringEncodingMask) == kTwoByteStringTag; } bool String::IsOneByteRepresentationUnderneath() { uint32_t type = map()->instance_type(); STATIC_ASSERT(kIsIndirectStringTag != 0); STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0); DCHECK(IsFlat()); switch (type & (kIsIndirectStringMask | kStringEncodingMask)) { case kOneByteStringTag: return true; case kTwoByteStringTag: return false; default: // Cons or sliced string. Need to go deeper. return GetUnderlying()->IsOneByteRepresentation(); } } bool String::IsTwoByteRepresentationUnderneath() { uint32_t type = map()->instance_type(); STATIC_ASSERT(kIsIndirectStringTag != 0); STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0); DCHECK(IsFlat()); switch (type & (kIsIndirectStringMask | kStringEncodingMask)) { case kOneByteStringTag: return false; case kTwoByteStringTag: return true; default: // Cons or sliced string. Need to go deeper. return GetUnderlying()->IsTwoByteRepresentation(); } } bool String::HasOnlyOneByteChars() { uint32_t type = map()->instance_type(); return (type & kOneByteDataHintMask) == kOneByteDataHintTag || IsOneByteRepresentation(); } bool StringShape::IsCons() { return (type_ & kStringRepresentationMask) == kConsStringTag; } bool StringShape::IsSliced() { return (type_ & kStringRepresentationMask) == kSlicedStringTag; } bool StringShape::IsIndirect() { return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag; } bool StringShape::IsExternal() { return (type_ & kStringRepresentationMask) == kExternalStringTag; } bool StringShape::IsSequential() { return (type_ & kStringRepresentationMask) == kSeqStringTag; } StringRepresentationTag StringShape::representation_tag() { uint32_t tag = (type_ & kStringRepresentationMask); return static_cast<StringRepresentationTag>(tag); } uint32_t StringShape::encoding_tag() { return type_ & kStringEncodingMask; } uint32_t StringShape::full_representation_tag() { return (type_ & (kStringRepresentationMask | kStringEncodingMask)); } STATIC_ASSERT((kStringRepresentationMask | kStringEncodingMask) == Internals::kFullStringRepresentationMask); STATIC_ASSERT(static_cast<uint32_t>(kStringEncodingMask) == Internals::kStringEncodingMask); bool StringShape::IsSequentialOneByte() { return full_representation_tag() == (kSeqStringTag | kOneByteStringTag); } bool StringShape::IsSequentialTwoByte() { return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag); } bool StringShape::IsExternalOneByte() { return full_representation_tag() == (kExternalStringTag | kOneByteStringTag); } STATIC_ASSERT((kExternalStringTag | kOneByteStringTag) == Internals::kExternalOneByteRepresentationTag); STATIC_ASSERT(v8::String::ONE_BYTE_ENCODING == kOneByteStringTag); bool StringShape::IsExternalTwoByte() { return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag); } STATIC_ASSERT((kExternalStringTag | kTwoByteStringTag) == Internals::kExternalTwoByteRepresentationTag); STATIC_ASSERT(v8::String::TWO_BYTE_ENCODING == kTwoByteStringTag); uc32 FlatStringReader::Get(int index) { if (is_one_byte_) { return Get<uint8_t>(index); } else { return Get<uc16>(index); } } template <typename Char> Char FlatStringReader::Get(int index) { DCHECK_EQ(is_one_byte_, sizeof(Char) == 1); DCHECK(0 <= index && index <= length_); if (sizeof(Char) == 1) { return static_cast<Char>(static_cast<const uint8_t*>(start_)[index]); } else { return static_cast<Char>(static_cast<const uc16*>(start_)[index]); } } Handle<Object> StringTableShape::AsHandle(Isolate* isolate, HashTableKey* key) { return key->AsHandle(isolate); } Handle<Object> CompilationCacheShape::AsHandle(Isolate* isolate, HashTableKey* key) { return key->AsHandle(isolate); } Handle<Object> CodeCacheHashTableShape::AsHandle(Isolate* isolate, HashTableKey* key) { return key->AsHandle(isolate); } template <typename Char> class SequentialStringKey : public HashTableKey { public: explicit SequentialStringKey(Vector<const Char> string, uint32_t seed) : string_(string), hash_field_(0), seed_(seed) { } uint32_t Hash() override { hash_field_ = StringHasher::HashSequentialString<Char>(string_.start(), string_.length(), seed_); uint32_t result = hash_field_ >> String::kHashShift; DCHECK(result != 0); // Ensure that the hash value of 0 is never computed. return result; } uint32_t HashForObject(Object* other) override { return String::cast(other)->Hash(); } Vector<const Char> string_; uint32_t hash_field_; uint32_t seed_; }; class OneByteStringKey : public SequentialStringKey<uint8_t> { public: OneByteStringKey(Vector<const uint8_t> str, uint32_t seed) : SequentialStringKey<uint8_t>(str, seed) { } bool IsMatch(Object* string) override { return String::cast(string)->IsOneByteEqualTo(string_); } Handle<Object> AsHandle(Isolate* isolate) override; }; class SeqOneByteSubStringKey : public HashTableKey { public: SeqOneByteSubStringKey(Handle<SeqOneByteString> string, int from, int length) : string_(string), from_(from), length_(length) { DCHECK(string_->IsSeqOneByteString()); } uint32_t Hash() override { DCHECK(length_ >= 0); DCHECK(from_ + length_ <= string_->length()); const uint8_t* chars = string_->GetChars() + from_; hash_field_ = StringHasher::HashSequentialString( chars, length_, string_->GetHeap()->HashSeed()); uint32_t result = hash_field_ >> String::kHashShift; DCHECK(result != 0); // Ensure that the hash value of 0 is never computed. return result; } uint32_t HashForObject(Object* other) override { return String::cast(other)->Hash(); } bool IsMatch(Object* string) override; Handle<Object> AsHandle(Isolate* isolate) override; private: Handle<SeqOneByteString> string_; int from_; int length_; uint32_t hash_field_; }; class TwoByteStringKey : public SequentialStringKey<uc16> { public: explicit TwoByteStringKey(Vector<const uc16> str, uint32_t seed) : SequentialStringKey<uc16>(str, seed) { } bool IsMatch(Object* string) override { return String::cast(string)->IsTwoByteEqualTo(string_); } Handle<Object> AsHandle(Isolate* isolate) override; }; // Utf8StringKey carries a vector of chars as key. class Utf8StringKey : public HashTableKey { public: explicit Utf8StringKey(Vector<const char> string, uint32_t seed) : string_(string), hash_field_(0), seed_(seed) { } bool IsMatch(Object* string) override { return String::cast(string)->IsUtf8EqualTo(string_); } uint32_t Hash() override { if (hash_field_ != 0) return hash_field_ >> String::kHashShift; hash_field_ = StringHasher::ComputeUtf8Hash(string_, seed_, &chars_); uint32_t result = hash_field_ >> String::kHashShift; DCHECK(result != 0); // Ensure that the hash value of 0 is never computed. return result; } uint32_t HashForObject(Object* other) override { return String::cast(other)->Hash(); } Handle<Object> AsHandle(Isolate* isolate) override { if (hash_field_ == 0) Hash(); return isolate->factory()->NewInternalizedStringFromUtf8( string_, chars_, hash_field_); } Vector<const char> string_; uint32_t hash_field_; int chars_; // Caches the number of characters when computing the hash code. uint32_t seed_; }; bool Object::IsNumber() const { return IsSmi() || IsHeapNumber(); } TYPE_CHECKER(ByteArray, BYTE_ARRAY_TYPE) TYPE_CHECKER(BytecodeArray, BYTECODE_ARRAY_TYPE) TYPE_CHECKER(FreeSpace, FREE_SPACE_TYPE) bool HeapObject::IsFiller() const { InstanceType instance_type = map()->instance_type(); return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE; } #define TYPED_ARRAY_TYPE_CHECKER(Type, type, TYPE, ctype, size) \ TYPE_CHECKER(Fixed##Type##Array, FIXED_##TYPE##_ARRAY_TYPE) TYPED_ARRAYS(TYPED_ARRAY_TYPE_CHECKER) #undef TYPED_ARRAY_TYPE_CHECKER bool HeapObject::IsFixedTypedArrayBase() const { InstanceType instance_type = map()->instance_type(); return (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE && instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE); } bool HeapObject::IsJSReceiver() const { STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); return map()->instance_type() >= FIRST_JS_RECEIVER_TYPE; } bool HeapObject::IsJSObject() const { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return map()->IsJSObjectMap(); } bool HeapObject::IsJSProxy() const { return map()->IsJSProxyMap(); } bool HeapObject::IsJSArrayIterator() const { InstanceType instance_type = map()->instance_type(); return (instance_type >= FIRST_ARRAY_ITERATOR_TYPE && instance_type <= LAST_ARRAY_ITERATOR_TYPE); } TYPE_CHECKER(JSSet, JS_SET_TYPE) TYPE_CHECKER(JSMap, JS_MAP_TYPE) TYPE_CHECKER(JSSetIterator, JS_SET_ITERATOR_TYPE) TYPE_CHECKER(JSMapIterator, JS_MAP_ITERATOR_TYPE) TYPE_CHECKER(JSWeakMap, JS_WEAK_MAP_TYPE) TYPE_CHECKER(JSWeakSet, JS_WEAK_SET_TYPE) TYPE_CHECKER(JSContextExtensionObject, JS_CONTEXT_EXTENSION_OBJECT_TYPE) TYPE_CHECKER(Map, MAP_TYPE) TYPE_CHECKER(FixedDoubleArray, FIXED_DOUBLE_ARRAY_TYPE) TYPE_CHECKER(WeakFixedArray, FIXED_ARRAY_TYPE) TYPE_CHECKER(TransitionArray, TRANSITION_ARRAY_TYPE) TYPE_CHECKER(JSStringIterator, JS_STRING_ITERATOR_TYPE) TYPE_CHECKER(JSFixedArrayIterator, JS_FIXED_ARRAY_ITERATOR_TYPE) bool HeapObject::IsJSWeakCollection() const { return IsJSWeakMap() || IsJSWeakSet(); } bool HeapObject::IsJSCollection() const { return IsJSMap() || IsJSSet(); } bool HeapObject::IsDescriptorArray() const { return IsFixedArray(); } bool HeapObject::IsFrameArray() const { return IsFixedArray(); } bool HeapObject::IsArrayList() const { return IsFixedArray(); } bool HeapObject::IsRegExpMatchInfo() const { return IsFixedArray(); } bool Object::IsLayoutDescriptor() const { return IsSmi() || IsFixedTypedArrayBase(); } bool HeapObject::IsTypeFeedbackVector() const { return IsFixedArray(); } bool HeapObject::IsTypeFeedbackMetadata() const { return IsFixedArray(); } bool HeapObject::IsLiteralsArray() const { return IsFixedArray(); } bool HeapObject::IsDeoptimizationInputData() const { // Must be a fixed array. if (!IsFixedArray()) return false; // There's no sure way to detect the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can // check that the length is zero or else the fixed size plus a multiple of // the entry size. int length = FixedArray::cast(this)->length(); if (length == 0) return true; length -= DeoptimizationInputData::kFirstDeoptEntryIndex; return length >= 0 && length % DeoptimizationInputData::kDeoptEntrySize == 0; } bool HeapObject::IsDeoptimizationOutputData() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can check // that the length is plausible though. if (FixedArray::cast(this)->length() % 2 != 0) return false; return true; } bool HeapObject::IsHandlerTable() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a handler table array. return true; } bool HeapObject::IsTemplateList() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a template list. if (FixedArray::cast(this)->length() < 1) return false; return true; } bool HeapObject::IsDependentCode() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a dependent codes array. return true; } bool HeapObject::IsContext() const { Map* map = this->map(); Heap* heap = GetHeap(); return ( map == heap->function_context_map() || map == heap->catch_context_map() || map == heap->with_context_map() || map == heap->native_context_map() || map == heap->block_context_map() || map == heap->module_context_map() || map == heap->script_context_map() || map == heap->debug_evaluate_context_map()); } bool HeapObject::IsNativeContext() const { return map() == GetHeap()->native_context_map(); } bool HeapObject::IsScriptContextTable() const { return map() == GetHeap()->script_context_table_map(); } bool HeapObject::IsScopeInfo() const { return map() == GetHeap()->scope_info_map(); } bool HeapObject::IsModuleInfo() const { return map() == GetHeap()->module_info_map(); } TYPE_CHECKER(JSBoundFunction, JS_BOUND_FUNCTION_TYPE) TYPE_CHECKER(JSFunction, JS_FUNCTION_TYPE) template <> inline bool Is<JSFunction>(Object* obj) { return obj->IsJSFunction(); } TYPE_CHECKER(Code, CODE_TYPE) TYPE_CHECKER(Oddball, ODDBALL_TYPE) TYPE_CHECKER(Cell, CELL_TYPE) TYPE_CHECKER(PropertyCell, PROPERTY_CELL_TYPE) TYPE_CHECKER(WeakCell, WEAK_CELL_TYPE) TYPE_CHECKER(SharedFunctionInfo, SHARED_FUNCTION_INFO_TYPE) TYPE_CHECKER(JSDate, JS_DATE_TYPE) TYPE_CHECKER(JSError, JS_ERROR_TYPE) TYPE_CHECKER(JSGeneratorObject, JS_GENERATOR_OBJECT_TYPE) TYPE_CHECKER(JSMessageObject, JS_MESSAGE_OBJECT_TYPE) TYPE_CHECKER(JSPromise, JS_PROMISE_TYPE) TYPE_CHECKER(JSValue, JS_VALUE_TYPE) bool HeapObject::IsAbstractCode() const { return IsBytecodeArray() || IsCode(); } bool HeapObject::IsStringWrapper() const { return IsJSValue() && JSValue::cast(this)->value()->IsString(); } TYPE_CHECKER(Foreign, FOREIGN_TYPE) bool HeapObject::IsBoolean() const { return IsOddball() && ((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0); } TYPE_CHECKER(JSArray, JS_ARRAY_TYPE) TYPE_CHECKER(JSArrayBuffer, JS_ARRAY_BUFFER_TYPE) TYPE_CHECKER(JSTypedArray, JS_TYPED_ARRAY_TYPE) TYPE_CHECKER(JSDataView, JS_DATA_VIEW_TYPE) bool HeapObject::IsJSArrayBufferView() const { return IsJSDataView() || IsJSTypedArray(); } TYPE_CHECKER(JSRegExp, JS_REGEXP_TYPE) template <> inline bool Is<JSArray>(Object* obj) { return obj->IsJSArray(); } bool HeapObject::IsHashTable() const { return map() == GetHeap()->hash_table_map(); } bool HeapObject::IsWeakHashTable() const { return IsHashTable(); } bool HeapObject::IsDictionary() const { return IsHashTable() && this != GetHeap()->string_table(); } bool Object::IsNameDictionary() const { return IsDictionary(); } bool Object::IsGlobalDictionary() const { return IsDictionary(); } bool Object::IsSeededNumberDictionary() const { return IsDictionary(); } bool HeapObject::IsUnseededNumberDictionary() const { return map() == GetHeap()->unseeded_number_dictionary_map(); } bool HeapObject::IsStringTable() const { return IsHashTable(); } bool HeapObject::IsStringSet() const { return IsHashTable(); } bool HeapObject::IsObjectHashSet() const { return IsHashTable(); } bool HeapObject::IsNormalizedMapCache() const { return NormalizedMapCache::IsNormalizedMapCache(this); } int NormalizedMapCache::GetIndex(Handle<Map> map) { return map->Hash() % NormalizedMapCache::kEntries; } bool NormalizedMapCache::IsNormalizedMapCache(const HeapObject* obj) { if (!obj->IsFixedArray()) return false; if (FixedArray::cast(obj)->length() != NormalizedMapCache::kEntries) { return false; } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { reinterpret_cast<NormalizedMapCache*>(const_cast<HeapObject*>(obj)) ->NormalizedMapCacheVerify(); } #endif return true; } bool HeapObject::IsCompilationCacheTable() const { return IsHashTable(); } bool HeapObject::IsCodeCacheHashTable() const { return IsHashTable(); } bool HeapObject::IsMapCache() const { return IsHashTable(); } bool HeapObject::IsObjectHashTable() const { return IsHashTable(); } bool HeapObject::IsOrderedHashTable() const { return map() == GetHeap()->ordered_hash_table_map(); } bool Object::IsOrderedHashSet() const { return IsOrderedHashTable(); } bool Object::IsOrderedHashMap() const { return IsOrderedHashTable(); } bool Object::IsPrimitive() const { return IsSmi() || HeapObject::cast(this)->map()->IsPrimitiveMap(); } bool HeapObject::IsJSGlobalProxy() const { bool result = map()->instance_type() == JS_GLOBAL_PROXY_TYPE; DCHECK(!result || map()->is_access_check_needed()); return result; } TYPE_CHECKER(JSGlobalObject, JS_GLOBAL_OBJECT_TYPE) bool HeapObject::IsUndetectable() const { return map()->is_undetectable(); } bool HeapObject::IsAccessCheckNeeded() const { if (IsJSGlobalProxy()) { const JSGlobalProxy* proxy = JSGlobalProxy::cast(this); JSGlobalObject* global = proxy->GetIsolate()->context()->global_object(); return proxy->IsDetachedFrom(global); } return map()->is_access_check_needed(); } bool HeapObject::IsStruct() const { switch (map()->instance_type()) { #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE default: return false; } } #define MAKE_STRUCT_PREDICATE(NAME, Name, name) \ bool Object::Is##Name() const { \ return IsHeapObject() && HeapObject::cast(this)->Is##Name(); \ } \ bool HeapObject::Is##Name() const { \ return map()->instance_type() == NAME##_TYPE; \ } STRUCT_LIST(MAKE_STRUCT_PREDICATE) #undef MAKE_STRUCT_PREDICATE double Object::Number() const { DCHECK(IsNumber()); return IsSmi() ? static_cast<double>(reinterpret_cast<const Smi*>(this)->value()) : reinterpret_cast<const HeapNumber*>(this)->value(); } bool Object::IsNaN() const { return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value()); } bool Object::IsMinusZero() const { return this->IsHeapNumber() && i::IsMinusZero(HeapNumber::cast(this)->value()); } Representation Object::OptimalRepresentation() { if (!FLAG_track_fields) return Representation::Tagged(); if (IsSmi()) { return Representation::Smi(); } else if (FLAG_track_double_fields && IsHeapNumber()) { return Representation::Double(); } else if (FLAG_track_computed_fields && IsUninitialized(HeapObject::cast(this)->GetIsolate())) { return Representation::None(); } else if (FLAG_track_heap_object_fields) { DCHECK(IsHeapObject()); return Representation::HeapObject(); } else { return Representation::Tagged(); } } ElementsKind Object::OptimalElementsKind() { if (IsSmi()) return FAST_SMI_ELEMENTS; if (IsNumber()) return FAST_DOUBLE_ELEMENTS; return FAST_ELEMENTS; } bool Object::FitsRepresentation(Representation representation) { if (FLAG_track_fields && representation.IsSmi()) { return IsSmi(); } else if (FLAG_track_double_fields && representation.IsDouble()) { return IsMutableHeapNumber() || IsNumber(); } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { return IsHeapObject(); } else if (FLAG_track_fields && representation.IsNone()) { return false; } return true; } bool Object::ToUint32(uint32_t* value) { if (IsSmi()) { int num = Smi::cast(this)->value(); if (num < 0) return false; *value = static_cast<uint32_t>(num); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); if (num < 0) return false; uint32_t uint_value = FastD2UI(num); if (FastUI2D(uint_value) == num) { *value = uint_value; return true; } } return false; } // static MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate, Handle<Object> object) { if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object); return ToObject(isolate, object, isolate->native_context()); } // static MaybeHandle<Name> Object::ToName(Isolate* isolate, Handle<Object> input) { if (input->IsName()) return Handle<Name>::cast(input); return ConvertToName(isolate, input); } // static MaybeHandle<Object> Object::ToPrimitive(Handle<Object> input, ToPrimitiveHint hint) { if (input->IsPrimitive()) return input; return JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), hint); } bool Object::HasSpecificClassOf(String* name) { return this->IsJSObject() && (JSObject::cast(this)->class_name() == name); } MaybeHandle<Object> Object::GetProperty(Handle<Object> object, Handle<Name> name) { LookupIterator it(object, name); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle<Object> JSReceiver::GetProperty(Handle<JSReceiver> receiver, Handle<Name> name) { LookupIterator it(receiver, name, receiver); if (!it.IsFound()) return it.factory()->undefined_value(); return Object::GetProperty(&it); } MaybeHandle<Object> Object::GetElement(Isolate* isolate, Handle<Object> object, uint32_t index) { LookupIterator it(isolate, object, index); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle<Object> JSReceiver::GetElement(Isolate* isolate, Handle<JSReceiver> receiver, uint32_t index) { LookupIterator it(isolate, receiver, index, receiver); if (!it.IsFound()) return it.factory()->undefined_value(); return Object::GetProperty(&it); } Handle<Object> JSReceiver::GetDataProperty(Handle<JSReceiver> object, Handle<Name> name) { LookupIterator it(object, name, object, LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); if (!it.IsFound()) return it.factory()->undefined_value(); return GetDataProperty(&it); } MaybeHandle<Object> Object::SetElement(Isolate* isolate, Handle<Object> object, uint32_t index, Handle<Object> value, LanguageMode language_mode) { LookupIterator it(isolate, object, index); MAYBE_RETURN_NULL( SetProperty(&it, value, language_mode, MAY_BE_STORE_FROM_KEYED)); return value; } MaybeHandle<Object> JSReceiver::GetPrototype(Isolate* isolate, Handle<JSReceiver> receiver) { // We don't expect access checks to be needed on JSProxy objects. DCHECK(!receiver->IsAccessCheckNeeded() || receiver->IsJSObject()); PrototypeIterator iter(isolate, receiver, kStartAtReceiver, PrototypeIterator::END_AT_NON_HIDDEN); do { if (!iter.AdvanceFollowingProxies()) return MaybeHandle<Object>(); } while (!iter.IsAtEnd()); return PrototypeIterator::GetCurrent(iter); } MaybeHandle<Object> JSReceiver::GetProperty(Isolate* isolate, Handle<JSReceiver> receiver, const char* name) { Handle<String> str = isolate->factory()->InternalizeUtf8String(name); return GetProperty(receiver, str); } // static MUST_USE_RESULT MaybeHandle<FixedArray> JSReceiver::OwnPropertyKeys( Handle<JSReceiver> object) { return KeyAccumulator::GetKeys(object, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES, GetKeysConversion::kConvertToString); } bool JSObject::PrototypeHasNoElements(Isolate* isolate, JSObject* object) { DisallowHeapAllocation no_gc; HeapObject* prototype = HeapObject::cast(object->map()->prototype()); HeapObject* null = isolate->heap()->null_value(); HeapObject* empty = isolate->heap()->empty_fixed_array(); while (prototype != null) { Map* map = prototype->map(); if (map->instance_type() <= LAST_CUSTOM_ELEMENTS_RECEIVER) return false; if (JSObject::cast(prototype)->elements() != empty) return false; prototype = HeapObject::cast(map->prototype()); } return true; } #define FIELD_ADDR(p, offset) \ (reinterpret_cast<byte*>(p) + offset - kHeapObjectTag) #define FIELD_ADDR_CONST(p, offset) \ (reinterpret_cast<const byte*>(p) + offset - kHeapObjectTag) #define READ_FIELD(p, offset) \ (*reinterpret_cast<Object* const*>(FIELD_ADDR_CONST(p, offset))) #define ACQUIRE_READ_FIELD(p, offset) \ reinterpret_cast<Object*>(base::Acquire_Load( \ reinterpret_cast<const base::AtomicWord*>(FIELD_ADDR_CONST(p, offset)))) #define NOBARRIER_READ_FIELD(p, offset) \ reinterpret_cast<Object*>(base::NoBarrier_Load( \ reinterpret_cast<const base::AtomicWord*>(FIELD_ADDR_CONST(p, offset)))) #define WRITE_FIELD(p, offset, value) \ (*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value) #define RELEASE_WRITE_FIELD(p, offset, value) \ base::Release_Store( \ reinterpret_cast<base::AtomicWord*>(FIELD_ADDR(p, offset)), \ reinterpret_cast<base::AtomicWord>(value)); #define NOBARRIER_WRITE_FIELD(p, offset, value) \ base::NoBarrier_Store( \ reinterpret_cast<base::AtomicWord*>(FIELD_ADDR(p, offset)), \ reinterpret_cast<base::AtomicWord>(value)); #define WRITE_BARRIER(heap, object, offset, value) \ heap->incremental_marking()->RecordWrite( \ object, HeapObject::RawField(object, offset), value); \ heap->RecordWrite(object, offset, value); #define FIXED_ARRAY_ELEMENTS_WRITE_BARRIER(heap, array, start, length) \ do { \ heap->RecordFixedArrayElements(array, start, length); \ heap->incremental_marking()->IterateBlackObject(array); \ } while (false) #define CONDITIONAL_WRITE_BARRIER(heap, object, offset, value, mode) \ if (mode != SKIP_WRITE_BARRIER) { \ if (mode == UPDATE_WRITE_BARRIER) { \ heap->incremental_marking()->RecordWrite( \ object, HeapObject::RawField(object, offset), value); \ } \ heap->RecordWrite(object, offset, value); \ } #define READ_DOUBLE_FIELD(p, offset) \ ReadDoubleValue(FIELD_ADDR_CONST(p, offset)) #define WRITE_DOUBLE_FIELD(p, offset, value) \ WriteDoubleValue(FIELD_ADDR(p, offset), value) #define READ_INT_FIELD(p, offset) \ (*reinterpret_cast<const int*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT_FIELD(p, offset, value) \ (*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value) #define READ_INTPTR_FIELD(p, offset) \ (*reinterpret_cast<const intptr_t*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_INTPTR_FIELD(p, offset, value) \ (*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value) #define READ_UINT8_FIELD(p, offset) \ (*reinterpret_cast<const uint8_t*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_UINT8_FIELD(p, offset, value) \ (*reinterpret_cast<uint8_t*>(FIELD_ADDR(p, offset)) = value) #define READ_INT8_FIELD(p, offset) \ (*reinterpret_cast<const int8_t*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT8_FIELD(p, offset, value) \ (*reinterpret_cast<int8_t*>(FIELD_ADDR(p, offset)) = value) #define READ_UINT16_FIELD(p, offset) \ (*reinterpret_cast<const uint16_t*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_UINT16_FIELD(p, offset, value) \ (*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value) #define READ_INT16_FIELD(p, offset) \ (*reinterpret_cast<const int16_t*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT16_FIELD(p, offset, value) \ (*reinterpret_cast<int16_t*>(FIELD_ADDR(p, offset)) = value) #define READ_UINT32_FIELD(p, offset) \ (*reinterpret_cast<const uint32_t*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_UINT32_FIELD(p, offset, value) \ (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value) #define READ_INT32_FIELD(p, offset) \ (*reinterpret_cast<const int32_t*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT32_FIELD(p, offset, value) \ (*reinterpret_cast<int32_t*>(FIELD_ADDR(p, offset)) = value) #define READ_FLOAT_FIELD(p, offset) \ (*reinterpret_cast<const float*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_FLOAT_FIELD(p, offset, value) \ (*reinterpret_cast<float*>(FIELD_ADDR(p, offset)) = value) #define READ_UINT64_FIELD(p, offset) \ (*reinterpret_cast<const uint64_t*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_UINT64_FIELD(p, offset, value) \ (*reinterpret_cast<uint64_t*>(FIELD_ADDR(p, offset)) = value) #define READ_INT64_FIELD(p, offset) \ (*reinterpret_cast<const int64_t*>(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT64_FIELD(p, offset, value) \ (*reinterpret_cast<int64_t*>(FIELD_ADDR(p, offset)) = value) #define READ_BYTE_FIELD(p, offset) \ (*reinterpret_cast<const byte*>(FIELD_ADDR_CONST(p, offset))) #define NOBARRIER_READ_BYTE_FIELD(p, offset) \ static_cast<byte>(base::NoBarrier_Load( \ reinterpret_cast<base::Atomic8*>(FIELD_ADDR(p, offset)))) #define WRITE_BYTE_FIELD(p, offset, value) \ (*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value) #define NOBARRIER_WRITE_BYTE_FIELD(p, offset, value) \ base::NoBarrier_Store( \ reinterpret_cast<base::Atomic8*>(FIELD_ADDR(p, offset)), \ static_cast<base::Atomic8>(value)); Object** HeapObject::RawField(HeapObject* obj, int byte_offset) { return reinterpret_cast<Object**>(FIELD_ADDR(obj, byte_offset)); } MapWord MapWord::FromMap(const Map* map) { return MapWord(reinterpret_cast<uintptr_t>(map)); } Map* MapWord::ToMap() { return reinterpret_cast<Map*>(value_); } bool MapWord::IsForwardingAddress() const { return HAS_SMI_TAG(reinterpret_cast<Object*>(value_)); } MapWord MapWord::FromForwardingAddress(HeapObject* object) { Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag; return MapWord(reinterpret_cast<uintptr_t>(raw)); } HeapObject* MapWord::ToForwardingAddress() { DCHECK(IsForwardingAddress()); return HeapObject::FromAddress(reinterpret_cast<Address>(value_)); } #ifdef VERIFY_HEAP void HeapObject::VerifyObjectField(int offset) { VerifyPointer(READ_FIELD(this, offset)); } void HeapObject::VerifySmiField(int offset) { CHECK(READ_FIELD(this, offset)->IsSmi()); } #endif Heap* HeapObject::GetHeap() const { Heap* heap = MemoryChunk::FromAddress( reinterpret_cast<Address>(const_cast<HeapObject*>(this))) ->heap(); SLOW_DCHECK(heap != NULL); return heap; } Isolate* HeapObject::GetIsolate() const { return GetHeap()->isolate(); } Map* HeapObject::map() const { #ifdef DEBUG // Clear mark potentially added by PathTracer. uintptr_t raw_value = map_word().ToRawValue() & ~static_cast<uintptr_t>(PathTracer::kMarkTag); return MapWord::FromRawValue(raw_value).ToMap(); #else return map_word().ToMap(); #endif } void HeapObject::set_map(Map* value) { set_map_word(MapWord::FromMap(value)); if (value != NULL) { // TODO(1600) We are passing NULL as a slot because maps can never be on // evacuation candidate. value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value); } } Map* HeapObject::synchronized_map() { return synchronized_map_word().ToMap(); } void HeapObject::synchronized_set_map(Map* value) { synchronized_set_map_word(MapWord::FromMap(value)); if (value != NULL) { // TODO(1600) We are passing NULL as a slot because maps can never be on // evacuation candidate. value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value); } } void HeapObject::synchronized_set_map_no_write_barrier(Map* value) { synchronized_set_map_word(MapWord::FromMap(value)); } // Unsafe accessor omitting write barrier. void HeapObject::set_map_no_write_barrier(Map* value) { set_map_word(MapWord::FromMap(value)); } MapWord HeapObject::map_word() const { return MapWord( reinterpret_cast<uintptr_t>(NOBARRIER_READ_FIELD(this, kMapOffset))); } void HeapObject::set_map_word(MapWord map_word) { NOBARRIER_WRITE_FIELD( this, kMapOffset, reinterpret_cast<Object*>(map_word.value_)); } MapWord HeapObject::synchronized_map_word() const { return MapWord( reinterpret_cast<uintptr_t>(ACQUIRE_READ_FIELD(this, kMapOffset))); } void HeapObject::synchronized_set_map_word(MapWord map_word) { RELEASE_WRITE_FIELD( this, kMapOffset, reinterpret_cast<Object*>(map_word.value_)); } int HeapObject::Size() { return SizeFromMap(map()); } double HeapNumber::value() const { return READ_DOUBLE_FIELD(this, kValueOffset); } void HeapNumber::set_value(double value) { WRITE_DOUBLE_FIELD(this, kValueOffset, value); } int HeapNumber::get_exponent() { return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >> kExponentShift) - kExponentBias; } int HeapNumber::get_sign() { return READ_INT_FIELD(this, kExponentOffset) & kSignMask; } bool Simd128Value::Equals(Simd128Value* that) { // TODO(bmeurer): This doesn't match the SIMD.js specification, but it seems // to be consistent with what the CompareICStub does, and what is tested in // the current SIMD.js testsuite. if (this == that) return true; #define SIMD128_VALUE(TYPE, Type, type, lane_count, lane_type) \ if (this->Is##Type()) { \ if (!that->Is##Type()) return false; \ return Type::cast(this)->Equals(Type::cast(that)); \ } SIMD128_TYPES(SIMD128_VALUE) #undef SIMD128_VALUE return false; } // static bool Simd128Value::Equals(Handle<Simd128Value> one, Handle<Simd128Value> two) { return one->Equals(*two); } #define SIMD128_VALUE_EQUALS(TYPE, Type, type, lane_count, lane_type) \ bool Type::Equals(Type* that) { \ for (int lane = 0; lane < lane_count; ++lane) { \ if (this->get_lane(lane) != that->get_lane(lane)) return false; \ } \ return true; \ } SIMD128_TYPES(SIMD128_VALUE_EQUALS) #undef SIMD128_VALUE_EQUALS #if defined(V8_TARGET_LITTLE_ENDIAN) #define SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \ lane_type value = \ READ_##field_type##_FIELD(this, kValueOffset + lane * field_size); #elif defined(V8_TARGET_BIG_ENDIAN) #define SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \ lane_type value = READ_##field_type##_FIELD( \ this, kValueOffset + (lane_count - lane - 1) * field_size); #else #error Unknown byte ordering #endif #if defined(V8_TARGET_LITTLE_ENDIAN) #define SIMD128_WRITE_LANE(lane_count, field_type, field_size, value) \ WRITE_##field_type##_FIELD(this, kValueOffset + lane * field_size, value); #elif defined(V8_TARGET_BIG_ENDIAN) #define SIMD128_WRITE_LANE(lane_count, field_type, field_size, value) \ WRITE_##field_type##_FIELD( \ this, kValueOffset + (lane_count - lane - 1) * field_size, value); #else #error Unknown byte ordering #endif #define SIMD128_NUMERIC_LANE_FNS(type, lane_type, lane_count, field_type, \ field_size) \ lane_type type::get_lane(int lane) const { \ DCHECK(lane < lane_count && lane >= 0); \ SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \ return value; \ } \ \ void type::set_lane(int lane, lane_type value) { \ DCHECK(lane < lane_count && lane >= 0); \ SIMD128_WRITE_LANE(lane_count, field_type, field_size, value) \ } SIMD128_NUMERIC_LANE_FNS(Float32x4, float, 4, FLOAT, kFloatSize) SIMD128_NUMERIC_LANE_FNS(Int32x4, int32_t, 4, INT32, kInt32Size) SIMD128_NUMERIC_LANE_FNS(Uint32x4, uint32_t, 4, UINT32, kInt32Size) SIMD128_NUMERIC_LANE_FNS(Int16x8, int16_t, 8, INT16, kShortSize) SIMD128_NUMERIC_LANE_FNS(Uint16x8, uint16_t, 8, UINT16, kShortSize) SIMD128_NUMERIC_LANE_FNS(Int8x16, int8_t, 16, INT8, kCharSize) SIMD128_NUMERIC_LANE_FNS(Uint8x16, uint8_t, 16, UINT8, kCharSize) #undef SIMD128_NUMERIC_LANE_FNS #define SIMD128_BOOLEAN_LANE_FNS(type, lane_type, lane_count, field_type, \ field_size) \ bool type::get_lane(int lane) const { \ DCHECK(lane < lane_count && lane >= 0); \ SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \ DCHECK(value == 0 || value == -1); \ return value != 0; \ } \ \ void type::set_lane(int lane, bool value) { \ DCHECK(lane < lane_count && lane >= 0); \ int32_t int_val = value ? -1 : 0; \ SIMD128_WRITE_LANE(lane_count, field_type, field_size, int_val) \ } SIMD128_BOOLEAN_LANE_FNS(Bool32x4, int32_t, 4, INT32, kInt32Size) SIMD128_BOOLEAN_LANE_FNS(Bool16x8, int16_t, 8, INT16, kShortSize) SIMD128_BOOLEAN_LANE_FNS(Bool8x16, int8_t, 16, INT8, kCharSize) #undef SIMD128_BOOLEAN_LANE_FNS #undef SIMD128_READ_LANE #undef SIMD128_WRITE_LANE ACCESSORS(JSReceiver, properties, FixedArray, kPropertiesOffset) Object** FixedArray::GetFirstElementAddress() { return reinterpret_cast<Object**>(FIELD_ADDR(this, OffsetOfElementAt(0))); } bool FixedArray::ContainsOnlySmisOrHoles() { Object* the_hole = GetHeap()->the_hole_value(); Object** current = GetFirstElementAddress(); for (int i = 0; i < length(); ++i) { Object* candidate = *current++; if (!candidate->IsSmi() && candidate != the_hole) return false; } return true; } FixedArrayBase* JSObject::elements() const { Object* array = READ_FIELD(this, kElementsOffset); return static_cast<FixedArrayBase*>(array); } void AllocationSite::Initialize() { set_transition_info(Smi::kZero); SetElementsKind(GetInitialFastElementsKind()); set_nested_site(Smi::kZero); set_pretenure_data(0); set_pretenure_create_count(0); set_dependent_code(DependentCode::cast(GetHeap()->empty_fixed_array()), SKIP_WRITE_BARRIER); } bool AllocationSite::IsZombie() { return pretenure_decision() == kZombie; } bool AllocationSite::IsMaybeTenure() { return pretenure_decision() == kMaybeTenure; } bool AllocationSite::PretenuringDecisionMade() { return pretenure_decision() != kUndecided; } void AllocationSite::MarkZombie() { DCHECK(!IsZombie()); Initialize(); set_pretenure_decision(kZombie); } ElementsKind AllocationSite::GetElementsKind() { DCHECK(!SitePointsToLiteral()); int value = Smi::cast(transition_info())->value(); return ElementsKindBits::decode(value); } void AllocationSite::SetElementsKind(ElementsKind kind) { int value = Smi::cast(transition_info())->value(); set_transition_info(Smi::FromInt(ElementsKindBits::update(value, kind)), SKIP_WRITE_BARRIER); } bool AllocationSite::CanInlineCall() { int value = Smi::cast(transition_info())->value(); return DoNotInlineBit::decode(value) == 0; } void AllocationSite::SetDoNotInlineCall() { int value = Smi::cast(transition_info())->value(); set_transition_info(Smi::FromInt(DoNotInlineBit::update(value, true)), SKIP_WRITE_BARRIER); } bool AllocationSite::SitePointsToLiteral() { // If transition_info is a smi, then it represents an ElementsKind // for a constructed array. Otherwise, it must be a boilerplate // for an object or array literal. return transition_info()->IsJSArray() || transition_info()->IsJSObject(); } // Heuristic: We only need to create allocation site info if the boilerplate // elements kind is the initial elements kind. AllocationSiteMode AllocationSite::GetMode( ElementsKind boilerplate_elements_kind) { if (IsFastSmiElementsKind(boilerplate_elements_kind)) { return TRACK_ALLOCATION_SITE; } return DONT_TRACK_ALLOCATION_SITE; } inline bool AllocationSite::CanTrack(InstanceType type) { if (FLAG_allocation_site_pretenuring) { return type == JS_ARRAY_TYPE || type == JS_OBJECT_TYPE || type < FIRST_NONSTRING_TYPE; } return type == JS_ARRAY_TYPE; } AllocationSite::PretenureDecision AllocationSite::pretenure_decision() { int value = pretenure_data(); return PretenureDecisionBits::decode(value); } void AllocationSite::set_pretenure_decision(PretenureDecision decision) { int value = pretenure_data(); set_pretenure_data(PretenureDecisionBits::update(value, decision)); } bool AllocationSite::deopt_dependent_code() { int value = pretenure_data(); return DeoptDependentCodeBit::decode(value); } void AllocationSite::set_deopt_dependent_code(bool deopt) { int value = pretenure_data(); set_pretenure_data(DeoptDependentCodeBit::update(value, deopt)); } int AllocationSite::memento_found_count() { int value = pretenure_data(); return MementoFoundCountBits::decode(value); } inline void AllocationSite::set_memento_found_count(int count) { int value = pretenure_data(); // Verify that we can count more mementos than we can possibly find in one // new space collection. DCHECK((GetHeap()->MaxSemiSpaceSize() / (Heap::kMinObjectSizeInWords * kPointerSize + AllocationMemento::kSize)) < MementoFoundCountBits::kMax); DCHECK(count < MementoFoundCountBits::kMax); set_pretenure_data(MementoFoundCountBits::update(value, count)); } int AllocationSite::memento_create_count() { return pretenure_create_count(); } void AllocationSite::set_memento_create_count(int count) { set_pretenure_create_count(count); } bool AllocationSite::IncrementMementoFoundCount(int increment) { if (IsZombie()) return false; int value = memento_found_count(); set_memento_found_count(value + increment); return memento_found_count() >= kPretenureMinimumCreated; } inline void AllocationSite::IncrementMementoCreateCount() { DCHECK(FLAG_allocation_site_pretenuring); int value = memento_create_count(); set_memento_create_count(value + 1); } inline bool AllocationSite::MakePretenureDecision( PretenureDecision current_decision, double ratio, bool maximum_size_scavenge) { // Here we just allow state transitions from undecided or maybe tenure // to don't tenure, maybe tenure, or tenure. if ((current_decision == kUndecided || current_decision == kMaybeTenure)) { if (ratio >= kPretenureRatio) { // We just transition into tenure state when the semi-space was at // maximum capacity. if (maximum_size_scavenge) { set_deopt_dependent_code(true); set_pretenure_decision(kTenure); // Currently we just need to deopt when we make a state transition to // tenure. return true; } set_pretenure_decision(kMaybeTenure); } else { set_pretenure_decision(kDontTenure); } } return false; } inline bool AllocationSite::DigestPretenuringFeedback( bool maximum_size_scavenge) { bool deopt = false; int create_count = memento_create_count(); int found_count = memento_found_count(); bool minimum_mementos_created = create_count >= kPretenureMinimumCreated; double ratio = minimum_mementos_created || FLAG_trace_pretenuring_statistics ? static_cast<double>(found_count) / create_count : 0.0; PretenureDecision current_decision = pretenure_decision(); if (minimum_mementos_created) { deopt = MakePretenureDecision( current_decision, ratio, maximum_size_scavenge); } if (FLAG_trace_pretenuring_statistics) { PrintIsolate(GetIsolate(), "pretenuring: AllocationSite(%p): (created, found, ratio) " "(%d, %d, %f) %s => %s\n", static_cast<void*>(this), create_count, found_count, ratio, PretenureDecisionName(current_decision), PretenureDecisionName(pretenure_decision())); } // Clear feedback calculation fields until the next gc. set_memento_found_count(0); set_memento_create_count(0); return deopt; } bool AllocationMemento::IsValid() { return allocation_site()->IsAllocationSite() && !AllocationSite::cast(allocation_site())->IsZombie(); } AllocationSite* AllocationMemento::GetAllocationSite() { DCHECK(IsValid()); return AllocationSite::cast(allocation_site()); } Address AllocationMemento::GetAllocationSiteUnchecked() { return reinterpret_cast<Address>(allocation_site()); } void JSObject::EnsureCanContainHeapObjectElements(Handle<JSObject> object) { JSObject::ValidateElements(object); ElementsKind elements_kind = object->map()->elements_kind(); if (!IsFastObjectElementsKind(elements_kind)) { if (IsFastHoleyElementsKind(elements_kind)) { TransitionElementsKind(object, FAST_HOLEY_ELEMENTS); } else { TransitionElementsKind(object, FAST_ELEMENTS); } } } void JSObject::EnsureCanContainElements(Handle<JSObject> object, Object** objects, uint32_t count, EnsureElementsMode mode) { ElementsKind current_kind = object->GetElementsKind(); ElementsKind target_kind = current_kind; { DisallowHeapAllocation no_allocation; DCHECK(mode != ALLOW_COPIED_DOUBLE_ELEMENTS); bool is_holey = IsFastHoleyElementsKind(current_kind); if (current_kind == FAST_HOLEY_ELEMENTS) return; Object* the_hole = object->GetHeap()->the_hole_value(); for (uint32_t i = 0; i < count; ++i) { Object* current = *objects++; if (current == the_hole) { is_holey = true; target_kind = GetHoleyElementsKind(target_kind); } else if (!current->IsSmi()) { if (mode == ALLOW_CONVERTED_DOUBLE_ELEMENTS && current->IsNumber()) { if (IsFastSmiElementsKind(target_kind)) { if (is_holey) { target_kind = FAST_HOLEY_DOUBLE_ELEMENTS; } else { target_kind = FAST_DOUBLE_ELEMENTS; } } } else if (is_holey) { target_kind = FAST_HOLEY_ELEMENTS; break; } else { target_kind = FAST_ELEMENTS; } } } } if (target_kind != current_kind) { TransitionElementsKind(object, target_kind); } } void JSObject::EnsureCanContainElements(Handle<JSObject> object, Handle<FixedArrayBase> elements, uint32_t length, EnsureElementsMode mode) { Heap* heap = object->GetHeap(); if (elements->map() != heap->fixed_double_array_map()) { DCHECK(elements->map() == heap->fixed_array_map() || elements->map() == heap->fixed_cow_array_map()); if (mode == ALLOW_COPIED_DOUBLE_ELEMENTS) { mode = DONT_ALLOW_DOUBLE_ELEMENTS; } Object** objects = Handle<FixedArray>::cast(elements)->GetFirstElementAddress(); EnsureCanContainElements(object, objects, length, mode); return; } DCHECK(mode == ALLOW_COPIED_DOUBLE_ELEMENTS); if (object->GetElementsKind() == FAST_HOLEY_SMI_ELEMENTS) { TransitionElementsKind(object, FAST_HOLEY_DOUBLE_ELEMENTS); } else if (object->GetElementsKind() == FAST_SMI_ELEMENTS) { Handle<FixedDoubleArray> double_array = Handle<FixedDoubleArray>::cast(elements); for (uint32_t i = 0; i < length; ++i) { if (double_array->is_the_hole(i)) { TransitionElementsKind(object, FAST_HOLEY_DOUBLE_ELEMENTS); return; } } TransitionElementsKind(object, FAST_DOUBLE_ELEMENTS); } } void JSObject::SetMapAndElements(Handle<JSObject> object, Handle<Map> new_map, Handle<FixedArrayBase> value) { JSObject::MigrateToMap(object, new_map); DCHECK((object->map()->has_fast_smi_or_object_elements() || (*value == object->GetHeap()->empty_fixed_array()) || object->map()->has_fast_string_wrapper_elements()) == (value->map() == object->GetHeap()->fixed_array_map() || value->map() == object->GetHeap()->fixed_cow_array_map())); DCHECK((*value == object->GetHeap()->empty_fixed_array()) || (object->map()->has_fast_double_elements() == value->IsFixedDoubleArray())); object->set_elements(*value); } void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) { WRITE_FIELD(this, kElementsOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, value, mode); } void JSObject::initialize_elements() { FixedArrayBase* elements = map()->GetInitialElements(); WRITE_FIELD(this, kElementsOffset, elements); } InterceptorInfo* JSObject::GetIndexedInterceptor() { return map()->GetIndexedInterceptor(); } InterceptorInfo* JSObject::GetNamedInterceptor() { return map()->GetNamedInterceptor(); } InterceptorInfo* Map::GetNamedInterceptor() { DCHECK(has_named_interceptor()); JSFunction* constructor = JSFunction::cast(GetConstructor()); DCHECK(constructor->shared()->IsApiFunction()); return InterceptorInfo::cast( constructor->shared()->get_api_func_data()->named_property_handler()); } InterceptorInfo* Map::GetIndexedInterceptor() { DCHECK(has_indexed_interceptor()); JSFunction* constructor = JSFunction::cast(GetConstructor()); DCHECK(constructor->shared()->IsApiFunction()); return InterceptorInfo::cast( constructor->shared()->get_api_func_data()->indexed_property_handler()); } double Oddball::to_number_raw() const { return READ_DOUBLE_FIELD(this, kToNumberRawOffset); } void Oddball::set_to_number_raw(double value) { WRITE_DOUBLE_FIELD(this, kToNumberRawOffset, value); } ACCESSORS(Oddball, to_string, String, kToStringOffset) ACCESSORS(Oddball, to_number, Object, kToNumberOffset) ACCESSORS(Oddball, type_of, String, kTypeOfOffset) byte Oddball::kind() const { return Smi::cast(READ_FIELD(this, kKindOffset))->value(); } void Oddball::set_kind(byte value) { WRITE_FIELD(this, kKindOffset, Smi::FromInt(value)); } // static Handle<Object> Oddball::ToNumber(Handle<Oddball> input) { return handle(input->to_number(), input->GetIsolate()); } ACCESSORS(Cell, value, Object, kValueOffset) ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(PropertyCell, property_details_raw, Object, kDetailsOffset) ACCESSORS(PropertyCell, value, Object, kValueOffset) PropertyDetails PropertyCell::property_details() { return PropertyDetails(Smi::cast(property_details_raw())); } void PropertyCell::set_property_details(PropertyDetails details) { set_property_details_raw(details.AsSmi()); } Object* WeakCell::value() const { return READ_FIELD(this, kValueOffset); } void WeakCell::clear() { // Either the garbage collector is clearing the cell or we are simply // initializing the root empty weak cell. DCHECK(GetHeap()->gc_state() == Heap::MARK_COMPACT || this == GetHeap()->empty_weak_cell()); WRITE_FIELD(this, kValueOffset, Smi::kZero); } void WeakCell::initialize(HeapObject* val) { WRITE_FIELD(this, kValueOffset, val); // We just have to execute the generational barrier here because we never // mark through a weak cell and collect evacuation candidates when we process // all weak cells. WriteBarrierMode mode = Marking::IsBlack(ObjectMarking::MarkBitFrom(this)) ? UPDATE_WRITE_BARRIER : UPDATE_WEAK_WRITE_BARRIER; CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kValueOffset, val, mode); } bool WeakCell::cleared() const { return value() == Smi::kZero; } Object* WeakCell::next() const { return READ_FIELD(this, kNextOffset); } void WeakCell::set_next(Object* val, WriteBarrierMode mode) { WRITE_FIELD(this, kNextOffset, val); if (mode == UPDATE_WRITE_BARRIER) { WRITE_BARRIER(GetHeap(), this, kNextOffset, val); } } void WeakCell::clear_next(Object* the_hole_value) { DCHECK_EQ(GetHeap()->the_hole_value(), the_hole_value); set_next(the_hole_value, SKIP_WRITE_BARRIER); } bool WeakCell::next_cleared() { return next()->IsTheHole(GetIsolate()); } int JSObject::GetHeaderSize() { return GetHeaderSize(map()->instance_type()); } int JSObject::GetHeaderSize(InstanceType type) { // Check for the most common kind of JavaScript object before // falling into the generic switch. This speeds up the internal // field operations considerably on average. if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize; switch (type) { case JS_API_OBJECT_TYPE: case JS_SPECIAL_API_OBJECT_TYPE: return JSObject::kHeaderSize; case JS_GENERATOR_OBJECT_TYPE: return JSGeneratorObject::kSize; case JS_GLOBAL_PROXY_TYPE: return JSGlobalProxy::kSize; case JS_GLOBAL_OBJECT_TYPE: return JSGlobalObject::kSize; case JS_BOUND_FUNCTION_TYPE: return JSBoundFunction::kSize; case JS_FUNCTION_TYPE: return JSFunction::kSize; case JS_VALUE_TYPE: return JSValue::kSize; case JS_DATE_TYPE: return JSDate::kSize; case JS_ARRAY_TYPE: return JSArray::kSize; case JS_ARRAY_BUFFER_TYPE: return JSArrayBuffer::kSize; case JS_TYPED_ARRAY_TYPE: return JSTypedArray::kSize; case JS_DATA_VIEW_TYPE: return JSDataView::kSize; case JS_SET_TYPE: return JSSet::kSize; case JS_MAP_TYPE: return JSMap::kSize; case JS_SET_ITERATOR_TYPE: return JSSetIterator::kSize; case JS_MAP_ITERATOR_TYPE: return JSMapIterator::kSize; case JS_WEAK_MAP_TYPE: return JSWeakMap::kSize; case JS_WEAK_SET_TYPE: return JSWeakSet::kSize; case JS_PROMISE_TYPE: return JSObject::kHeaderSize; case JS_REGEXP_TYPE: return JSRegExp::kSize; case JS_CONTEXT_EXTENSION_OBJECT_TYPE: return JSObject::kHeaderSize; case JS_MESSAGE_OBJECT_TYPE: return JSMessageObject::kSize; case JS_ARGUMENTS_TYPE: return JSArgumentsObject::kHeaderSize; case JS_ERROR_TYPE: return JSObject::kHeaderSize; case JS_STRING_ITERATOR_TYPE: return JSStringIterator::kSize; case JS_FIXED_ARRAY_ITERATOR_TYPE: return JSFixedArrayIterator::kHeaderSize; default: UNREACHABLE(); return 0; } } int JSObject::GetInternalFieldCount(Map* map) { int instance_size = map->instance_size(); if (instance_size == kVariableSizeSentinel) return 0; InstanceType instance_type = map->instance_type(); return ((instance_size - GetHeaderSize(instance_type)) >> kPointerSizeLog2) - map->GetInObjectProperties(); } int JSObject::GetInternalFieldCount() { return GetInternalFieldCount(map()); } int JSObject::GetInternalFieldOffset(int index) { DCHECK(index < GetInternalFieldCount() && index >= 0); return GetHeaderSize() + (kPointerSize * index); } Object* JSObject::GetInternalField(int index) { DCHECK(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index)); } void JSObject::SetInternalField(int index, Object* value) { DCHECK(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. int offset = GetHeaderSize() + (kPointerSize * index); WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } void JSObject::SetInternalField(int index, Smi* value) { DCHECK(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. int offset = GetHeaderSize() + (kPointerSize * index); WRITE_FIELD(this, offset, value); } bool JSObject::IsUnboxedDoubleField(FieldIndex index) { if (!FLAG_unbox_double_fields) return false; return map()->IsUnboxedDoubleField(index); } bool Map::IsUnboxedDoubleField(FieldIndex index) { if (!FLAG_unbox_double_fields) return false; if (index.is_hidden_field() || !index.is_inobject()) return false; return !layout_descriptor()->IsTagged(index.property_index()); } // Access fast-case object properties at index. The use of these routines // is needed to correctly distinguish between properties stored in-object and // properties stored in the properties array. Object* JSObject::RawFastPropertyAt(FieldIndex index) { DCHECK(!IsUnboxedDoubleField(index)); if (index.is_inobject()) { return READ_FIELD(this, index.offset()); } else { return properties()->get(index.outobject_array_index()); } } double JSObject::RawFastDoublePropertyAt(FieldIndex index) { DCHECK(IsUnboxedDoubleField(index)); return READ_DOUBLE_FIELD(this, index.offset()); } void JSObject::RawFastPropertyAtPut(FieldIndex index, Object* value) { if (index.is_inobject()) { int offset = index.offset(); WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } else { properties()->set(index.outobject_array_index(), value); } } void JSObject::RawFastDoublePropertyAtPut(FieldIndex index, double value) { WRITE_DOUBLE_FIELD(this, index.offset(), value); } void JSObject::FastPropertyAtPut(FieldIndex index, Object* value) { if (IsUnboxedDoubleField(index)) { DCHECK(value->IsMutableHeapNumber()); RawFastDoublePropertyAtPut(index, HeapNumber::cast(value)->value()); } else { RawFastPropertyAtPut(index, value); } } void JSObject::WriteToField(int descriptor, PropertyDetails details, Object* value) { DCHECK(details.type() == DATA); DisallowHeapAllocation no_gc; FieldIndex index = FieldIndex::ForDescriptor(map(), descriptor); if (details.representation().IsDouble()) { // Nothing more to be done. if (value->IsUninitialized(this->GetIsolate())) { return; } if (IsUnboxedDoubleField(index)) { RawFastDoublePropertyAtPut(index, value->Number()); } else { HeapNumber* box = HeapNumber::cast(RawFastPropertyAt(index)); DCHECK(box->IsMutableHeapNumber()); box->set_value(value->Number()); } } else { RawFastPropertyAtPut(index, value); } } void JSObject::WriteToField(int descriptor, Object* value) { DescriptorArray* desc = map()->instance_descriptors(); PropertyDetails details = desc->GetDetails(descriptor); WriteToField(descriptor, details, value); } int JSObject::GetInObjectPropertyOffset(int index) { return map()->GetInObjectPropertyOffset(index); } Object* JSObject::InObjectPropertyAt(int index) { int offset = GetInObjectPropertyOffset(index); return READ_FIELD(this, offset); } Object* JSObject::InObjectPropertyAtPut(int index, Object* value, WriteBarrierMode mode) { // Adjust for the number of properties stored in the object. int offset = GetInObjectPropertyOffset(index); WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); return value; } void JSObject::InitializeBody(Map* map, int start_offset, Object* pre_allocated_value, Object* filler_value) { DCHECK(!filler_value->IsHeapObject() || !GetHeap()->InNewSpace(filler_value)); DCHECK(!pre_allocated_value->IsHeapObject() || !GetHeap()->InNewSpace(pre_allocated_value)); int size = map->instance_size(); int offset = start_offset; if (filler_value != pre_allocated_value) { int end_of_pre_allocated_offset = size - (map->unused_property_fields() * kPointerSize); DCHECK_LE(kHeaderSize, end_of_pre_allocated_offset); while (offset < end_of_pre_allocated_offset) { WRITE_FIELD(this, offset, pre_allocated_value); offset += kPointerSize; } } while (offset < size) { WRITE_FIELD(this, offset, filler_value); offset += kPointerSize; } } bool Map::TooManyFastProperties(StoreFromKeyed store_mode) { if (unused_property_fields() != 0) return false; if (is_prototype_map()) return false; int minimum = store_mode == CERTAINLY_NOT_STORE_FROM_KEYED ? 128 : 12; int limit = Max(minimum, GetInObjectProperties()); int external = NumberOfFields() - GetInObjectProperties(); return external > limit; } void Struct::InitializeBody(int object_size) { Object* value = GetHeap()->undefined_value(); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } bool Object::ToArrayLength(uint32_t* index) { return Object::ToUint32(index); } bool Object::ToArrayIndex(uint32_t* index) { return Object::ToUint32(index) && *index != kMaxUInt32; } void Object::VerifyApiCallResultType() { #if DEBUG if (IsSmi()) return; DCHECK(IsHeapObject()); Isolate* isolate = HeapObject::cast(this)->GetIsolate(); if (!(IsString() || IsSymbol() || IsJSReceiver() || IsHeapNumber() || IsSimd128Value() || IsUndefined(isolate) || IsTrue(isolate) || IsFalse(isolate) || IsNull(isolate))) { FATAL("API call returned invalid object"); } #endif // DEBUG } Object* FixedArray::get(int index) const { SLOW_DCHECK(index >= 0 && index < this->length()); return READ_FIELD(this, kHeaderSize + index * kPointerSize); } Handle<Object> FixedArray::get(FixedArray* array, int index, Isolate* isolate) { return handle(array->get(index), isolate); } template <class T> MaybeHandle<T> FixedArray::GetValue(Isolate* isolate, int index) const { Object* obj = get(index); if (obj->IsUndefined(isolate)) return MaybeHandle<T>(); return Handle<T>(T::cast(obj), isolate); } template <class T> Handle<T> FixedArray::GetValueChecked(Isolate* isolate, int index) const { Object* obj = get(index); CHECK(!obj->IsUndefined(isolate)); return Handle<T>(T::cast(obj), isolate); } bool FixedArray::is_the_hole(Isolate* isolate, int index) { return get(index)->IsTheHole(isolate); } void FixedArray::set(int index, Smi* value) { DCHECK(map() != GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(reinterpret_cast<Object*>(value)->IsSmi()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); } void FixedArray::set(int index, Object* value) { DCHECK_NE(GetHeap()->fixed_cow_array_map(), map()); DCHECK(IsFixedArray()); DCHECK_GE(index, 0); DCHECK_LT(index, this->length()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } double FixedDoubleArray::get_scalar(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(!is_the_hole(index)); return READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize); } uint64_t FixedDoubleArray::get_representation(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); DCHECK(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kDoubleSize; return READ_UINT64_FIELD(this, offset); } Handle<Object> FixedDoubleArray::get(FixedDoubleArray* array, int index, Isolate* isolate) { if (array->is_the_hole(index)) { return isolate->factory()->the_hole_value(); } else { return isolate->factory()->NewNumber(array->get_scalar(index)); } } void FixedDoubleArray::set(int index, double value) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; if (std::isnan(value)) { WRITE_DOUBLE_FIELD(this, offset, std::numeric_limits<double>::quiet_NaN()); } else { WRITE_DOUBLE_FIELD(this, offset, value); } DCHECK(!is_the_hole(index)); } void FixedDoubleArray::set_the_hole(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; WRITE_UINT64_FIELD(this, offset, kHoleNanInt64); } bool FixedDoubleArray::is_the_hole(Isolate* isolate, int index) { return is_the_hole(index); } bool FixedDoubleArray::is_the_hole(int index) { return get_representation(index) == kHoleNanInt64; } double* FixedDoubleArray::data_start() { return reinterpret_cast<double*>(FIELD_ADDR(this, kHeaderSize)); } void FixedDoubleArray::FillWithHoles(int from, int to) { for (int i = from; i < to; i++) { set_the_hole(i); } } Object* WeakFixedArray::Get(int index) const { Object* raw = FixedArray::cast(this)->get(index + kFirstIndex); if (raw->IsSmi()) return raw; DCHECK(raw->IsWeakCell()); return WeakCell::cast(raw)->value(); } bool WeakFixedArray::IsEmptySlot(int index) const { DCHECK(index < Length()); return Get(index)->IsSmi(); } void WeakFixedArray::Clear(int index) { FixedArray::cast(this)->set(index + kFirstIndex, Smi::kZero); } int WeakFixedArray::Length() const { return FixedArray::cast(this)->length() - kFirstIndex; } int WeakFixedArray::last_used_index() const { return Smi::cast(FixedArray::cast(this)->get(kLastUsedIndexIndex))->value(); } void WeakFixedArray::set_last_used_index(int index) { FixedArray::cast(this)->set(kLastUsedIndexIndex, Smi::FromInt(index)); } template <class T> T* WeakFixedArray::Iterator::Next() { if (list_ != NULL) { // Assert that list did not change during iteration. DCHECK_EQ(last_used_index_, list_->last_used_index()); while (index_ < list_->Length()) { Object* item = list_->Get(index_++); if (item != Empty()) return T::cast(item); } list_ = NULL; } return NULL; } int ArrayList::Length() { if (FixedArray::cast(this)->length() == 0) return 0; return Smi::cast(FixedArray::cast(this)->get(kLengthIndex))->value(); } void ArrayList::SetLength(int length) { return FixedArray::cast(this)->set(kLengthIndex, Smi::FromInt(length)); } Object* ArrayList::Get(int index) { return FixedArray::cast(this)->get(kFirstIndex + index); } Object** ArrayList::Slot(int index) { return data_start() + kFirstIndex + index; } void ArrayList::Set(int index, Object* obj, WriteBarrierMode mode) { FixedArray::cast(this)->set(kFirstIndex + index, obj, mode); } void ArrayList::Clear(int index, Object* undefined) { DCHECK(undefined->IsUndefined(GetIsolate())); FixedArray::cast(this) ->set(kFirstIndex + index, undefined, SKIP_WRITE_BARRIER); } int RegExpMatchInfo::NumberOfCaptureRegisters() { DCHECK_GE(length(), kLastMatchOverhead); Object* obj = get(kNumberOfCapturesIndex); return Smi::cast(obj)->value(); } void RegExpMatchInfo::SetNumberOfCaptureRegisters(int value) { DCHECK_GE(length(), kLastMatchOverhead); set(kNumberOfCapturesIndex, Smi::FromInt(value)); } String* RegExpMatchInfo::LastSubject() { DCHECK_GE(length(), kLastMatchOverhead); Object* obj = get(kLastSubjectIndex); return String::cast(obj); } void RegExpMatchInfo::SetLastSubject(String* value) { DCHECK_GE(length(), kLastMatchOverhead); set(kLastSubjectIndex, value); } Object* RegExpMatchInfo::LastInput() { DCHECK_GE(length(), kLastMatchOverhead); return get(kLastInputIndex); } void RegExpMatchInfo::SetLastInput(Object* value) { DCHECK_GE(length(), kLastMatchOverhead); set(kLastInputIndex, value); } int RegExpMatchInfo::Capture(int i) { DCHECK_LT(i, NumberOfCaptureRegisters()); Object* obj = get(kFirstCaptureIndex + i); return Smi::cast(obj)->value(); } void RegExpMatchInfo::SetCapture(int i, int value) { DCHECK_LT(i, NumberOfCaptureRegisters()); set(kFirstCaptureIndex + i, Smi::FromInt(value)); } WriteBarrierMode HeapObject::GetWriteBarrierMode( const DisallowHeapAllocation& promise) { Heap* heap = GetHeap(); if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER; if (heap->InNewSpace(this)) return SKIP_WRITE_BARRIER; return UPDATE_WRITE_BARRIER; } AllocationAlignment HeapObject::RequiredAlignment() { #ifdef V8_HOST_ARCH_32_BIT if ((IsFixedFloat64Array() || IsFixedDoubleArray()) && FixedArrayBase::cast(this)->length() != 0) { return kDoubleAligned; } if (IsHeapNumber()) return kDoubleUnaligned; if (IsSimd128Value()) return kSimd128Unaligned; #endif // V8_HOST_ARCH_32_BIT return kWordAligned; } void FixedArray::set(int index, Object* value, WriteBarrierMode mode) { DCHECK(map() != GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kPointerSize; NOBARRIER_WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); } void FixedArray::NoWriteBarrierSet(FixedArray* array, int index, Object* value) { DCHECK(array->map() != array->GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < array->length()); DCHECK(!array->GetHeap()->InNewSpace(value)); NOBARRIER_WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value); } void FixedArray::set_undefined(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(!GetHeap()->InNewSpace(GetHeap()->undefined_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->undefined_value()); } void FixedArray::set_null(int index) { DCHECK(index >= 0 && index < this->length()); DCHECK(!GetHeap()->InNewSpace(GetHeap()->null_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->null_value()); } void FixedArray::set_the_hole(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(!GetHeap()->InNewSpace(GetHeap()->the_hole_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->the_hole_value()); } void FixedArray::FillWithHoles(int from, int to) { for (int i = from; i < to; i++) { set_the_hole(i); } } Object** FixedArray::data_start() { return HeapObject::RawField(this, kHeaderSize); } Object** FixedArray::RawFieldOfElementAt(int index) { return HeapObject::RawField(this, OffsetOfElementAt(index)); } #define DEFINE_FRAME_ARRAY_ACCESSORS(name, type) \ type* FrameArray::name(int frame_ix) const { \ Object* obj = \ get(kFirstIndex + frame_ix * kElementsPerFrame + k##name##Offset); \ return type::cast(obj); \ } \ \ void FrameArray::Set##name(int frame_ix, type* value) { \ set(kFirstIndex + frame_ix * kElementsPerFrame + k##name##Offset, value); \ } FRAME_ARRAY_FIELD_LIST(DEFINE_FRAME_ARRAY_ACCESSORS) #undef DEFINE_FRAME_ARRAY_ACCESSORS bool FrameArray::IsWasmFrame(int frame_ix) const { const int flags = Flags(frame_ix)->value(); return (flags & kIsWasmFrame) != 0; } bool FrameArray::IsAsmJsWasmFrame(int frame_ix) const { const int flags = Flags(frame_ix)->value(); return (flags & kIsAsmJsWasmFrame) != 0; } int FrameArray::FrameCount() const { const int frame_count = Smi::cast(get(kFrameCountIndex))->value(); DCHECK_LE(0, frame_count); return frame_count; } bool DescriptorArray::IsEmpty() { DCHECK(length() >= kFirstIndex || this == GetHeap()->empty_descriptor_array()); return length() < kFirstIndex; } int DescriptorArray::number_of_descriptors() { DCHECK(length() >= kFirstIndex || IsEmpty()); int len = length(); return len == 0 ? 0 : Smi::cast(get(kDescriptorLengthIndex))->value(); } int DescriptorArray::number_of_descriptors_storage() { int len = length(); return len == 0 ? 0 : (len - kFirstIndex) / kDescriptorSize; } int DescriptorArray::NumberOfSlackDescriptors() { return number_of_descriptors_storage() - number_of_descriptors(); } void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) { WRITE_FIELD( this, kDescriptorLengthOffset, Smi::FromInt(number_of_descriptors)); } inline int DescriptorArray::number_of_entries() { return number_of_descriptors(); } bool DescriptorArray::HasEnumCache() { return !IsEmpty() && !get(kEnumCacheIndex)->IsSmi(); } void DescriptorArray::CopyEnumCacheFrom(DescriptorArray* array) { set(kEnumCacheIndex, array->get(kEnumCacheIndex)); } FixedArray* DescriptorArray::GetEnumCache() { DCHECK(HasEnumCache()); FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex)); return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex)); } bool DescriptorArray::HasEnumIndicesCache() { if (IsEmpty()) return false; Object* object = get(kEnumCacheIndex); if (object->IsSmi()) return false; FixedArray* bridge = FixedArray::cast(object); return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi(); } FixedArray* DescriptorArray::GetEnumIndicesCache() { DCHECK(HasEnumIndicesCache()); FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex)); return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex)); } Object** DescriptorArray::GetEnumCacheSlot() { DCHECK(HasEnumCache()); return HeapObject::RawField(reinterpret_cast<HeapObject*>(this), kEnumCacheOffset); } // Perform a binary search in a fixed array. template <SearchMode search_mode, typename T> int BinarySearch(T* array, Name* name, int valid_entries, int* out_insertion_index) { DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == NULL); int low = 0; int high = array->number_of_entries() - 1; uint32_t hash = name->hash_field(); int limit = high; DCHECK(low <= high); while (low != high) { int mid = low + (high - low) / 2; Name* mid_name = array->GetSortedKey(mid); uint32_t mid_hash = mid_name->hash_field(); if (mid_hash >= hash) { high = mid; } else { low = mid + 1; } } for (; low <= limit; ++low) { int sort_index = array->GetSortedKeyIndex(low); Name* entry = array->GetKey(sort_index); uint32_t current_hash = entry->hash_field(); if (current_hash != hash) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = sort_index + (current_hash > hash ? 0 : 1); } return T::kNotFound; } if (entry == name) { if (search_mode == ALL_ENTRIES || sort_index < valid_entries) { return sort_index; } return T::kNotFound; } } if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = limit + 1; } return T::kNotFound; } // Perform a linear search in this fixed array. len is the number of entry // indices that are valid. template <SearchMode search_mode, typename T> int LinearSearch(T* array, Name* name, int valid_entries, int* out_insertion_index) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { uint32_t hash = name->hash_field(); int len = array->number_of_entries(); for (int number = 0; number < len; number++) { int sorted_index = array->GetSortedKeyIndex(number); Name* entry = array->GetKey(sorted_index); uint32_t current_hash = entry->hash_field(); if (current_hash > hash) { *out_insertion_index = sorted_index; return T::kNotFound; } if (entry == name) return sorted_index; } *out_insertion_index = len; return T::kNotFound; } else { DCHECK_LE(valid_entries, array->number_of_entries()); DCHECK_NULL(out_insertion_index); // Not supported here. for (int number = 0; number < valid_entries; number++) { if (array->GetKey(number) == name) return number; } return T::kNotFound; } } template <SearchMode search_mode, typename T> int Search(T* array, Name* name, int valid_entries, int* out_insertion_index) { SLOW_DCHECK(array->IsSortedNoDuplicates()); if (valid_entries == 0) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = 0; } return T::kNotFound; } // Fast case: do linear search for small arrays. const int kMaxElementsForLinearSearch = 8; if (valid_entries <= kMaxElementsForLinearSearch) { return LinearSearch<search_mode>(array, name, valid_entries, out_insertion_index); } // Slow case: perform binary search. return BinarySearch<search_mode>(array, name, valid_entries, out_insertion_index); } int DescriptorArray::Search(Name* name, int valid_descriptors) { DCHECK(name->IsUniqueName()); return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors, NULL); } int DescriptorArray::SearchWithCache(Isolate* isolate, Name* name, Map* map) { DCHECK(name->IsUniqueName()); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors == 0) return kNotFound; DescriptorLookupCache* cache = isolate->descriptor_lookup_cache(); int number = cache->Lookup(map, name); if (number == DescriptorLookupCache::kAbsent) { number = Search(name, number_of_own_descriptors); cache->Update(map, name, number); } return number; } PropertyDetails Map::GetLastDescriptorDetails() { return instance_descriptors()->GetDetails(LastAdded()); } int Map::LastAdded() { int number_of_own_descriptors = NumberOfOwnDescriptors(); DCHECK(number_of_own_descriptors > 0); return number_of_own_descriptors - 1; } int Map::NumberOfOwnDescriptors() { return NumberOfOwnDescriptorsBits::decode(bit_field3()); } void Map::SetNumberOfOwnDescriptors(int number) { DCHECK(number <= instance_descriptors()->number_of_descriptors()); set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number)); } int Map::EnumLength() { return EnumLengthBits::decode(bit_field3()); } void Map::SetEnumLength(int length) { if (length != kInvalidEnumCacheSentinel) { DCHECK(length >= 0); DCHECK(length == 0 || instance_descriptors()->HasEnumCache()); DCHECK(length <= NumberOfOwnDescriptors()); } set_bit_field3(EnumLengthBits::update(bit_field3(), length)); } FixedArrayBase* Map::GetInitialElements() { FixedArrayBase* result = nullptr; if (has_fast_elements() || has_fast_string_wrapper_elements()) { result = GetHeap()->empty_fixed_array(); } else if (has_fast_sloppy_arguments_elements()) { result = GetHeap()->empty_sloppy_arguments_elements(); } else if (has_fixed_typed_array_elements()) { result = GetHeap()->EmptyFixedTypedArrayForMap(this); } else { UNREACHABLE(); } DCHECK(!GetHeap()->InNewSpace(result)); return result; } // static Handle<Map> Map::ReconfigureProperty(Handle<Map> map, int modify_index, PropertyKind new_kind, PropertyAttributes new_attributes, Representation new_representation, Handle<FieldType> new_field_type, StoreMode store_mode) { return Reconfigure(map, map->elements_kind(), modify_index, new_kind, new_attributes, new_representation, new_field_type, store_mode); } // static Handle<Map> Map::ReconfigureElementsKind(Handle<Map> map, ElementsKind new_elements_kind) { return Reconfigure(map, new_elements_kind, -1, kData, NONE, Representation::None(), FieldType::None(map->GetIsolate()), ALLOW_IN_DESCRIPTOR); } Object** DescriptorArray::GetKeySlot(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return RawFieldOfElementAt(ToKeyIndex(descriptor_number)); } Object** DescriptorArray::GetDescriptorStartSlot(int descriptor_number) { return GetKeySlot(descriptor_number); } Object** DescriptorArray::GetDescriptorEndSlot(int descriptor_number) { return GetValueSlot(descriptor_number - 1) + 1; } Name* DescriptorArray::GetKey(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return Name::cast(get(ToKeyIndex(descriptor_number))); } int DescriptorArray::GetSortedKeyIndex(int descriptor_number) { return GetDetails(descriptor_number).pointer(); } Name* DescriptorArray::GetSortedKey(int descriptor_number) { return GetKey(GetSortedKeyIndex(descriptor_number)); } void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) { PropertyDetails details = GetDetails(descriptor_index); set(ToDetailsIndex(descriptor_index), details.set_pointer(pointer).AsSmi()); } void DescriptorArray::SetRepresentation(int descriptor_index, Representation representation) { DCHECK(!representation.IsNone()); PropertyDetails details = GetDetails(descriptor_index); set(ToDetailsIndex(descriptor_index), details.CopyWithRepresentation(representation).AsSmi()); } Object** DescriptorArray::GetValueSlot(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return RawFieldOfElementAt(ToValueIndex(descriptor_number)); } int DescriptorArray::GetValueOffset(int descriptor_number) { return OffsetOfElementAt(ToValueIndex(descriptor_number)); } Object* DescriptorArray::GetValue(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return get(ToValueIndex(descriptor_number)); } void DescriptorArray::SetValue(int descriptor_index, Object* value) { set(ToValueIndex(descriptor_index), value); } PropertyDetails DescriptorArray::GetDetails(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); Object* details = get(ToDetailsIndex(descriptor_number)); return PropertyDetails(Smi::cast(details)); } PropertyType DescriptorArray::GetType(int descriptor_number) { return GetDetails(descriptor_number).type(); } int DescriptorArray::GetFieldIndex(int descriptor_number) { DCHECK(GetDetails(descriptor_number).location() == kField); return GetDetails(descriptor_number).field_index(); } Object* DescriptorArray::GetConstant(int descriptor_number) { return GetValue(descriptor_number); } Object* DescriptorArray::GetCallbacksObject(int descriptor_number) { DCHECK(GetType(descriptor_number) == ACCESSOR_CONSTANT); return GetValue(descriptor_number); } AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) { DCHECK(GetType(descriptor_number) == ACCESSOR_CONSTANT); Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number)); return reinterpret_cast<AccessorDescriptor*>(p->foreign_address()); } void DescriptorArray::Get(int descriptor_number, Descriptor* desc) { desc->Init(handle(GetKey(descriptor_number), GetIsolate()), handle(GetValue(descriptor_number), GetIsolate()), GetDetails(descriptor_number)); } void DescriptorArray::SetDescriptor(int descriptor_number, Descriptor* desc) { // Range check. DCHECK(descriptor_number < number_of_descriptors()); set(ToKeyIndex(descriptor_number), *desc->GetKey()); set(ToValueIndex(descriptor_number), *desc->GetValue()); set(ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi()); } void DescriptorArray::Set(int descriptor_number, Descriptor* desc) { // Range check. DCHECK(descriptor_number < number_of_descriptors()); set(ToKeyIndex(descriptor_number), *desc->GetKey()); set(ToValueIndex(descriptor_number), *desc->GetValue()); set(ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi()); } void DescriptorArray::Append(Descriptor* desc) { DisallowHeapAllocation no_gc; int descriptor_number = number_of_descriptors(); SetNumberOfDescriptors(descriptor_number + 1); Set(descriptor_number, desc); uint32_t hash = desc->GetKey()->Hash(); int insertion; for (insertion = descriptor_number; insertion > 0; --insertion) { Name* key = GetSortedKey(insertion - 1); if (key->Hash() <= hash) break; SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1)); } SetSortedKey(insertion, descriptor_number); } void DescriptorArray::SwapSortedKeys(int first, int second) { int first_key = GetSortedKeyIndex(first); SetSortedKey(first, GetSortedKeyIndex(second)); SetSortedKey(second, first_key); } PropertyType DescriptorArray::Entry::type() { return descs_->GetType(index_); } Object* DescriptorArray::Entry::GetCallbackObject() { return descs_->GetValue(index_); } int HashTableBase::NumberOfElements() { return Smi::cast(get(kNumberOfElementsIndex))->value(); } int HashTableBase::NumberOfDeletedElements() { return Smi::cast(get(kNumberOfDeletedElementsIndex))->value(); } int HashTableBase::Capacity() { return Smi::cast(get(kCapacityIndex))->value(); } void HashTableBase::ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); } void HashTableBase::ElementRemoved() { SetNumberOfElements(NumberOfElements() - 1); SetNumberOfDeletedElements(NumberOfDeletedElements() + 1); } void HashTableBase::ElementsRemoved(int n) { SetNumberOfElements(NumberOfElements() - n); SetNumberOfDeletedElements(NumberOfDeletedElements() + n); } // static int HashTableBase::ComputeCapacity(int at_least_space_for) { int capacity = base::bits::RoundUpToPowerOfTwo32(at_least_space_for * 2); return Max(capacity, kMinCapacity); } bool HashTableBase::IsKey(Isolate* isolate, Object* k) { Heap* heap = isolate->heap(); return k != heap->the_hole_value() && k != heap->undefined_value(); } bool HashTableBase::IsKey(Object* k) { Isolate* isolate = this->GetIsolate(); return !k->IsTheHole(isolate) && !k->IsUndefined(isolate); } void HashTableBase::SetNumberOfElements(int nof) { set(kNumberOfElementsIndex, Smi::FromInt(nof)); } void HashTableBase::SetNumberOfDeletedElements(int nod) { set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod)); } template <typename Key> Map* BaseShape<Key>::GetMap(Isolate* isolate) { return isolate->heap()->hash_table_map(); } template <typename Derived, typename Shape, typename Key> int HashTable<Derived, Shape, Key>::FindEntry(Key key) { return FindEntry(GetIsolate(), key); } template<typename Derived, typename Shape, typename Key> int HashTable<Derived, Shape, Key>::FindEntry(Isolate* isolate, Key key) { return FindEntry(isolate, key, HashTable::Hash(key)); } // Find entry for key otherwise return kNotFound. template <typename Derived, typename Shape, typename Key> int HashTable<Derived, Shape, Key>::FindEntry(Isolate* isolate, Key key, int32_t hash) { uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(hash, capacity); uint32_t count = 1; // EnsureCapacity will guarantee the hash table is never full. Object* undefined = isolate->heap()->undefined_value(); Object* the_hole = isolate->heap()->the_hole_value(); while (true) { Object* element = KeyAt(entry); // Empty entry. Uses raw unchecked accessors because it is called by the // string table during bootstrapping. if (element == undefined) break; if (element != the_hole && Shape::IsMatch(key, element)) return entry; entry = NextProbe(entry, count++, capacity); } return kNotFound; } template <typename Derived, typename Shape, typename Key> bool HashTable<Derived, Shape, Key>::Has(Key key) { return FindEntry(key) != kNotFound; } template <typename Derived, typename Shape, typename Key> bool HashTable<Derived, Shape, Key>::Has(Isolate* isolate, Key key) { return FindEntry(isolate, key) != kNotFound; } bool ObjectHashSet::Has(Isolate* isolate, Handle<Object> key, int32_t hash) { return FindEntry(isolate, key, hash) != kNotFound; } bool ObjectHashSet::Has(Isolate* isolate, Handle<Object> key) { Object* hash = key->GetHash(); if (!hash->IsSmi()) return false; return FindEntry(isolate, key, Smi::cast(hash)->value()) != kNotFound; } bool StringSetShape::IsMatch(String* key, Object* value) { return value->IsString() && key->Equals(String::cast(value)); } uint32_t StringSetShape::Hash(String* key) { return key->Hash(); } uint32_t StringSetShape::HashForObject(String* key, Object* object) { return object->IsString() ? String::cast(object)->Hash() : 0; } bool SeededNumberDictionary::requires_slow_elements() { Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return false; return 0 != (Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask); } uint32_t SeededNumberDictionary::max_number_key() { DCHECK(!requires_slow_elements()); Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return 0; uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value()); return value >> kRequiresSlowElementsTagSize; } void SeededNumberDictionary::set_requires_slow_elements() { set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask)); } // ------------------------------------ // Cast operations CAST_ACCESSOR(AbstractCode) CAST_ACCESSOR(ArrayList) CAST_ACCESSOR(Bool16x8) CAST_ACCESSOR(Bool32x4) CAST_ACCESSOR(Bool8x16) CAST_ACCESSOR(ByteArray) CAST_ACCESSOR(BytecodeArray) CAST_ACCESSOR(Cell) CAST_ACCESSOR(Code) CAST_ACCESSOR(CodeCacheHashTable) CAST_ACCESSOR(CompilationCacheTable) CAST_ACCESSOR(ConsString) CAST_ACCESSOR(DeoptimizationInputData) CAST_ACCESSOR(DeoptimizationOutputData) CAST_ACCESSOR(DependentCode) CAST_ACCESSOR(DescriptorArray) CAST_ACCESSOR(ExternalOneByteString) CAST_ACCESSOR(ExternalString) CAST_ACCESSOR(ExternalTwoByteString) CAST_ACCESSOR(FixedArray) CAST_ACCESSOR(FixedArrayBase) CAST_ACCESSOR(FixedDoubleArray) CAST_ACCESSOR(FixedTypedArrayBase) CAST_ACCESSOR(Float32x4) CAST_ACCESSOR(Foreign) CAST_ACCESSOR(FrameArray) CAST_ACCESSOR(GlobalDictionary) CAST_ACCESSOR(HandlerTable) CAST_ACCESSOR(HeapObject) CAST_ACCESSOR(Int16x8) CAST_ACCESSOR(Int32x4) CAST_ACCESSOR(Int8x16) CAST_ACCESSOR(JSArray) CAST_ACCESSOR(JSArrayBuffer) CAST_ACCESSOR(JSArrayBufferView) CAST_ACCESSOR(JSBoundFunction) CAST_ACCESSOR(JSDataView) CAST_ACCESSOR(JSDate) CAST_ACCESSOR(JSFunction) CAST_ACCESSOR(JSGeneratorObject) CAST_ACCESSOR(JSGlobalObject) CAST_ACCESSOR(JSGlobalProxy) CAST_ACCESSOR(JSMap) CAST_ACCESSOR(JSMapIterator) CAST_ACCESSOR(JSMessageObject) CAST_ACCESSOR(JSModuleNamespace) CAST_ACCESSOR(JSFixedArrayIterator) CAST_ACCESSOR(JSObject) CAST_ACCESSOR(JSProxy) CAST_ACCESSOR(JSReceiver) CAST_ACCESSOR(JSRegExp) CAST_ACCESSOR(JSSet) CAST_ACCESSOR(JSSetIterator) CAST_ACCESSOR(JSStringIterator) CAST_ACCESSOR(JSArrayIterator) CAST_ACCESSOR(JSTypedArray) CAST_ACCESSOR(JSValue) CAST_ACCESSOR(JSWeakCollection) CAST_ACCESSOR(JSWeakMap) CAST_ACCESSOR(JSWeakSet) CAST_ACCESSOR(LayoutDescriptor) CAST_ACCESSOR(Map) CAST_ACCESSOR(ModuleInfo) CAST_ACCESSOR(Name) CAST_ACCESSOR(NameDictionary) CAST_ACCESSOR(NormalizedMapCache) CAST_ACCESSOR(Object) CAST_ACCESSOR(ObjectHashTable) CAST_ACCESSOR(ObjectHashSet) CAST_ACCESSOR(Oddball) CAST_ACCESSOR(OrderedHashMap) CAST_ACCESSOR(OrderedHashSet) CAST_ACCESSOR(PropertyCell) CAST_ACCESSOR(TemplateList) CAST_ACCESSOR(RegExpMatchInfo) CAST_ACCESSOR(ScopeInfo) CAST_ACCESSOR(SeededNumberDictionary) CAST_ACCESSOR(SeqOneByteString) CAST_ACCESSOR(SeqString) CAST_ACCESSOR(SeqTwoByteString) CAST_ACCESSOR(SharedFunctionInfo) CAST_ACCESSOR(Simd128Value) CAST_ACCESSOR(SlicedString) CAST_ACCESSOR(Smi) CAST_ACCESSOR(String) CAST_ACCESSOR(StringSet) CAST_ACCESSOR(StringTable) CAST_ACCESSOR(Struct) CAST_ACCESSOR(Symbol) CAST_ACCESSOR(TemplateInfo) CAST_ACCESSOR(Uint16x8) CAST_ACCESSOR(Uint32x4) CAST_ACCESSOR(Uint8x16) CAST_ACCESSOR(UnseededNumberDictionary) CAST_ACCESSOR(WeakCell) CAST_ACCESSOR(WeakFixedArray) CAST_ACCESSOR(WeakHashTable) template <class T> PodArray<T>* PodArray<T>::cast(Object* object) { SLOW_DCHECK(object->IsByteArray()); return reinterpret_cast<PodArray<T>*>(object); } template <class T> const PodArray<T>* PodArray<T>::cast(const Object* object) { SLOW_DCHECK(object->IsByteArray()); return reinterpret_cast<const PodArray<T>*>(object); } // static template <class T> Handle<PodArray<T>> PodArray<T>::New(Isolate* isolate, int length, PretenureFlag pretenure) { return Handle<PodArray<T>>::cast( isolate->factory()->NewByteArray(length * sizeof(T), pretenure)); } // static template <class Traits> STATIC_CONST_MEMBER_DEFINITION const InstanceType FixedTypedArray<Traits>::kInstanceType; template <class Traits> FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(Object* object) { SLOW_DCHECK(object->IsHeapObject() && HeapObject::cast(object)->map()->instance_type() == Traits::kInstanceType); return reinterpret_cast<FixedTypedArray<Traits>*>(object); } template <class Traits> const FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(const Object* object) { SLOW_DCHECK(object->IsHeapObject() && HeapObject::cast(object)->map()->instance_type() == Traits::kInstanceType); return reinterpret_cast<FixedTypedArray<Traits>*>(object); } #define DEFINE_DEOPT_ELEMENT_ACCESSORS(name, type) \ type* DeoptimizationInputData::name() { \ return type::cast(get(k##name##Index)); \ } \ void DeoptimizationInputData::Set##name(type* value) { \ set(k##name##Index, value); \ } DEFINE_DEOPT_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray) DEFINE_DEOPT_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(LiteralArray, FixedArray) DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrAstId, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrPcOffset, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(OptimizationId, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(SharedFunctionInfo, Object) DEFINE_DEOPT_ELEMENT_ACCESSORS(WeakCellCache, Object) DEFINE_DEOPT_ELEMENT_ACCESSORS(InliningPositions, PodArray<InliningPosition>) #undef DEFINE_DEOPT_ELEMENT_ACCESSORS #define DEFINE_DEOPT_ENTRY_ACCESSORS(name, type) \ type* DeoptimizationInputData::name(int i) { \ return type::cast(get(IndexForEntry(i) + k##name##Offset)); \ } \ void DeoptimizationInputData::Set##name(int i, type* value) { \ set(IndexForEntry(i) + k##name##Offset, value); \ } DEFINE_DEOPT_ENTRY_ACCESSORS(AstIdRaw, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(TranslationIndex, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(Pc, Smi) #undef DEFINE_DEOPT_ENTRY_ACCESSORS BailoutId DeoptimizationInputData::AstId(int i) { return BailoutId(AstIdRaw(i)->value()); } void DeoptimizationInputData::SetAstId(int i, BailoutId value) { SetAstIdRaw(i, Smi::FromInt(value.ToInt())); } int DeoptimizationInputData::DeoptCount() { return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize; } int DeoptimizationOutputData::DeoptPoints() { return length() / 2; } BailoutId DeoptimizationOutputData::AstId(int index) { return BailoutId(Smi::cast(get(index * 2))->value()); } void DeoptimizationOutputData::SetAstId(int index, BailoutId id) { set(index * 2, Smi::FromInt(id.ToInt())); } Smi* DeoptimizationOutputData::PcAndState(int index) { return Smi::cast(get(1 + index * 2)); } void DeoptimizationOutputData::SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); } Object* LiteralsArray::get(int index) const { return FixedArray::get(index); } void LiteralsArray::set(int index, Object* value) { FixedArray::set(index, value); } void LiteralsArray::set(int index, Smi* value) { FixedArray::set(index, value); } void LiteralsArray::set(int index, Object* value, WriteBarrierMode mode) { FixedArray::set(index, value, mode); } LiteralsArray* LiteralsArray::cast(Object* object) { SLOW_DCHECK(object->IsLiteralsArray()); return reinterpret_cast<LiteralsArray*>(object); } TypeFeedbackVector* LiteralsArray::feedback_vector() const { if (length() == 0) { return TypeFeedbackVector::cast( const_cast<FixedArray*>(FixedArray::cast(this))); } return TypeFeedbackVector::cast(get(kVectorIndex)); } void LiteralsArray::set_feedback_vector(TypeFeedbackVector* vector) { if (length() <= kVectorIndex) { DCHECK(vector->length() == 0); return; } set(kVectorIndex, vector); } Object* LiteralsArray::literal(int literal_index) const { return get(kFirstLiteralIndex + literal_index); } void LiteralsArray::set_literal(int literal_index, Object* literal) { set(kFirstLiteralIndex + literal_index, literal); } void LiteralsArray::set_literal_undefined(int literal_index) { set_undefined(kFirstLiteralIndex + literal_index); } int LiteralsArray::literals_count() const { return length() - kFirstLiteralIndex; } int HandlerTable::GetRangeStart(int index) const { return Smi::cast(get(index * kRangeEntrySize + kRangeStartIndex))->value(); } int HandlerTable::GetRangeEnd(int index) const { return Smi::cast(get(index * kRangeEntrySize + kRangeEndIndex))->value(); } int HandlerTable::GetRangeHandler(int index) const { return HandlerOffsetField::decode( Smi::cast(get(index * kRangeEntrySize + kRangeHandlerIndex))->value()); } int HandlerTable::GetRangeData(int index) const { return Smi::cast(get(index * kRangeEntrySize + kRangeDataIndex))->value(); } void HandlerTable::SetRangeStart(int index, int value) { set(index * kRangeEntrySize + kRangeStartIndex, Smi::FromInt(value)); } void HandlerTable::SetRangeEnd(int index, int value) { set(index * kRangeEntrySize + kRangeEndIndex, Smi::FromInt(value)); } void HandlerTable::SetRangeHandler(int index, int offset, CatchPrediction prediction) { int value = HandlerOffsetField::encode(offset) | HandlerPredictionField::encode(prediction); set(index * kRangeEntrySize + kRangeHandlerIndex, Smi::FromInt(value)); } void HandlerTable::SetRangeData(int index, int value) { set(index * kRangeEntrySize + kRangeDataIndex, Smi::FromInt(value)); } void HandlerTable::SetReturnOffset(int index, int value) { set(index * kReturnEntrySize + kReturnOffsetIndex, Smi::FromInt(value)); } void HandlerTable::SetReturnHandler(int index, int offset) { int value = HandlerOffsetField::encode(offset); set(index * kReturnEntrySize + kReturnHandlerIndex, Smi::FromInt(value)); } int HandlerTable::NumberOfRangeEntries() const { return length() / kRangeEntrySize; } #define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name) STRUCT_LIST(MAKE_STRUCT_CAST) #undef MAKE_STRUCT_CAST template <typename Derived, typename Shape, typename Key> HashTable<Derived, Shape, Key>* HashTable<Derived, Shape, Key>::cast(Object* obj) { SLOW_DCHECK(obj->IsHashTable()); return reinterpret_cast<HashTable*>(obj); } template <typename Derived, typename Shape, typename Key> const HashTable<Derived, Shape, Key>* HashTable<Derived, Shape, Key>::cast(const Object* obj) { SLOW_DCHECK(obj->IsHashTable()); return reinterpret_cast<const HashTable*>(obj); } SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) SYNCHRONIZED_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) SMI_ACCESSORS(FreeSpace, size, kSizeOffset) NOBARRIER_SMI_ACCESSORS(FreeSpace, size, kSizeOffset) SMI_ACCESSORS(String, length, kLengthOffset) SYNCHRONIZED_SMI_ACCESSORS(String, length, kLengthOffset) int FreeSpace::Size() { return size(); } FreeSpace* FreeSpace::next() { DCHECK(map() == GetHeap()->root(Heap::kFreeSpaceMapRootIndex) || (!GetHeap()->deserialization_complete() && map() == NULL)); DCHECK_LE(kNextOffset + kPointerSize, nobarrier_size()); return reinterpret_cast<FreeSpace*>( Memory::Address_at(address() + kNextOffset)); } void FreeSpace::set_next(FreeSpace* next) { DCHECK(map() == GetHeap()->root(Heap::kFreeSpaceMapRootIndex) || (!GetHeap()->deserialization_complete() && map() == NULL)); DCHECK_LE(kNextOffset + kPointerSize, nobarrier_size()); base::NoBarrier_Store( reinterpret_cast<base::AtomicWord*>(address() + kNextOffset), reinterpret_cast<base::AtomicWord>(next)); } FreeSpace* FreeSpace::cast(HeapObject* o) { SLOW_DCHECK(!o->GetHeap()->deserialization_complete() || o->IsFreeSpace()); return reinterpret_cast<FreeSpace*>(o); } uint32_t Name::hash_field() { return READ_UINT32_FIELD(this, kHashFieldOffset); } void Name::set_hash_field(uint32_t value) { WRITE_UINT32_FIELD(this, kHashFieldOffset, value); #if V8_HOST_ARCH_64_BIT #if V8_TARGET_LITTLE_ENDIAN WRITE_UINT32_FIELD(this, kHashFieldSlot + kIntSize, 0); #else WRITE_UINT32_FIELD(this, kHashFieldSlot, 0); #endif #endif } bool Name::Equals(Name* other) { if (other == this) return true; if ((this->IsInternalizedString() && other->IsInternalizedString()) || this->IsSymbol() || other->IsSymbol()) { return false; } return String::cast(this)->SlowEquals(String::cast(other)); } bool Name::Equals(Handle<Name> one, Handle<Name> two) { if (one.is_identical_to(two)) return true; if ((one->IsInternalizedString() && two->IsInternalizedString()) || one->IsSymbol() || two->IsSymbol()) { return false; } return String::SlowEquals(Handle<String>::cast(one), Handle<String>::cast(two)); } ACCESSORS(Symbol, name, Object, kNameOffset) SMI_ACCESSORS(Symbol, flags, kFlagsOffset) BOOL_ACCESSORS(Symbol, flags, is_private, kPrivateBit) BOOL_ACCESSORS(Symbol, flags, is_well_known_symbol, kWellKnownSymbolBit) bool String::Equals(String* other) { if (other == this) return true; if (this->IsInternalizedString() && other->IsInternalizedString()) { return false; } return SlowEquals(other); } bool String::Equals(Handle<String> one, Handle<String> two) { if (one.is_identical_to(two)) return true; if (one->IsInternalizedString() && two->IsInternalizedString()) { return false; } return SlowEquals(one, two); } Handle<String> String::Flatten(Handle<String> string, PretenureFlag pretenure) { if (!string->IsConsString()) return string; Handle<ConsString> cons = Handle<ConsString>::cast(string); if (cons->IsFlat()) return handle(cons->first()); return SlowFlatten(cons, pretenure); } uint16_t String::Get(int index) { DCHECK(index >= 0 && index < length()); switch (StringShape(this).full_representation_tag()) { case kSeqStringTag | kOneByteStringTag: return SeqOneByteString::cast(this)->SeqOneByteStringGet(index); case kSeqStringTag | kTwoByteStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index); case kConsStringTag | kOneByteStringTag: case kConsStringTag | kTwoByteStringTag: return ConsString::cast(this)->ConsStringGet(index); case kExternalStringTag | kOneByteStringTag: return ExternalOneByteString::cast(this)->ExternalOneByteStringGet(index); case kExternalStringTag | kTwoByteStringTag: return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index); case kSlicedStringTag | kOneByteStringTag: case kSlicedStringTag | kTwoByteStringTag: return SlicedString::cast(this)->SlicedStringGet(index); default: break; } UNREACHABLE(); return 0; } void String::Set(int index, uint16_t value) { DCHECK(index >= 0 && index < length()); DCHECK(StringShape(this).IsSequential()); return this->IsOneByteRepresentation() ? SeqOneByteString::cast(this)->SeqOneByteStringSet(index, value) : SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value); } bool String::IsFlat() { if (!StringShape(this).IsCons()) return true; return ConsString::cast(this)->second()->length() == 0; } String* String::GetUnderlying() { // Giving direct access to underlying string only makes sense if the // wrapping string is already flattened. DCHECK(this->IsFlat()); DCHECK(StringShape(this).IsIndirect()); STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset); const int kUnderlyingOffset = SlicedString::kParentOffset; return String::cast(READ_FIELD(this, kUnderlyingOffset)); } template<class Visitor> ConsString* String::VisitFlat(Visitor* visitor, String* string, const int offset) { int slice_offset = offset; const int length = string->length(); DCHECK(offset <= length); while (true) { int32_t type = string->map()->instance_type(); switch (type & (kStringRepresentationMask | kStringEncodingMask)) { case kSeqStringTag | kOneByteStringTag: visitor->VisitOneByteString( SeqOneByteString::cast(string)->GetChars() + slice_offset, length - offset); return NULL; case kSeqStringTag | kTwoByteStringTag: visitor->VisitTwoByteString( SeqTwoByteString::cast(string)->GetChars() + slice_offset, length - offset); return NULL; case kExternalStringTag | kOneByteStringTag: visitor->VisitOneByteString( ExternalOneByteString::cast(string)->GetChars() + slice_offset, length - offset); return NULL; case kExternalStringTag | kTwoByteStringTag: visitor->VisitTwoByteString( ExternalTwoByteString::cast(string)->GetChars() + slice_offset, length - offset); return NULL; case kSlicedStringTag | kOneByteStringTag: case kSlicedStringTag | kTwoByteStringTag: { SlicedString* slicedString = SlicedString::cast(string); slice_offset += slicedString->offset(); string = slicedString->parent(); continue; } case kConsStringTag | kOneByteStringTag: case kConsStringTag | kTwoByteStringTag: return ConsString::cast(string); default: UNREACHABLE(); return NULL; } } } template <> inline Vector<const uint8_t> String::GetCharVector() { String::FlatContent flat = GetFlatContent(); DCHECK(flat.IsOneByte()); return flat.ToOneByteVector(); } template <> inline Vector<const uc16> String::GetCharVector() { String::FlatContent flat = GetFlatContent(); DCHECK(flat.IsTwoByte()); return flat.ToUC16Vector(); } uint16_t SeqOneByteString::SeqOneByteStringGet(int index) { DCHECK(index >= 0 && index < length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void SeqOneByteString::SeqOneByteStringSet(int index, uint16_t value) { DCHECK(index >= 0 && index < length() && value <= kMaxOneByteCharCode); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, static_cast<byte>(value)); } Address SeqOneByteString::GetCharsAddress() { return FIELD_ADDR(this, kHeaderSize); } uint8_t* SeqOneByteString::GetChars() { return reinterpret_cast<uint8_t*>(GetCharsAddress()); } Address SeqTwoByteString::GetCharsAddress() { return FIELD_ADDR(this, kHeaderSize); } uc16* SeqTwoByteString::GetChars() { return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize)); } uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) { DCHECK(index >= 0 && index < length()); return READ_UINT16_FIELD(this, kHeaderSize + index * kShortSize); } void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) { DCHECK(index >= 0 && index < length()); WRITE_UINT16_FIELD(this, kHeaderSize + index * kShortSize, value); } int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) { return SizeFor(length()); } int SeqOneByteString::SeqOneByteStringSize(InstanceType instance_type) { return SizeFor(length()); } String* SlicedString::parent() { return String::cast(READ_FIELD(this, kParentOffset)); } void SlicedString::set_parent(String* parent, WriteBarrierMode mode) { DCHECK(parent->IsSeqString() || parent->IsExternalString()); WRITE_FIELD(this, kParentOffset, parent); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kParentOffset, parent, mode); } SMI_ACCESSORS(SlicedString, offset, kOffsetOffset) String* ConsString::first() { return String::cast(READ_FIELD(this, kFirstOffset)); } Object* ConsString::unchecked_first() { return READ_FIELD(this, kFirstOffset); } void ConsString::set_first(String* value, WriteBarrierMode mode) { WRITE_FIELD(this, kFirstOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, value, mode); } String* ConsString::second() { return String::cast(READ_FIELD(this, kSecondOffset)); } Object* ConsString::unchecked_second() { return READ_FIELD(this, kSecondOffset); } void ConsString::set_second(String* value, WriteBarrierMode mode) { WRITE_FIELD(this, kSecondOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, value, mode); } bool ExternalString::is_short() { InstanceType type = map()->instance_type(); return (type & kShortExternalStringMask) == kShortExternalStringTag; } const ExternalOneByteString::Resource* ExternalOneByteString::resource() { return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)); } void ExternalOneByteString::update_data_cache() { if (is_short()) return; const char** data_field = reinterpret_cast<const char**>(FIELD_ADDR(this, kResourceDataOffset)); *data_field = resource()->data(); } void ExternalOneByteString::set_resource( const ExternalOneByteString::Resource* resource) { DCHECK(IsAligned(reinterpret_cast<intptr_t>(resource), kPointerSize)); *reinterpret_cast<const Resource**>( FIELD_ADDR(this, kResourceOffset)) = resource; if (resource != NULL) update_data_cache(); } const uint8_t* ExternalOneByteString::GetChars() { return reinterpret_cast<const uint8_t*>(resource()->data()); } uint16_t ExternalOneByteString::ExternalOneByteStringGet(int index) { DCHECK(index >= 0 && index < length()); return GetChars()[index]; } const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() { return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)); } void ExternalTwoByteString::update_data_cache() { if (is_short()) return; const uint16_t** data_field = reinterpret_cast<const uint16_t**>(FIELD_ADDR(this, kResourceDataOffset)); *data_field = resource()->data(); } void ExternalTwoByteString::set_resource( const ExternalTwoByteString::Resource* resource) { *reinterpret_cast<const Resource**>( FIELD_ADDR(this, kResourceOffset)) = resource; if (resource != NULL) update_data_cache(); } const uint16_t* ExternalTwoByteString::GetChars() { return resource()->data(); } uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) { DCHECK(index >= 0 && index < length()); return GetChars()[index]; } const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData( unsigned start) { return GetChars() + start; } int ConsStringIterator::OffsetForDepth(int depth) { return depth & kDepthMask; } void ConsStringIterator::PushLeft(ConsString* string) { frames_[depth_++ & kDepthMask] = string; } void ConsStringIterator::PushRight(ConsString* string) { // Inplace update. frames_[(depth_-1) & kDepthMask] = string; } void ConsStringIterator::AdjustMaximumDepth() { if (depth_ > maximum_depth_) maximum_depth_ = depth_; } void ConsStringIterator::Pop() { DCHECK(depth_ > 0); DCHECK(depth_ <= maximum_depth_); depth_--; } uint16_t StringCharacterStream::GetNext() { DCHECK(buffer8_ != NULL && end_ != NULL); // Advance cursor if needed. if (buffer8_ == end_) HasMore(); DCHECK(buffer8_ < end_); return is_one_byte_ ? *buffer8_++ : *buffer16_++; } StringCharacterStream::StringCharacterStream(String* string, int offset) : is_one_byte_(false) { Reset(string, offset); } void StringCharacterStream::Reset(String* string, int offset) { buffer8_ = NULL; end_ = NULL; ConsString* cons_string = String::VisitFlat(this, string, offset); iter_.Reset(cons_string, offset); if (cons_string != NULL) { string = iter_.Next(&offset); if (string != NULL) String::VisitFlat(this, string, offset); } } bool StringCharacterStream::HasMore() { if (buffer8_ != end_) return true; int offset; String* string = iter_.Next(&offset); DCHECK_EQ(offset, 0); if (string == NULL) return false; String::VisitFlat(this, string); DCHECK(buffer8_ != end_); return true; } void StringCharacterStream::VisitOneByteString( const uint8_t* chars, int length) { is_one_byte_ = true; buffer8_ = chars; end_ = chars + length; } void StringCharacterStream::VisitTwoByteString( const uint16_t* chars, int length) { is_one_byte_ = false; buffer16_ = chars; end_ = reinterpret_cast<const uint8_t*>(chars + length); } int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kPointerSize); } byte ByteArray::get(int index) { DCHECK(index >= 0 && index < this->length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void ByteArray::set(int index, byte value) { DCHECK(index >= 0 && index < this->length()); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value); } void ByteArray::copy_in(int index, const byte* buffer, int length) { DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index && index + length <= this->length()); byte* dst_addr = FIELD_ADDR(this, kHeaderSize + index * kCharSize); memcpy(dst_addr, buffer, length); } void ByteArray::copy_out(int index, byte* buffer, int length) { DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index && index + length <= this->length()); const byte* src_addr = FIELD_ADDR(this, kHeaderSize + index * kCharSize); memcpy(buffer, src_addr, length); } int ByteArray::get_int(int index) { DCHECK(index >= 0 && index < this->length() / kIntSize); return READ_INT_FIELD(this, kHeaderSize + index * kIntSize); } void ByteArray::set_int(int index, int value) { DCHECK(index >= 0 && index < this->length() / kIntSize); WRITE_INT_FIELD(this, kHeaderSize + index * kIntSize, value); } ByteArray* ByteArray::FromDataStartAddress(Address address) { DCHECK_TAG_ALIGNED(address); return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag); } int ByteArray::ByteArraySize() { return SizeFor(this->length()); } Address ByteArray::GetDataStartAddress() { return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize; } byte BytecodeArray::get(int index) { DCHECK(index >= 0 && index < this->length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void BytecodeArray::set(int index, byte value) { DCHECK(index >= 0 && index < this->length()); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value); } void BytecodeArray::set_frame_size(int frame_size) { DCHECK_GE(frame_size, 0); DCHECK(IsAligned(frame_size, static_cast<unsigned>(kPointerSize))); WRITE_INT_FIELD(this, kFrameSizeOffset, frame_size); } int BytecodeArray::frame_size() const { return READ_INT_FIELD(this, kFrameSizeOffset); } int BytecodeArray::register_count() const { return frame_size() / kPointerSize; } void BytecodeArray::set_parameter_count(int number_of_parameters) { DCHECK_GE(number_of_parameters, 0); // Parameter count is stored as the size on stack of the parameters to allow // it to be used directly by generated code. WRITE_INT_FIELD(this, kParameterSizeOffset, (number_of_parameters << kPointerSizeLog2)); } int BytecodeArray::interrupt_budget() const { return READ_INT_FIELD(this, kInterruptBudgetOffset); } void BytecodeArray::set_interrupt_budget(int interrupt_budget) { DCHECK_GE(interrupt_budget, 0); WRITE_INT_FIELD(this, kInterruptBudgetOffset, interrupt_budget); } int BytecodeArray::osr_loop_nesting_level() const { return READ_INT8_FIELD(this, kOSRNestingLevelOffset); } void BytecodeArray::set_osr_loop_nesting_level(int depth) { DCHECK(0 <= depth && depth <= AbstractCode::kMaxLoopNestingMarker); STATIC_ASSERT(AbstractCode::kMaxLoopNestingMarker < kMaxInt8); WRITE_INT8_FIELD(this, kOSRNestingLevelOffset, depth); } int BytecodeArray::parameter_count() const { // Parameter count is stored as the size on stack of the parameters to allow // it to be used directly by generated code. return READ_INT_FIELD(this, kParameterSizeOffset) >> kPointerSizeLog2; } ACCESSORS(BytecodeArray, constant_pool, FixedArray, kConstantPoolOffset) ACCESSORS(BytecodeArray, handler_table, FixedArray, kHandlerTableOffset) ACCESSORS(BytecodeArray, source_position_table, ByteArray, kSourcePositionTableOffset) Address BytecodeArray::GetFirstBytecodeAddress() { return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize; } int BytecodeArray::BytecodeArraySize() { return SizeFor(this->length()); } int BytecodeArray::SizeIncludingMetadata() { int size = BytecodeArraySize(); size += constant_pool()->Size(); size += handler_table()->Size(); size += source_position_table()->Size(); return size; } ACCESSORS(FixedTypedArrayBase, base_pointer, Object, kBasePointerOffset) void* FixedTypedArrayBase::external_pointer() const { intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset); return reinterpret_cast<void*>(ptr); } void FixedTypedArrayBase::set_external_pointer(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast<intptr_t>(value); WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr); } void* FixedTypedArrayBase::DataPtr() { return reinterpret_cast<void*>( reinterpret_cast<intptr_t>(base_pointer()) + reinterpret_cast<intptr_t>(external_pointer())); } int FixedTypedArrayBase::ElementSize(InstanceType type) { int element_size; switch (type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: \ element_size = size; \ break; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE default: UNREACHABLE(); return 0; } return element_size; } int FixedTypedArrayBase::DataSize(InstanceType type) { if (base_pointer() == Smi::kZero) return 0; return length() * ElementSize(type); } int FixedTypedArrayBase::DataSize() { return DataSize(map()->instance_type()); } int FixedTypedArrayBase::size() { return OBJECT_POINTER_ALIGN(kDataOffset + DataSize()); } int FixedTypedArrayBase::TypedArraySize(InstanceType type) { return OBJECT_POINTER_ALIGN(kDataOffset + DataSize(type)); } int FixedTypedArrayBase::TypedArraySize(InstanceType type, int length) { return OBJECT_POINTER_ALIGN(kDataOffset + length * ElementSize(type)); } uint8_t Uint8ArrayTraits::defaultValue() { return 0; } uint8_t Uint8ClampedArrayTraits::defaultValue() { return 0; } int8_t Int8ArrayTraits::defaultValue() { return 0; } uint16_t Uint16ArrayTraits::defaultValue() { return 0; } int16_t Int16ArrayTraits::defaultValue() { return 0; } uint32_t Uint32ArrayTraits::defaultValue() { return 0; } int32_t Int32ArrayTraits::defaultValue() { return 0; } float Float32ArrayTraits::defaultValue() { return std::numeric_limits<float>::quiet_NaN(); } double Float64ArrayTraits::defaultValue() { return std::numeric_limits<double>::quiet_NaN(); } template <class Traits> typename Traits::ElementType FixedTypedArray<Traits>::get_scalar(int index) { DCHECK((index >= 0) && (index < this->length())); ElementType* ptr = reinterpret_cast<ElementType*>(DataPtr()); return ptr[index]; } template <class Traits> void FixedTypedArray<Traits>::set(int index, ElementType value) { DCHECK((index >= 0) && (index < this->length())); ElementType* ptr = reinterpret_cast<ElementType*>(DataPtr()); ptr[index] = value; } template <class Traits> typename Traits::ElementType FixedTypedArray<Traits>::from_int(int value) { return static_cast<ElementType>(value); } template <> inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from_int(int value) { if (value < 0) return 0; if (value > 0xFF) return 0xFF; return static_cast<uint8_t>(value); } template <class Traits> typename Traits::ElementType FixedTypedArray<Traits>::from_double( double value) { return static_cast<ElementType>(DoubleToInt32(value)); } template<> inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from_double(double value) { // Handle NaNs and less than zero values which clamp to zero. if (!(value > 0)) return 0; if (value > 0xFF) return 0xFF; return static_cast<uint8_t>(lrint(value)); } template<> inline float FixedTypedArray<Float32ArrayTraits>::from_double(double value) { return static_cast<float>(value); } template<> inline double FixedTypedArray<Float64ArrayTraits>::from_double(double value) { return value; } template <class Traits> Handle<Object> FixedTypedArray<Traits>::get(FixedTypedArray<Traits>* array, int index) { return Traits::ToHandle(array->GetIsolate(), array->get_scalar(index)); } template <class Traits> void FixedTypedArray<Traits>::SetValue(uint32_t index, Object* value) { ElementType cast_value = Traits::defaultValue(); if (value->IsSmi()) { int int_value = Smi::cast(value)->value(); cast_value = from_int(int_value); } else if (value->IsHeapNumber()) { double double_value = HeapNumber::cast(value)->value(); cast_value = from_double(double_value); } else { // Clamp undefined to the default value. All other types have been // converted to a number type further up in the call chain. DCHECK(value->IsUndefined(GetIsolate())); } set(index, cast_value); } Handle<Object> Uint8ArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Uint8ClampedArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Int8ArrayTraits::ToHandle(Isolate* isolate, int8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Uint16ArrayTraits::ToHandle(Isolate* isolate, uint16_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Int16ArrayTraits::ToHandle(Isolate* isolate, int16_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Uint32ArrayTraits::ToHandle(Isolate* isolate, uint32_t scalar) { return isolate->factory()->NewNumberFromUint(scalar); } Handle<Object> Int32ArrayTraits::ToHandle(Isolate* isolate, int32_t scalar) { return isolate->factory()->NewNumberFromInt(scalar); } Handle<Object> Float32ArrayTraits::ToHandle(Isolate* isolate, float scalar) { return isolate->factory()->NewNumber(scalar); } Handle<Object> Float64ArrayTraits::ToHandle(Isolate* isolate, double scalar) { return isolate->factory()->NewNumber(scalar); } int Map::visitor_id() { return READ_BYTE_FIELD(this, kVisitorIdOffset); } void Map::set_visitor_id(int id) { DCHECK(0 <= id && id < 256); WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id)); } int Map::instance_size() { return NOBARRIER_READ_BYTE_FIELD( this, kInstanceSizeOffset) << kPointerSizeLog2; } int Map::inobject_properties_or_constructor_function_index() { return READ_BYTE_FIELD(this, kInObjectPropertiesOrConstructorFunctionIndexOffset); } void Map::set_inobject_properties_or_constructor_function_index(int value) { DCHECK(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kInObjectPropertiesOrConstructorFunctionIndexOffset, static_cast<byte>(value)); } int Map::GetInObjectProperties() { DCHECK(IsJSObjectMap()); return inobject_properties_or_constructor_function_index(); } void Map::SetInObjectProperties(int value) { DCHECK(IsJSObjectMap()); set_inobject_properties_or_constructor_function_index(value); } int Map::GetConstructorFunctionIndex() { DCHECK(IsPrimitiveMap()); return inobject_properties_or_constructor_function_index(); } void Map::SetConstructorFunctionIndex(int value) { DCHECK(IsPrimitiveMap()); set_inobject_properties_or_constructor_function_index(value); } int Map::GetInObjectPropertyOffset(int index) { // Adjust for the number of properties stored in the object. index -= GetInObjectProperties(); DCHECK(index <= 0); return instance_size() + (index * kPointerSize); } Handle<Map> Map::AddMissingTransitionsForTesting( Handle<Map> split_map, Handle<DescriptorArray> descriptors, Handle<LayoutDescriptor> full_layout_descriptor) { return AddMissingTransitions(split_map, descriptors, full_layout_descriptor); } int HeapObject::SizeFromMap(Map* map) { int instance_size = map->instance_size(); if (instance_size != kVariableSizeSentinel) return instance_size; // Only inline the most frequent cases. InstanceType instance_type = map->instance_type(); if (instance_type == FIXED_ARRAY_TYPE || instance_type == TRANSITION_ARRAY_TYPE) { return FixedArray::SizeFor( reinterpret_cast<FixedArray*>(this)->synchronized_length()); } if (instance_type == ONE_BYTE_STRING_TYPE || instance_type == ONE_BYTE_INTERNALIZED_STRING_TYPE) { // Strings may get concurrently truncated, hence we have to access its // length synchronized. return SeqOneByteString::SizeFor( reinterpret_cast<SeqOneByteString*>(this)->synchronized_length()); } if (instance_type == BYTE_ARRAY_TYPE) { return reinterpret_cast<ByteArray*>(this)->ByteArraySize(); } if (instance_type == BYTECODE_ARRAY_TYPE) { return reinterpret_cast<BytecodeArray*>(this)->BytecodeArraySize(); } if (instance_type == FREE_SPACE_TYPE) { return reinterpret_cast<FreeSpace*>(this)->nobarrier_size(); } if (instance_type == STRING_TYPE || instance_type == INTERNALIZED_STRING_TYPE) { // Strings may get concurrently truncated, hence we have to access its // length synchronized. return SeqTwoByteString::SizeFor( reinterpret_cast<SeqTwoByteString*>(this)->synchronized_length()); } if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) { return FixedDoubleArray::SizeFor( reinterpret_cast<FixedDoubleArray*>(this)->length()); } if (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE && instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE) { return reinterpret_cast<FixedTypedArrayBase*>( this)->TypedArraySize(instance_type); } DCHECK(instance_type == CODE_TYPE); return reinterpret_cast<Code*>(this)->CodeSize(); } void Map::set_instance_size(int value) { DCHECK_EQ(0, value & (kPointerSize - 1)); value >>= kPointerSizeLog2; DCHECK(0 <= value && value < 256); NOBARRIER_WRITE_BYTE_FIELD( this, kInstanceSizeOffset, static_cast<byte>(value)); } void Map::clear_unused() { WRITE_BYTE_FIELD(this, kUnusedOffset, 0); } InstanceType Map::instance_type() { return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset)); } void Map::set_instance_type(InstanceType value) { WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value); } int Map::unused_property_fields() { return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset); } void Map::set_unused_property_fields(int value) { WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255)); } byte Map::bit_field() const { return READ_BYTE_FIELD(this, kBitFieldOffset); } void Map::set_bit_field(byte value) { WRITE_BYTE_FIELD(this, kBitFieldOffset, value); } byte Map::bit_field2() const { return READ_BYTE_FIELD(this, kBitField2Offset); } void Map::set_bit_field2(byte value) { WRITE_BYTE_FIELD(this, kBitField2Offset, value); } void Map::set_non_instance_prototype(bool value) { if (value) { set_bit_field(bit_field() | (1 << kHasNonInstancePrototype)); } else { set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype)); } } bool Map::has_non_instance_prototype() { return ((1 << kHasNonInstancePrototype) & bit_field()) != 0; } void Map::set_is_constructor(bool value) { if (value) { set_bit_field(bit_field() | (1 << kIsConstructor)); } else { set_bit_field(bit_field() & ~(1 << kIsConstructor)); } } bool Map::is_constructor() const { return ((1 << kIsConstructor) & bit_field()) != 0; } void Map::set_has_hidden_prototype(bool value) { set_bit_field3(HasHiddenPrototype::update(bit_field3(), value)); } bool Map::has_hidden_prototype() const { return HasHiddenPrototype::decode(bit_field3()); } void Map::set_has_indexed_interceptor() { set_bit_field(bit_field() | (1 << kHasIndexedInterceptor)); } bool Map::has_indexed_interceptor() { return ((1 << kHasIndexedInterceptor) & bit_field()) != 0; } void Map::set_is_undetectable() { set_bit_field(bit_field() | (1 << kIsUndetectable)); } bool Map::is_undetectable() { return ((1 << kIsUndetectable) & bit_field()) != 0; } void Map::set_has_named_interceptor() { set_bit_field(bit_field() | (1 << kHasNamedInterceptor)); } bool Map::has_named_interceptor() { return ((1 << kHasNamedInterceptor) & bit_field()) != 0; } void Map::set_is_access_check_needed(bool access_check_needed) { if (access_check_needed) { set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded)); } else { set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded)); } } bool Map::is_access_check_needed() { return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0; } void Map::set_is_extensible(bool value) { if (value) { set_bit_field2(bit_field2() | (1 << kIsExtensible)); } else { set_bit_field2(bit_field2() & ~(1 << kIsExtensible)); } } bool Map::is_extensible() { return ((1 << kIsExtensible) & bit_field2()) != 0; } void Map::set_is_prototype_map(bool value) { set_bit_field2(IsPrototypeMapBits::update(bit_field2(), value)); } bool Map::is_prototype_map() const { return IsPrototypeMapBits::decode(bit_field2()); } bool Map::should_be_fast_prototype_map() const { if (!prototype_info()->IsPrototypeInfo()) return false; return PrototypeInfo::cast(prototype_info())->should_be_fast_map(); } void Map::set_elements_kind(ElementsKind elements_kind) { DCHECK(static_cast<int>(elements_kind) < kElementsKindCount); DCHECK(kElementsKindCount <= (1 << Map::ElementsKindBits::kSize)); set_bit_field2(Map::ElementsKindBits::update(bit_field2(), elements_kind)); DCHECK(this->elements_kind() == elements_kind); } ElementsKind Map::elements_kind() { return Map::ElementsKindBits::decode(bit_field2()); } bool Map::has_fast_smi_elements() { return IsFastSmiElementsKind(elements_kind()); } bool Map::has_fast_object_elements() { return IsFastObjectElementsKind(elements_kind()); } bool Map::has_fast_smi_or_object_elements() { return IsFastSmiOrObjectElementsKind(elements_kind()); } bool Map::has_fast_double_elements() { return IsFastDoubleElementsKind(elements_kind()); } bool Map::has_fast_elements() { return IsFastElementsKind(elements_kind()); } bool Map::has_sloppy_arguments_elements() { return IsSloppyArgumentsElements(elements_kind()); } bool Map::has_fast_sloppy_arguments_elements() { return elements_kind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS; } bool Map::has_fast_string_wrapper_elements() { return elements_kind() == FAST_STRING_WRAPPER_ELEMENTS; } bool Map::has_fixed_typed_array_elements() { return IsFixedTypedArrayElementsKind(elements_kind()); } bool Map::has_dictionary_elements() { return IsDictionaryElementsKind(elements_kind()); } void Map::set_dictionary_map(bool value) { uint32_t new_bit_field3 = DictionaryMap::update(bit_field3(), value); new_bit_field3 = IsUnstable::update(new_bit_field3, value); set_bit_field3(new_bit_field3); } bool Map::is_dictionary_map() { return DictionaryMap::decode(bit_field3()); } Code::Flags Code::flags() { return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset)); } void Map::set_owns_descriptors(bool owns_descriptors) { set_bit_field3(OwnsDescriptors::update(bit_field3(), owns_descriptors)); } bool Map::owns_descriptors() { return OwnsDescriptors::decode(bit_field3()); } void Map::set_is_callable() { set_bit_field(bit_field() | (1 << kIsCallable)); } bool Map::is_callable() const { return ((1 << kIsCallable) & bit_field()) != 0; } void Map::deprecate() { set_bit_field3(Deprecated::update(bit_field3(), true)); } bool Map::is_deprecated() { return Deprecated::decode(bit_field3()); } void Map::set_migration_target(bool value) { set_bit_field3(IsMigrationTarget::update(bit_field3(), value)); } bool Map::is_migration_target() { return IsMigrationTarget::decode(bit_field3()); } void Map::set_immutable_proto(bool value) { set_bit_field3(ImmutablePrototype::update(bit_field3(), value)); } bool Map::is_immutable_proto() { return ImmutablePrototype::decode(bit_field3()); } void Map::set_new_target_is_base(bool value) { set_bit_field3(NewTargetIsBase::update(bit_field3(), value)); } bool Map::new_target_is_base() { return NewTargetIsBase::decode(bit_field3()); } void Map::set_construction_counter(int value) { set_bit_field3(ConstructionCounter::update(bit_field3(), value)); } int Map::construction_counter() { return ConstructionCounter::decode(bit_field3()); } void Map::mark_unstable() { set_bit_field3(IsUnstable::update(bit_field3(), true)); } bool Map::is_stable() { return !IsUnstable::decode(bit_field3()); } bool Map::has_code_cache() { // Code caches are always fixed arrays. The empty fixed array is used as a // sentinel for an absent code cache. return code_cache()->length() != 0; } bool Map::CanBeDeprecated() { int descriptor = LastAdded(); for (int i = 0; i <= descriptor; i++) { PropertyDetails details = instance_descriptors()->GetDetails(i); if (details.representation().IsNone()) return true; if (details.representation().IsSmi()) return true; if (details.representation().IsDouble()) return true; if (details.representation().IsHeapObject()) return true; if (details.type() == DATA_CONSTANT) return true; } return false; } void Map::NotifyLeafMapLayoutChange() { if (is_stable()) { mark_unstable(); dependent_code()->DeoptimizeDependentCodeGroup( GetIsolate(), DependentCode::kPrototypeCheckGroup); } } bool Map::CanTransition() { // Only JSObject and subtypes have map transitions and back pointers. STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE); return instance_type() >= FIRST_JS_OBJECT_TYPE; } bool Map::IsBooleanMap() { return this == GetHeap()->boolean_map(); } bool Map::IsPrimitiveMap() { STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE); return instance_type() <= LAST_PRIMITIVE_TYPE; } bool Map::IsJSReceiverMap() { STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); return instance_type() >= FIRST_JS_RECEIVER_TYPE; } bool Map::IsJSObjectMap() { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return instance_type() >= FIRST_JS_OBJECT_TYPE; } bool Map::IsJSArrayMap() { return instance_type() == JS_ARRAY_TYPE; } bool Map::IsJSFunctionMap() { return instance_type() == JS_FUNCTION_TYPE; } bool Map::IsStringMap() { return instance_type() < FIRST_NONSTRING_TYPE; } bool Map::IsJSProxyMap() { return instance_type() == JS_PROXY_TYPE; } bool Map::IsJSGlobalProxyMap() { return instance_type() == JS_GLOBAL_PROXY_TYPE; } bool Map::IsJSGlobalObjectMap() { return instance_type() == JS_GLOBAL_OBJECT_TYPE; } bool Map::IsJSTypedArrayMap() { return instance_type() == JS_TYPED_ARRAY_TYPE; } bool Map::IsJSDataViewMap() { return instance_type() == JS_DATA_VIEW_TYPE; } bool Map::CanOmitMapChecks() { return is_stable() && FLAG_omit_map_checks_for_leaf_maps; } DependentCode* DependentCode::next_link() { return DependentCode::cast(get(kNextLinkIndex)); } void DependentCode::set_next_link(DependentCode* next) { set(kNextLinkIndex, next); } int DependentCode::flags() { return Smi::cast(get(kFlagsIndex))->value(); } void DependentCode::set_flags(int flags) { set(kFlagsIndex, Smi::FromInt(flags)); } int DependentCode::count() { return CountField::decode(flags()); } void DependentCode::set_count(int value) { set_flags(CountField::update(flags(), value)); } DependentCode::DependencyGroup DependentCode::group() { return static_cast<DependencyGroup>(GroupField::decode(flags())); } void DependentCode::set_group(DependentCode::DependencyGroup group) { set_flags(GroupField::update(flags(), static_cast<int>(group))); } void DependentCode::set_object_at(int i, Object* object) { set(kCodesStartIndex + i, object); } Object* DependentCode::object_at(int i) { return get(kCodesStartIndex + i); } void DependentCode::clear_at(int i) { set_undefined(kCodesStartIndex + i); } void DependentCode::copy(int from, int to) { set(kCodesStartIndex + to, get(kCodesStartIndex + from)); } void Code::set_flags(Code::Flags flags) { STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1); WRITE_INT_FIELD(this, kFlagsOffset, flags); } Code::Kind Code::kind() { return ExtractKindFromFlags(flags()); } bool Code::IsCodeStubOrIC() { switch (kind()) { case STUB: case HANDLER: #define CASE_KIND(kind) case kind: IC_KIND_LIST(CASE_KIND) #undef CASE_KIND return true; default: return false; } } ExtraICState Code::extra_ic_state() { DCHECK(is_inline_cache_stub() || is_debug_stub()); return ExtractExtraICStateFromFlags(flags()); } // For initialization. void Code::set_raw_kind_specific_flags1(int value) { WRITE_INT_FIELD(this, kKindSpecificFlags1Offset, value); } void Code::set_raw_kind_specific_flags2(int value) { WRITE_INT_FIELD(this, kKindSpecificFlags2Offset, value); } inline bool Code::is_crankshafted() { return IsCrankshaftedField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } inline bool Code::is_hydrogen_stub() { return is_crankshafted() && kind() != OPTIMIZED_FUNCTION; } inline bool Code::is_interpreter_trampoline_builtin() { Builtins* builtins = GetIsolate()->builtins(); return this == *builtins->InterpreterEntryTrampoline() || this == *builtins->InterpreterEnterBytecodeAdvance() || this == *builtins->InterpreterEnterBytecodeDispatch(); } inline bool Code::has_unwinding_info() const { return HasUnwindingInfoField::decode(READ_UINT32_FIELD(this, kFlagsOffset)); } inline void Code::set_has_unwinding_info(bool state) { uint32_t previous = READ_UINT32_FIELD(this, kFlagsOffset); uint32_t updated_value = HasUnwindingInfoField::update(previous, state); WRITE_UINT32_FIELD(this, kFlagsOffset, updated_value); } inline void Code::set_is_crankshafted(bool value) { int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = IsCrankshaftedField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } inline bool Code::is_turbofanned() { return IsTurbofannedField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_is_turbofanned(bool value) { int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = IsTurbofannedField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } inline bool Code::can_have_weak_objects() { DCHECK(kind() == OPTIMIZED_FUNCTION); return CanHaveWeakObjectsField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_can_have_weak_objects(bool value) { DCHECK(kind() == OPTIMIZED_FUNCTION); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = CanHaveWeakObjectsField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } inline bool Code::is_construct_stub() { DCHECK(kind() == BUILTIN); return IsConstructStubField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_is_construct_stub(bool value) { DCHECK(kind() == BUILTIN); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = IsConstructStubField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } bool Code::has_deoptimization_support() { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasDeoptimizationSupportField::decode(flags); } void Code::set_has_deoptimization_support(bool value) { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasDeoptimizationSupportField::update(flags, value); WRITE_UINT32_FIELD(this, kFullCodeFlags, flags); } bool Code::has_debug_break_slots() { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasDebugBreakSlotsField::decode(flags); } void Code::set_has_debug_break_slots(bool value) { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasDebugBreakSlotsField::update(flags, value); WRITE_UINT32_FIELD(this, kFullCodeFlags, flags); } bool Code::has_reloc_info_for_serialization() { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasRelocInfoForSerialization::decode(flags); } void Code::set_has_reloc_info_for_serialization(bool value) { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasRelocInfoForSerialization::update(flags, value); WRITE_UINT32_FIELD(this, kFullCodeFlags, flags); } int Code::allow_osr_at_loop_nesting_level() { DCHECK_EQ(FUNCTION, kind()); int fields = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); return AllowOSRAtLoopNestingLevelField::decode(fields); } void Code::set_allow_osr_at_loop_nesting_level(int level) { DCHECK_EQ(FUNCTION, kind()); DCHECK(level >= 0 && level <= AbstractCode::kMaxLoopNestingMarker); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = AllowOSRAtLoopNestingLevelField::update(previous, level); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } int Code::profiler_ticks() { DCHECK_EQ(FUNCTION, kind()); return ProfilerTicksField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_profiler_ticks(int ticks) { if (kind() == FUNCTION) { unsigned previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); unsigned updated = ProfilerTicksField::update(previous, ticks); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } } int Code::builtin_index() { return READ_INT_FIELD(this, kBuiltinIndexOffset); } void Code::set_builtin_index(int index) { WRITE_INT_FIELD(this, kBuiltinIndexOffset, index); } unsigned Code::stack_slots() { DCHECK(is_crankshafted()); return StackSlotsField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_stack_slots(unsigned slots) { CHECK(slots <= (1 << kStackSlotsBitCount)); DCHECK(is_crankshafted()); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = StackSlotsField::update(previous, slots); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } unsigned Code::safepoint_table_offset() { DCHECK(is_crankshafted()); return SafepointTableOffsetField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } void Code::set_safepoint_table_offset(unsigned offset) { CHECK(offset <= (1 << kSafepointTableOffsetBitCount)); DCHECK(is_crankshafted()); DCHECK(IsAligned(offset, static_cast<unsigned>(kIntSize))); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = SafepointTableOffsetField::update(previous, offset); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } unsigned Code::back_edge_table_offset() { DCHECK_EQ(FUNCTION, kind()); return BackEdgeTableOffsetField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)) << kPointerSizeLog2; } void Code::set_back_edge_table_offset(unsigned offset) { DCHECK_EQ(FUNCTION, kind()); DCHECK(IsAligned(offset, static_cast<unsigned>(kPointerSize))); offset = offset >> kPointerSizeLog2; int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = BackEdgeTableOffsetField::update(previous, offset); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } bool Code::back_edges_patched_for_osr() { DCHECK_EQ(FUNCTION, kind()); return allow_osr_at_loop_nesting_level() > 0; } uint16_t Code::to_boolean_state() { return extra_ic_state(); } bool Code::marked_for_deoptimization() { DCHECK(kind() == OPTIMIZED_FUNCTION); return MarkedForDeoptimizationField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_marked_for_deoptimization(bool flag) { DCHECK(kind() == OPTIMIZED_FUNCTION); DCHECK(!flag || AllowDeoptimization::IsAllowed(GetIsolate())); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = MarkedForDeoptimizationField::update(previous, flag); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } bool Code::is_inline_cache_stub() { Kind kind = this->kind(); switch (kind) { #define CASE(name) case name: return true; IC_KIND_LIST(CASE) #undef CASE default: return false; } } bool Code::is_debug_stub() { if (kind() != BUILTIN) return false; switch (builtin_index()) { #define CASE_DEBUG_BUILTIN(name) case Builtins::k##name: BUILTIN_LIST_DBG(CASE_DEBUG_BUILTIN) #undef CASE_DEBUG_BUILTIN return true; default: return false; } return false; } bool Code::is_handler() { return kind() == HANDLER; } bool Code::is_call_stub() { return kind() == CALL_IC; } bool Code::is_binary_op_stub() { return kind() == BINARY_OP_IC; } bool Code::is_compare_ic_stub() { return kind() == COMPARE_IC; } bool Code::is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; } bool Code::is_optimized_code() { return kind() == OPTIMIZED_FUNCTION; } bool Code::is_wasm_code() { return kind() == WASM_FUNCTION; } Address Code::constant_pool() { Address constant_pool = NULL; if (FLAG_enable_embedded_constant_pool) { int offset = constant_pool_offset(); if (offset < instruction_size()) { constant_pool = FIELD_ADDR(this, kHeaderSize + offset); } } return constant_pool; } Code::Flags Code::ComputeFlags(Kind kind, ExtraICState extra_ic_state, CacheHolderFlag holder) { // Compute the bit mask. unsigned int bits = KindField::encode(kind) | ExtraICStateField::encode(extra_ic_state) | CacheHolderField::encode(holder); return static_cast<Flags>(bits); } Code::Flags Code::ComputeHandlerFlags(Kind handler_kind, CacheHolderFlag holder) { return ComputeFlags(Code::HANDLER, handler_kind, holder); } Code::Kind Code::ExtractKindFromFlags(Flags flags) { return KindField::decode(flags); } ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) { return ExtraICStateField::decode(flags); } CacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) { return CacheHolderField::decode(flags); } Code::Flags Code::RemoveHolderFromFlags(Flags flags) { int bits = flags & ~CacheHolderField::kMask; return static_cast<Flags>(bits); } Code* Code::GetCodeFromTargetAddress(Address address) { HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize); // GetCodeFromTargetAddress might be called when marking objects during mark // sweep. reinterpret_cast is therefore used instead of the more appropriate // Code::cast. Code::cast does not work when the object's map is // marked. Code* result = reinterpret_cast<Code*>(code); return result; } Object* Code::GetObjectFromEntryAddress(Address location_of_address) { return HeapObject:: FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize); } bool Code::CanContainWeakObjects() { return is_optimized_code() && can_have_weak_objects(); } bool Code::IsWeakObject(Object* object) { return (CanContainWeakObjects() && IsWeakObjectInOptimizedCode(object)); } bool Code::IsWeakObjectInOptimizedCode(Object* object) { if (object->IsMap()) { return Map::cast(object)->CanTransition() && FLAG_weak_embedded_maps_in_optimized_code; } if (object->IsCell()) { object = Cell::cast(object)->value(); } else if (object->IsPropertyCell()) { object = PropertyCell::cast(object)->value(); } if (object->IsJSReceiver()) { return FLAG_weak_embedded_objects_in_optimized_code; } if (object->IsContext()) { // Contexts of inlined functions are embedded in optimized code. return FLAG_weak_embedded_objects_in_optimized_code; } return false; } class Code::FindAndReplacePattern { public: FindAndReplacePattern() : count_(0) { } void Add(Handle<Map> map_to_find, Handle<Object> obj_to_replace) { DCHECK(count_ < kMaxCount); find_[count_] = map_to_find; replace_[count_] = obj_to_replace; ++count_; } private: static const int kMaxCount = 4; int count_; Handle<Map> find_[kMaxCount]; Handle<Object> replace_[kMaxCount]; friend class Code; }; int AbstractCode::instruction_size() { if (IsCode()) { return GetCode()->instruction_size(); } else { return GetBytecodeArray()->length(); } } ByteArray* AbstractCode::source_position_table() { if (IsCode()) { return GetCode()->source_position_table(); } else { return GetBytecodeArray()->source_position_table(); } } void AbstractCode::set_source_position_table(ByteArray* source_position_table) { if (IsCode()) { GetCode()->set_source_position_table(source_position_table); } else { GetBytecodeArray()->set_source_position_table(source_position_table); } } int AbstractCode::LookupRangeInHandlerTable( int code_offset, int* data, HandlerTable::CatchPrediction* prediction) { if (IsCode()) { return GetCode()->LookupRangeInHandlerTable(code_offset, data, prediction); } else { return GetBytecodeArray()->LookupRangeInHandlerTable(code_offset, data, prediction); } } int AbstractCode::SizeIncludingMetadata() { if (IsCode()) { return GetCode()->SizeIncludingMetadata(); } else { return GetBytecodeArray()->SizeIncludingMetadata(); } } int AbstractCode::ExecutableSize() { if (IsCode()) { return GetCode()->ExecutableSize(); } else { return GetBytecodeArray()->BytecodeArraySize(); } } Address AbstractCode::instruction_start() { if (IsCode()) { return GetCode()->instruction_start(); } else { return GetBytecodeArray()->GetFirstBytecodeAddress(); } } Address AbstractCode::instruction_end() { if (IsCode()) { return GetCode()->instruction_end(); } else { return GetBytecodeArray()->GetFirstBytecodeAddress() + GetBytecodeArray()->length(); } } bool AbstractCode::contains(byte* inner_pointer) { return (address() <= inner_pointer) && (inner_pointer <= address() + Size()); } AbstractCode::Kind AbstractCode::kind() { if (IsCode()) { STATIC_ASSERT(AbstractCode::FUNCTION == static_cast<AbstractCode::Kind>(Code::FUNCTION)); return static_cast<AbstractCode::Kind>(GetCode()->kind()); } else { return INTERPRETED_FUNCTION; } } Code* AbstractCode::GetCode() { return Code::cast(this); } BytecodeArray* AbstractCode::GetBytecodeArray() { return BytecodeArray::cast(this); } Object* Map::prototype() const { return READ_FIELD(this, kPrototypeOffset); } void Map::set_prototype(Object* value, WriteBarrierMode mode) { DCHECK(value->IsNull(GetIsolate()) || value->IsJSReceiver()); WRITE_FIELD(this, kPrototypeOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, value, mode); } LayoutDescriptor* Map::layout_descriptor_gc_safe() { Object* layout_desc = READ_FIELD(this, kLayoutDescriptorOffset); return LayoutDescriptor::cast_gc_safe(layout_desc); } bool Map::HasFastPointerLayout() const { Object* layout_desc = READ_FIELD(this, kLayoutDescriptorOffset); return LayoutDescriptor::IsFastPointerLayout(layout_desc); } void Map::UpdateDescriptors(DescriptorArray* descriptors, LayoutDescriptor* layout_desc) { set_instance_descriptors(descriptors); if (FLAG_unbox_double_fields) { if (layout_descriptor()->IsSlowLayout()) { set_layout_descriptor(layout_desc); } #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(layout_descriptor()->IsConsistentWithMap(this)); CHECK(visitor_id() == Heap::GetStaticVisitorIdForMap(this)); } #else SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(this)); DCHECK(visitor_id() == Heap::GetStaticVisitorIdForMap(this)); #endif } } void Map::InitializeDescriptors(DescriptorArray* descriptors, LayoutDescriptor* layout_desc) { int len = descriptors->number_of_descriptors(); set_instance_descriptors(descriptors); SetNumberOfOwnDescriptors(len); if (FLAG_unbox_double_fields) { set_layout_descriptor(layout_desc); #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(layout_descriptor()->IsConsistentWithMap(this)); } #else SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(this)); #endif set_visitor_id(Heap::GetStaticVisitorIdForMap(this)); } } ACCESSORS(Map, instance_descriptors, DescriptorArray, kDescriptorsOffset) ACCESSORS(Map, layout_descriptor, LayoutDescriptor, kLayoutDescriptorOffset) void Map::set_bit_field3(uint32_t bits) { if (kInt32Size != kPointerSize) { WRITE_UINT32_FIELD(this, kBitField3Offset + kInt32Size, 0); } WRITE_UINT32_FIELD(this, kBitField3Offset, bits); } uint32_t Map::bit_field3() const { return READ_UINT32_FIELD(this, kBitField3Offset); } LayoutDescriptor* Map::GetLayoutDescriptor() { return FLAG_unbox_double_fields ? layout_descriptor() : LayoutDescriptor::FastPointerLayout(); } void Map::AppendDescriptor(Descriptor* desc) { DescriptorArray* descriptors = instance_descriptors(); int number_of_own_descriptors = NumberOfOwnDescriptors(); DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors); descriptors->Append(desc); SetNumberOfOwnDescriptors(number_of_own_descriptors + 1); // This function does not support appending double field descriptors and // it should never try to (otherwise, layout descriptor must be updated too). #ifdef DEBUG PropertyDetails details = desc->GetDetails(); CHECK(details.type() != DATA || !details.representation().IsDouble()); #endif } Object* Map::GetBackPointer() { Object* object = constructor_or_backpointer(); if (object->IsMap()) { return object; } return GetIsolate()->heap()->undefined_value(); } Map* Map::ElementsTransitionMap() { return TransitionArray::SearchSpecial( this, GetHeap()->elements_transition_symbol()); } ACCESSORS(Map, raw_transitions, Object, kTransitionsOrPrototypeInfoOffset) Object* Map::prototype_info() const { DCHECK(is_prototype_map()); return READ_FIELD(this, Map::kTransitionsOrPrototypeInfoOffset); } void Map::set_prototype_info(Object* value, WriteBarrierMode mode) { DCHECK(is_prototype_map()); WRITE_FIELD(this, Map::kTransitionsOrPrototypeInfoOffset, value); CONDITIONAL_WRITE_BARRIER( GetHeap(), this, Map::kTransitionsOrPrototypeInfoOffset, value, mode); } void Map::SetBackPointer(Object* value, WriteBarrierMode mode) { DCHECK(instance_type() >= FIRST_JS_RECEIVER_TYPE); DCHECK(value->IsMap()); DCHECK(GetBackPointer()->IsUndefined(GetIsolate())); DCHECK(!value->IsMap() || Map::cast(value)->GetConstructor() == constructor_or_backpointer()); set_constructor_or_backpointer(value, mode); } ACCESSORS(Map, code_cache, FixedArray, kCodeCacheOffset) ACCESSORS(Map, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(Map, weak_cell_cache, Object, kWeakCellCacheOffset) ACCESSORS(Map, constructor_or_backpointer, Object, kConstructorOrBackPointerOffset) Object* Map::GetConstructor() const { Object* maybe_constructor = constructor_or_backpointer(); // Follow any back pointers. while (maybe_constructor->IsMap()) { maybe_constructor = Map::cast(maybe_constructor)->constructor_or_backpointer(); } return maybe_constructor; } void Map::SetConstructor(Object* constructor, WriteBarrierMode mode) { // Never overwrite a back pointer with a constructor. DCHECK(!constructor_or_backpointer()->IsMap()); set_constructor_or_backpointer(constructor, mode); } Handle<Map> Map::CopyInitialMap(Handle<Map> map) { return CopyInitialMap(map, map->instance_size(), map->GetInObjectProperties(), map->unused_property_fields()); } ACCESSORS(JSBoundFunction, bound_target_function, JSReceiver, kBoundTargetFunctionOffset) ACCESSORS(JSBoundFunction, bound_this, Object, kBoundThisOffset) ACCESSORS(JSBoundFunction, bound_arguments, FixedArray, kBoundArgumentsOffset) ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset) ACCESSORS(JSFunction, literals, LiteralsArray, kLiteralsOffset) ACCESSORS(JSFunction, next_function_link, Object, kNextFunctionLinkOffset) ACCESSORS(JSGlobalObject, native_context, Context, kNativeContextOffset) ACCESSORS(JSGlobalObject, global_proxy, JSObject, kGlobalProxyOffset) ACCESSORS(JSGlobalProxy, native_context, Object, kNativeContextOffset) ACCESSORS(JSGlobalProxy, hash, Object, kHashOffset) ACCESSORS(AccessorInfo, name, Object, kNameOffset) SMI_ACCESSORS(AccessorInfo, flag, kFlagOffset) ACCESSORS(AccessorInfo, expected_receiver_type, Object, kExpectedReceiverTypeOffset) ACCESSORS(AccessorInfo, getter, Object, kGetterOffset) ACCESSORS(AccessorInfo, setter, Object, kSetterOffset) ACCESSORS(AccessorInfo, js_getter, Object, kJsGetterOffset) ACCESSORS(AccessorInfo, data, Object, kDataOffset) ACCESSORS(Box, value, Object, kValueOffset) ACCESSORS(PromiseResolveThenableJobInfo, thenable, JSReceiver, kThenableOffset) ACCESSORS(PromiseResolveThenableJobInfo, then, JSReceiver, kThenOffset) ACCESSORS(PromiseResolveThenableJobInfo, resolve, JSFunction, kResolveOffset) ACCESSORS(PromiseResolveThenableJobInfo, reject, JSFunction, kRejectOffset) ACCESSORS(PromiseResolveThenableJobInfo, debug_id, Object, kDebugIdOffset) ACCESSORS(PromiseResolveThenableJobInfo, debug_name, Object, kDebugNameOffset) ACCESSORS(PromiseResolveThenableJobInfo, context, Context, kContextOffset); ACCESSORS(PromiseReactionJobInfo, value, Object, kValueOffset); ACCESSORS(PromiseReactionJobInfo, tasks, Object, kTasksOffset); ACCESSORS(PromiseReactionJobInfo, deferred, Object, kDeferredOffset); ACCESSORS(PromiseReactionJobInfo, debug_id, Object, kDebugIdOffset); ACCESSORS(PromiseReactionJobInfo, debug_name, Object, kDebugNameOffset); ACCESSORS(PromiseReactionJobInfo, context, Context, kContextOffset); Map* PrototypeInfo::ObjectCreateMap() { return Map::cast(WeakCell::cast(object_create_map())->value()); } // static void PrototypeInfo::SetObjectCreateMap(Handle<PrototypeInfo> info, Handle<Map> map) { Handle<WeakCell> cell = Map::WeakCellForMap(map); info->set_object_create_map(*cell); } bool PrototypeInfo::HasObjectCreateMap() { Object* cache = object_create_map(); return cache->IsWeakCell() && !WeakCell::cast(cache)->cleared(); } bool FunctionTemplateInfo::instantiated() { return shared_function_info()->IsSharedFunctionInfo(); } FunctionTemplateInfo* FunctionTemplateInfo::GetParent(Isolate* isolate) { Object* parent = parent_template(); return parent->IsUndefined(isolate) ? nullptr : FunctionTemplateInfo::cast(parent); } ObjectTemplateInfo* ObjectTemplateInfo::GetParent(Isolate* isolate) { Object* maybe_ctor = constructor(); if (maybe_ctor->IsUndefined(isolate)) return nullptr; FunctionTemplateInfo* constructor = FunctionTemplateInfo::cast(maybe_ctor); while (true) { constructor = constructor->GetParent(isolate); if (constructor == nullptr) return nullptr; Object* maybe_obj = constructor->instance_template(); if (!maybe_obj->IsUndefined(isolate)) { return ObjectTemplateInfo::cast(maybe_obj); } } return nullptr; } ACCESSORS(PrototypeInfo, weak_cell, Object, kWeakCellOffset) ACCESSORS(PrototypeInfo, prototype_users, Object, kPrototypeUsersOffset) ACCESSORS(PrototypeInfo, object_create_map, Object, kObjectCreateMap) SMI_ACCESSORS(PrototypeInfo, registry_slot, kRegistrySlotOffset) ACCESSORS(PrototypeInfo, validity_cell, Object, kValidityCellOffset) SMI_ACCESSORS(PrototypeInfo, bit_field, kBitFieldOffset) BOOL_ACCESSORS(PrototypeInfo, bit_field, should_be_fast_map, kShouldBeFastBit) ACCESSORS(Tuple3, value1, Object, kValue1Offset) ACCESSORS(Tuple3, value2, Object, kValue2Offset) ACCESSORS(Tuple3, value3, Object, kValue3Offset) ACCESSORS(ContextExtension, scope_info, ScopeInfo, kScopeInfoOffset) ACCESSORS(ContextExtension, extension, Object, kExtensionOffset) ACCESSORS(JSModuleNamespace, module, Module, kModuleOffset) ACCESSORS(JSFixedArrayIterator, array, FixedArray, kArrayOffset) SMI_ACCESSORS(JSFixedArrayIterator, index, kIndexOffset) ACCESSORS(JSFixedArrayIterator, initial_next, JSFunction, kNextOffset) ACCESSORS(Module, code, Object, kCodeOffset) ACCESSORS(Module, exports, ObjectHashTable, kExportsOffset) ACCESSORS(Module, regular_exports, FixedArray, kRegularExportsOffset) ACCESSORS(Module, regular_imports, FixedArray, kRegularImportsOffset) ACCESSORS(Module, module_namespace, HeapObject, kModuleNamespaceOffset) ACCESSORS(Module, requested_modules, FixedArray, kRequestedModulesOffset) SMI_ACCESSORS(Module, hash, kHashOffset) bool Module::evaluated() const { return code()->IsModuleInfo(); } void Module::set_evaluated() { DCHECK(instantiated()); DCHECK(!evaluated()); return set_code( JSFunction::cast(code())->shared()->scope_info()->ModuleDescriptorInfo()); } bool Module::instantiated() const { return !code()->IsSharedFunctionInfo(); } ModuleInfo* Module::info() const { if (evaluated()) return ModuleInfo::cast(code()); ScopeInfo* scope_info = instantiated() ? JSFunction::cast(code())->shared()->scope_info() : SharedFunctionInfo::cast(code())->scope_info(); return scope_info->ModuleDescriptorInfo(); } ACCESSORS(AccessorPair, getter, Object, kGetterOffset) ACCESSORS(AccessorPair, setter, Object, kSetterOffset) ACCESSORS(AccessCheckInfo, callback, Object, kCallbackOffset) ACCESSORS(AccessCheckInfo, named_interceptor, Object, kNamedInterceptorOffset) ACCESSORS(AccessCheckInfo, indexed_interceptor, Object, kIndexedInterceptorOffset) ACCESSORS(AccessCheckInfo, data, Object, kDataOffset) ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset) ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset) ACCESSORS(InterceptorInfo, query, Object, kQueryOffset) ACCESSORS(InterceptorInfo, descriptor, Object, kDescriptorOffset) ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset) ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset) ACCESSORS(InterceptorInfo, definer, Object, kDefinerOffset) ACCESSORS(InterceptorInfo, data, Object, kDataOffset) SMI_ACCESSORS(InterceptorInfo, flags, kFlagsOffset) BOOL_ACCESSORS(InterceptorInfo, flags, can_intercept_symbols, kCanInterceptSymbolsBit) BOOL_ACCESSORS(InterceptorInfo, flags, all_can_read, kAllCanReadBit) BOOL_ACCESSORS(InterceptorInfo, flags, non_masking, kNonMasking) ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset) ACCESSORS(CallHandlerInfo, data, Object, kDataOffset) ACCESSORS(CallHandlerInfo, fast_handler, Object, kFastHandlerOffset) ACCESSORS(TemplateInfo, tag, Object, kTagOffset) ACCESSORS(TemplateInfo, serial_number, Object, kSerialNumberOffset) SMI_ACCESSORS(TemplateInfo, number_of_properties, kNumberOfProperties) ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset) ACCESSORS(TemplateInfo, property_accessors, Object, kPropertyAccessorsOffset) ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset) ACCESSORS(FunctionTemplateInfo, prototype_template, Object, kPrototypeTemplateOffset) ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset) ACCESSORS(FunctionTemplateInfo, named_property_handler, Object, kNamedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object, kIndexedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, instance_template, Object, kInstanceTemplateOffset) ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset) ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset) ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object, kInstanceCallHandlerOffset) ACCESSORS(FunctionTemplateInfo, access_check_info, Object, kAccessCheckInfoOffset) ACCESSORS(FunctionTemplateInfo, shared_function_info, Object, kSharedFunctionInfoOffset) ACCESSORS(FunctionTemplateInfo, cached_property_name, Object, kCachedPropertyNameOffset) SMI_ACCESSORS(FunctionTemplateInfo, flag, kFlagOffset) ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset) ACCESSORS(ObjectTemplateInfo, data, Object, kDataOffset) int ObjectTemplateInfo::internal_field_count() const { Object* value = data(); DCHECK(value->IsSmi()); return InternalFieldCount::decode(Smi::cast(value)->value()); } void ObjectTemplateInfo::set_internal_field_count(int count) { return set_data(Smi::FromInt( InternalFieldCount::update(Smi::cast(data())->value(), count))); } bool ObjectTemplateInfo::immutable_proto() const { Object* value = data(); DCHECK(value->IsSmi()); return IsImmutablePrototype::decode(Smi::cast(value)->value()); } void ObjectTemplateInfo::set_immutable_proto(bool immutable) { return set_data(Smi::FromInt( IsImmutablePrototype::update(Smi::cast(data())->value(), immutable))); } int TemplateList::length() const { return Smi::cast(FixedArray::cast(this)->get(kLengthIndex))->value(); } Object* TemplateList::get(int index) const { return FixedArray::cast(this)->get(kFirstElementIndex + index); } void TemplateList::set(int index, Object* value) { FixedArray::cast(this)->set(kFirstElementIndex + index, value); } ACCESSORS(AllocationSite, transition_info, Object, kTransitionInfoOffset) ACCESSORS(AllocationSite, nested_site, Object, kNestedSiteOffset) SMI_ACCESSORS(AllocationSite, pretenure_data, kPretenureDataOffset) SMI_ACCESSORS(AllocationSite, pretenure_create_count, kPretenureCreateCountOffset) ACCESSORS(AllocationSite, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(AllocationSite, weak_next, Object, kWeakNextOffset) ACCESSORS(AllocationMemento, allocation_site, Object, kAllocationSiteOffset) ACCESSORS(Script, source, Object, kSourceOffset) ACCESSORS(Script, name, Object, kNameOffset) SMI_ACCESSORS(Script, id, kIdOffset) SMI_ACCESSORS(Script, line_offset, kLineOffsetOffset) SMI_ACCESSORS(Script, column_offset, kColumnOffsetOffset) ACCESSORS(Script, context_data, Object, kContextOffset) ACCESSORS(Script, wrapper, HeapObject, kWrapperOffset) SMI_ACCESSORS(Script, type, kTypeOffset) ACCESSORS(Script, line_ends, Object, kLineEndsOffset) ACCESSORS_CHECKED(Script, eval_from_shared, Object, kEvalFromSharedOffset, this->type() != TYPE_WASM) SMI_ACCESSORS_CHECKED(Script, eval_from_position, kEvalFromPositionOffset, this->type() != TYPE_WASM) ACCESSORS(Script, shared_function_infos, Object, kSharedFunctionInfosOffset) SMI_ACCESSORS(Script, flags, kFlagsOffset) ACCESSORS(Script, source_url, Object, kSourceUrlOffset) ACCESSORS(Script, source_mapping_url, Object, kSourceMappingUrlOffset) ACCESSORS_CHECKED(Script, wasm_compiled_module, Object, kEvalFromSharedOffset, this->type() == TYPE_WASM) Script::CompilationType Script::compilation_type() { return BooleanBit::get(flags(), kCompilationTypeBit) ? COMPILATION_TYPE_EVAL : COMPILATION_TYPE_HOST; } void Script::set_compilation_type(CompilationType type) { set_flags(BooleanBit::set(flags(), kCompilationTypeBit, type == COMPILATION_TYPE_EVAL)); } bool Script::hide_source() { return BooleanBit::get(flags(), kHideSourceBit); } void Script::set_hide_source(bool value) { set_flags(BooleanBit::set(flags(), kHideSourceBit, value)); } Script::CompilationState Script::compilation_state() { return BooleanBit::get(flags(), kCompilationStateBit) ? COMPILATION_STATE_COMPILED : COMPILATION_STATE_INITIAL; } void Script::set_compilation_state(CompilationState state) { set_flags(BooleanBit::set(flags(), kCompilationStateBit, state == COMPILATION_STATE_COMPILED)); } ScriptOriginOptions Script::origin_options() { return ScriptOriginOptions((flags() & kOriginOptionsMask) >> kOriginOptionsShift); } void Script::set_origin_options(ScriptOriginOptions origin_options) { DCHECK(!(origin_options.Flags() & ~((1 << kOriginOptionsSize) - 1))); set_flags((flags() & ~kOriginOptionsMask) | (origin_options.Flags() << kOriginOptionsShift)); } ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex) ACCESSORS(DebugInfo, debug_bytecode_array, Object, kDebugBytecodeArrayIndex) ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex) bool DebugInfo::HasDebugBytecodeArray() { return debug_bytecode_array()->IsBytecodeArray(); } bool DebugInfo::HasDebugCode() { Code* code = shared()->code(); bool has = code->kind() == Code::FUNCTION; DCHECK(!has || code->has_debug_break_slots()); return has; } BytecodeArray* DebugInfo::OriginalBytecodeArray() { DCHECK(HasDebugBytecodeArray()); return shared()->bytecode_array(); } BytecodeArray* DebugInfo::DebugBytecodeArray() { DCHECK(HasDebugBytecodeArray()); return BytecodeArray::cast(debug_bytecode_array()); } Code* DebugInfo::DebugCode() { DCHECK(HasDebugCode()); return shared()->code(); } SMI_ACCESSORS(BreakPointInfo, source_position, kSourcePositionIndex) ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex) ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset) ACCESSORS(SharedFunctionInfo, optimized_code_map, FixedArray, kOptimizedCodeMapOffset) ACCESSORS(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset) ACCESSORS(SharedFunctionInfo, feedback_metadata, TypeFeedbackMetadata, kFeedbackMetadataOffset) #if TRACE_MAPS SMI_ACCESSORS(SharedFunctionInfo, unique_id, kUniqueIdOffset) #endif ACCESSORS(SharedFunctionInfo, instance_class_name, Object, kInstanceClassNameOffset) ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset) ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset) ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset) ACCESSORS(SharedFunctionInfo, function_identifier, Object, kFunctionIdentifierOffset) SMI_ACCESSORS(FunctionTemplateInfo, length, kLengthOffset) BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype, kHiddenPrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check, kNeedsAccessCheckBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype, kReadOnlyPrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, remove_prototype, kRemovePrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, do_not_cache, kDoNotCacheBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, accept_any_receiver, kAcceptAnyReceiver) BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_named_expression, kIsNamedExpressionBit) BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel, kIsTopLevelBit) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, allows_lazy_compilation, kAllowLazyCompilation) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, uses_arguments, kUsesArguments) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, has_duplicate_parameters, kHasDuplicateParameters) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, asm_function, kIsAsmFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, deserialized, kDeserialized) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, never_compiled, kNeverCompiled) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_declaration, kIsDeclaration) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, marked_for_tier_up, kMarkedForTierUp) #if V8_HOST_ARCH_32_BIT SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset) SMI_ACCESSORS(SharedFunctionInfo, internal_formal_parameter_count, kFormalParameterCountOffset) SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties, kExpectedNofPropertiesOffset) SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset) SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type, kStartPositionAndTypeOffset) SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset) SMI_ACCESSORS(SharedFunctionInfo, function_token_position, kFunctionTokenPositionOffset) SMI_ACCESSORS(SharedFunctionInfo, compiler_hints, kCompilerHintsOffset) SMI_ACCESSORS(SharedFunctionInfo, opt_count_and_bailout_reason, kOptCountAndBailoutReasonOffset) SMI_ACCESSORS(SharedFunctionInfo, counters, kCountersOffset) SMI_ACCESSORS(SharedFunctionInfo, ast_node_count, kAstNodeCountOffset) SMI_ACCESSORS(SharedFunctionInfo, profiler_ticks, kProfilerTicksOffset) #else #if V8_TARGET_LITTLE_ENDIAN #define PSEUDO_SMI_LO_ALIGN 0 #define PSEUDO_SMI_HI_ALIGN kIntSize #else #define PSEUDO_SMI_LO_ALIGN kIntSize #define PSEUDO_SMI_HI_ALIGN 0 #endif #define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \ STATIC_ASSERT(holder::offset % kPointerSize == PSEUDO_SMI_LO_ALIGN); \ int holder::name() const { \ int value = READ_INT_FIELD(this, offset); \ DCHECK(kHeapObjectTag == 1); \ DCHECK((value & kHeapObjectTag) == 0); \ return value >> 1; \ } \ void holder::set_##name(int value) { \ DCHECK(kHeapObjectTag == 1); \ DCHECK((value & 0xC0000000) == 0xC0000000 || (value & 0xC0000000) == 0x0); \ WRITE_INT_FIELD(this, offset, (value << 1) & ~kHeapObjectTag); \ } #define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \ STATIC_ASSERT(holder::offset % kPointerSize == PSEUDO_SMI_HI_ALIGN); \ INT_ACCESSORS(holder, name, offset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, internal_formal_parameter_count, kFormalParameterCountOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, expected_nof_properties, kExpectedNofPropertiesOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, start_position_and_type, kStartPositionAndTypeOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, function_token_position, kFunctionTokenPositionOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, compiler_hints, kCompilerHintsOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, opt_count_and_bailout_reason, kOptCountAndBailoutReasonOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, counters, kCountersOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, ast_node_count, kAstNodeCountOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, profiler_ticks, kProfilerTicksOffset) #endif BOOL_GETTER(SharedFunctionInfo, compiler_hints, optimization_disabled, kOptimizationDisabled) AbstractCode* SharedFunctionInfo::abstract_code() { if (HasBytecodeArray()) { return AbstractCode::cast(bytecode_array()); } else { return AbstractCode::cast(code()); } } void SharedFunctionInfo::set_optimization_disabled(bool disable) { set_compiler_hints(BooleanBit::set(compiler_hints(), kOptimizationDisabled, disable)); } LanguageMode SharedFunctionInfo::language_mode() { STATIC_ASSERT(LANGUAGE_END == 2); return construct_language_mode( BooleanBit::get(compiler_hints(), kStrictModeFunction)); } void SharedFunctionInfo::set_language_mode(LanguageMode language_mode) { STATIC_ASSERT(LANGUAGE_END == 2); // We only allow language mode transitions that set the same language mode // again or go up in the chain: DCHECK(is_sloppy(this->language_mode()) || is_strict(language_mode)); int hints = compiler_hints(); hints = BooleanBit::set(hints, kStrictModeFunction, is_strict(language_mode)); set_compiler_hints(hints); } FunctionKind SharedFunctionInfo::kind() const { return FunctionKindBits::decode(compiler_hints()); } void SharedFunctionInfo::set_kind(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); int hints = compiler_hints(); hints = FunctionKindBits::update(hints, kind); set_compiler_hints(hints); } BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, needs_home_object, kNeedsHomeObject) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, force_inline, kForceInline) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, name_should_print_as_anonymous, kNameShouldPrintAsAnonymous) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous_expression, kIsAnonymousExpression) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_function, kIsFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_crankshaft, kDontCrankshaft) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_flush, kDontFlush) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_asm_wasm_broken, kIsAsmWasmBroken) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, requires_class_field_init, kRequiresClassFieldInit) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_class_field_initializer, kIsClassFieldInitializer) bool Script::HasValidSource() { Object* src = this->source(); if (!src->IsString()) return true; String* src_str = String::cast(src); if (!StringShape(src_str).IsExternal()) return true; if (src_str->IsOneByteRepresentation()) { return ExternalOneByteString::cast(src)->resource() != NULL; } else if (src_str->IsTwoByteRepresentation()) { return ExternalTwoByteString::cast(src)->resource() != NULL; } return true; } void SharedFunctionInfo::DontAdaptArguments() { DCHECK(code()->kind() == Code::BUILTIN || code()->kind() == Code::STUB); set_internal_formal_parameter_count(kDontAdaptArgumentsSentinel); } int SharedFunctionInfo::start_position() const { return start_position_and_type() >> kStartPositionShift; } void SharedFunctionInfo::set_start_position(int start_position) { set_start_position_and_type((start_position << kStartPositionShift) | (start_position_and_type() & ~kStartPositionMask)); } Code* SharedFunctionInfo::code() const { return Code::cast(READ_FIELD(this, kCodeOffset)); } void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) { DCHECK(value->kind() != Code::OPTIMIZED_FUNCTION); WRITE_FIELD(this, kCodeOffset, value); CONDITIONAL_WRITE_BARRIER(value->GetHeap(), this, kCodeOffset, value, mode); } void SharedFunctionInfo::ReplaceCode(Code* value) { // If the GC metadata field is already used then the function was // enqueued as a code flushing candidate and we remove it now. if (code()->gc_metadata() != NULL) { CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher(); flusher->EvictCandidate(this); } DCHECK(code()->gc_metadata() == NULL && value->gc_metadata() == NULL); #ifdef DEBUG Code::VerifyRecompiledCode(code(), value); #endif // DEBUG set_code(value); if (is_compiled()) set_never_compiled(false); } bool SharedFunctionInfo::IsInterpreted() const { return code()->is_interpreter_trampoline_builtin(); } bool SharedFunctionInfo::HasBaselineCode() const { return code()->kind() == Code::FUNCTION; } ScopeInfo* SharedFunctionInfo::scope_info() const { return reinterpret_cast<ScopeInfo*>(READ_FIELD(this, kScopeInfoOffset)); } void SharedFunctionInfo::set_scope_info(ScopeInfo* value, WriteBarrierMode mode) { WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value)); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kScopeInfoOffset, reinterpret_cast<Object*>(value), mode); } ACCESSORS(SharedFunctionInfo, outer_scope_info, HeapObject, kOuterScopeInfoOffset) bool SharedFunctionInfo::is_compiled() const { Builtins* builtins = GetIsolate()->builtins(); DCHECK(code() != builtins->builtin(Builtins::kCompileOptimizedConcurrent)); DCHECK(code() != builtins->builtin(Builtins::kCompileOptimized)); DCHECK(code() != builtins->builtin(Builtins::kCompileBaseline)); return code() != builtins->builtin(Builtins::kCompileLazy); } bool SharedFunctionInfo::has_simple_parameters() { return scope_info()->HasSimpleParameters(); } bool SharedFunctionInfo::HasDebugInfo() { bool has_debug_info = debug_info()->IsStruct(); DCHECK(!has_debug_info || HasDebugCode()); return has_debug_info; } DebugInfo* SharedFunctionInfo::GetDebugInfo() { DCHECK(HasDebugInfo()); return DebugInfo::cast(debug_info()); } bool SharedFunctionInfo::HasDebugCode() { if (HasBaselineCode()) return code()->has_debug_break_slots(); return HasBytecodeArray(); } bool SharedFunctionInfo::IsApiFunction() { return function_data()->IsFunctionTemplateInfo(); } FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() { DCHECK(IsApiFunction()); return FunctionTemplateInfo::cast(function_data()); } void SharedFunctionInfo::set_api_func_data(FunctionTemplateInfo* data) { DCHECK(function_data()->IsUndefined(GetIsolate())); set_function_data(data); } bool SharedFunctionInfo::HasBytecodeArray() { return function_data()->IsBytecodeArray(); } BytecodeArray* SharedFunctionInfo::bytecode_array() { DCHECK(HasBytecodeArray()); return BytecodeArray::cast(function_data()); } void SharedFunctionInfo::set_bytecode_array(BytecodeArray* bytecode) { DCHECK(function_data()->IsUndefined(GetIsolate())); set_function_data(bytecode); } void SharedFunctionInfo::ClearBytecodeArray() { DCHECK(function_data()->IsUndefined(GetIsolate()) || HasBytecodeArray()); set_function_data(GetHeap()->undefined_value()); } bool SharedFunctionInfo::HasAsmWasmData() { return function_data()->IsFixedArray(); } FixedArray* SharedFunctionInfo::asm_wasm_data() { DCHECK(HasAsmWasmData()); return FixedArray::cast(function_data()); } void SharedFunctionInfo::set_asm_wasm_data(FixedArray* data) { DCHECK(function_data()->IsUndefined(GetIsolate()) || HasAsmWasmData()); set_function_data(data); } void SharedFunctionInfo::ClearAsmWasmData() { DCHECK(function_data()->IsUndefined(GetIsolate()) || HasAsmWasmData()); set_function_data(GetHeap()->undefined_value()); } bool SharedFunctionInfo::HasBuiltinFunctionId() { return function_identifier()->IsSmi(); } BuiltinFunctionId SharedFunctionInfo::builtin_function_id() { DCHECK(HasBuiltinFunctionId()); return static_cast<BuiltinFunctionId>( Smi::cast(function_identifier())->value()); } void SharedFunctionInfo::set_builtin_function_id(BuiltinFunctionId id) { set_function_identifier(Smi::FromInt(id)); } bool SharedFunctionInfo::HasInferredName() { return function_identifier()->IsString(); } String* SharedFunctionInfo::inferred_name() { if (HasInferredName()) { return String::cast(function_identifier()); } Isolate* isolate = GetIsolate(); DCHECK(function_identifier()->IsUndefined(isolate) || HasBuiltinFunctionId()); return isolate->heap()->empty_string(); } void SharedFunctionInfo::set_inferred_name(String* inferred_name) { DCHECK(function_identifier()->IsUndefined(GetIsolate()) || HasInferredName()); set_function_identifier(inferred_name); } int SharedFunctionInfo::ic_age() { return ICAgeBits::decode(counters()); } void SharedFunctionInfo::set_ic_age(int ic_age) { set_counters(ICAgeBits::update(counters(), ic_age)); } int SharedFunctionInfo::deopt_count() { return DeoptCountBits::decode(counters()); } void SharedFunctionInfo::set_deopt_count(int deopt_count) { set_counters(DeoptCountBits::update(counters(), deopt_count)); } void SharedFunctionInfo::increment_deopt_count() { int value = counters(); int deopt_count = DeoptCountBits::decode(value); deopt_count = (deopt_count + 1) & DeoptCountBits::kMax; set_counters(DeoptCountBits::update(value, deopt_count)); } int SharedFunctionInfo::opt_reenable_tries() { return OptReenableTriesBits::decode(counters()); } void SharedFunctionInfo::set_opt_reenable_tries(int tries) { set_counters(OptReenableTriesBits::update(counters(), tries)); } int SharedFunctionInfo::opt_count() { return OptCountBits::decode(opt_count_and_bailout_reason()); } void SharedFunctionInfo::set_opt_count(int opt_count) { set_opt_count_and_bailout_reason( OptCountBits::update(opt_count_and_bailout_reason(), opt_count)); } BailoutReason SharedFunctionInfo::disable_optimization_reason() { return static_cast<BailoutReason>( DisabledOptimizationReasonBits::decode(opt_count_and_bailout_reason())); } bool SharedFunctionInfo::has_deoptimization_support() { Code* code = this->code(); return code->kind() == Code::FUNCTION && code->has_deoptimization_support(); } void SharedFunctionInfo::TryReenableOptimization() { int tries = opt_reenable_tries(); set_opt_reenable_tries((tries + 1) & OptReenableTriesBits::kMax); // We reenable optimization whenever the number of tries is a large // enough power of 2. if (tries >= 16 && (((tries - 1) & tries) == 0)) { set_optimization_disabled(false); set_opt_count(0); set_deopt_count(0); } } void SharedFunctionInfo::set_disable_optimization_reason(BailoutReason reason) { set_opt_count_and_bailout_reason(DisabledOptimizationReasonBits::update( opt_count_and_bailout_reason(), reason)); } bool SharedFunctionInfo::IsBuiltin() { Object* script_obj = script(); if (script_obj->IsUndefined(GetIsolate())) return true; Script* script = Script::cast(script_obj); Script::Type type = static_cast<Script::Type>(script->type()); return type != Script::TYPE_NORMAL; } bool SharedFunctionInfo::IsSubjectToDebugging() { return !IsBuiltin() && !HasAsmWasmData(); } bool SharedFunctionInfo::OptimizedCodeMapIsCleared() const { return optimized_code_map() == GetHeap()->empty_fixed_array(); } bool JSFunction::IsOptimized() { return code()->kind() == Code::OPTIMIZED_FUNCTION; } bool JSFunction::IsInterpreted() { return code()->is_interpreter_trampoline_builtin(); } bool JSFunction::IsMarkedForBaseline() { return code() == GetIsolate()->builtins()->builtin(Builtins::kCompileBaseline); } bool JSFunction::IsMarkedForOptimization() { return code() == GetIsolate()->builtins()->builtin( Builtins::kCompileOptimized); } bool JSFunction::IsMarkedForConcurrentOptimization() { return code() == GetIsolate()->builtins()->builtin( Builtins::kCompileOptimizedConcurrent); } bool JSFunction::IsInOptimizationQueue() { return code() == GetIsolate()->builtins()->builtin( Builtins::kInOptimizationQueue); } void JSFunction::CompleteInobjectSlackTrackingIfActive() { if (has_initial_map() && initial_map()->IsInobjectSlackTrackingInProgress()) { initial_map()->CompleteInobjectSlackTracking(); } } bool Map::IsInobjectSlackTrackingInProgress() { return construction_counter() != Map::kNoSlackTracking; } void Map::InobjectSlackTrackingStep() { if (!IsInobjectSlackTrackingInProgress()) return; int counter = construction_counter(); set_construction_counter(counter - 1); if (counter == kSlackTrackingCounterEnd) { CompleteInobjectSlackTracking(); } } AbstractCode* JSFunction::abstract_code() { if (IsInterpreted()) { return AbstractCode::cast(shared()->bytecode_array()); } else { return AbstractCode::cast(code()); } } Code* JSFunction::code() { return Code::cast( Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset))); } void JSFunction::set_code(Code* value) { DCHECK(!GetHeap()->InNewSpace(value)); Address entry = value->entry(); WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry)); GetHeap()->incremental_marking()->RecordWriteOfCodeEntry( this, HeapObject::RawField(this, kCodeEntryOffset), value); } void JSFunction::set_code_no_write_barrier(Code* value) { DCHECK(!GetHeap()->InNewSpace(value)); Address entry = value->entry(); WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry)); } void JSFunction::ReplaceCode(Code* code) { bool was_optimized = IsOptimized(); bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION; if (was_optimized && is_optimized) { shared()->EvictFromOptimizedCodeMap(this->code(), "Replacing with another optimized code"); } set_code(code); // Add/remove the function from the list of optimized functions for this // context based on the state change. if (!was_optimized && is_optimized) { context()->native_context()->AddOptimizedFunction(this); } if (was_optimized && !is_optimized) { // TODO(titzer): linear in the number of optimized functions; fix! context()->native_context()->RemoveOptimizedFunction(this); } } Context* JSFunction::context() { return Context::cast(READ_FIELD(this, kContextOffset)); } JSObject* JSFunction::global_proxy() { return context()->global_proxy(); } Context* JSFunction::native_context() { return context()->native_context(); } void JSFunction::set_context(Object* value) { DCHECK(value->IsUndefined(GetIsolate()) || value->IsContext()); WRITE_FIELD(this, kContextOffset, value); WRITE_BARRIER(GetHeap(), this, kContextOffset, value); } ACCESSORS(JSFunction, prototype_or_initial_map, Object, kPrototypeOrInitialMapOffset) Map* JSFunction::initial_map() { return Map::cast(prototype_or_initial_map()); } bool JSFunction::has_initial_map() { return prototype_or_initial_map()->IsMap(); } bool JSFunction::has_instance_prototype() { return has_initial_map() || !prototype_or_initial_map()->IsTheHole(GetIsolate()); } bool JSFunction::has_prototype() { return map()->has_non_instance_prototype() || has_instance_prototype(); } Object* JSFunction::instance_prototype() { DCHECK(has_instance_prototype()); if (has_initial_map()) return initial_map()->prototype(); // When there is no initial map and the prototype is a JSObject, the // initial map field is used for the prototype field. return prototype_or_initial_map(); } Object* JSFunction::prototype() { DCHECK(has_prototype()); // If the function's prototype property has been set to a non-JSObject // value, that value is stored in the constructor field of the map. if (map()->has_non_instance_prototype()) { Object* prototype = map()->GetConstructor(); // The map must have a prototype in that field, not a back pointer. DCHECK(!prototype->IsMap()); return prototype; } return instance_prototype(); } bool JSFunction::is_compiled() { Builtins* builtins = GetIsolate()->builtins(); return code() != builtins->builtin(Builtins::kCompileLazy) && code() != builtins->builtin(Builtins::kCompileBaseline) && code() != builtins->builtin(Builtins::kCompileOptimized) && code() != builtins->builtin(Builtins::kCompileOptimizedConcurrent); } TypeFeedbackVector* JSFunction::feedback_vector() { LiteralsArray* array = literals(); return array->feedback_vector(); } ACCESSORS(JSProxy, target, JSReceiver, kTargetOffset) ACCESSORS(JSProxy, handler, Object, kHandlerOffset) ACCESSORS(JSProxy, hash, Object, kHashOffset) bool JSProxy::IsRevoked() const { return !handler()->IsJSReceiver(); } ACCESSORS(JSCollection, table, Object, kTableOffset) #define ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(name, type, offset) \ template<class Derived, class TableType> \ type* OrderedHashTableIterator<Derived, TableType>::name() const { \ return type::cast(READ_FIELD(this, offset)); \ } \ template<class Derived, class TableType> \ void OrderedHashTableIterator<Derived, TableType>::set_##name( \ type* value, WriteBarrierMode mode) { \ WRITE_FIELD(this, offset, value); \ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \ } ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(table, Object, kTableOffset) ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(index, Object, kIndexOffset) ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(kind, Object, kKindOffset) #undef ORDERED_HASH_TABLE_ITERATOR_ACCESSORS ACCESSORS(JSWeakCollection, table, Object, kTableOffset) ACCESSORS(JSWeakCollection, next, Object, kNextOffset) Address Foreign::foreign_address() { return AddressFrom<Address>(READ_INTPTR_FIELD(this, kForeignAddressOffset)); } void Foreign::set_foreign_address(Address value) { WRITE_INTPTR_FIELD(this, kForeignAddressOffset, OffsetFrom(value)); } ACCESSORS(JSGeneratorObject, function, JSFunction, kFunctionOffset) ACCESSORS(JSGeneratorObject, context, Context, kContextOffset) ACCESSORS(JSGeneratorObject, receiver, Object, kReceiverOffset) ACCESSORS(JSGeneratorObject, input_or_debug_pos, Object, kInputOrDebugPosOffset) SMI_ACCESSORS(JSGeneratorObject, resume_mode, kResumeModeOffset) SMI_ACCESSORS(JSGeneratorObject, continuation, kContinuationOffset) ACCESSORS(JSGeneratorObject, operand_stack, FixedArray, kOperandStackOffset) bool JSGeneratorObject::is_suspended() const { DCHECK_LT(kGeneratorExecuting, 0); DCHECK_LT(kGeneratorClosed, 0); return continuation() >= 0; } bool JSGeneratorObject::is_closed() const { return continuation() == kGeneratorClosed; } bool JSGeneratorObject::is_executing() const { return continuation() == kGeneratorExecuting; } TYPE_CHECKER(JSModuleNamespace, JS_MODULE_NAMESPACE_TYPE) ACCESSORS(JSValue, value, Object, kValueOffset) HeapNumber* HeapNumber::cast(Object* object) { SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber()); return reinterpret_cast<HeapNumber*>(object); } const HeapNumber* HeapNumber::cast(const Object* object) { SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber()); return reinterpret_cast<const HeapNumber*>(object); } ACCESSORS(JSDate, value, Object, kValueOffset) ACCESSORS(JSDate, cache_stamp, Object, kCacheStampOffset) ACCESSORS(JSDate, year, Object, kYearOffset) ACCESSORS(JSDate, month, Object, kMonthOffset) ACCESSORS(JSDate, day, Object, kDayOffset) ACCESSORS(JSDate, weekday, Object, kWeekdayOffset) ACCESSORS(JSDate, hour, Object, kHourOffset) ACCESSORS(JSDate, min, Object, kMinOffset) ACCESSORS(JSDate, sec, Object, kSecOffset) SMI_ACCESSORS(JSMessageObject, type, kTypeOffset) ACCESSORS(JSMessageObject, argument, Object, kArgumentsOffset) ACCESSORS(JSMessageObject, script, Object, kScriptOffset) ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset) SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset) SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset) INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset) INT_ACCESSORS(Code, prologue_offset, kPrologueOffset) INT_ACCESSORS(Code, constant_pool_offset, kConstantPoolOffset) ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset) ACCESSORS(Code, handler_table, FixedArray, kHandlerTableOffset) ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset) ACCESSORS(Code, source_position_table, ByteArray, kSourcePositionTableOffset) ACCESSORS(Code, raw_type_feedback_info, Object, kTypeFeedbackInfoOffset) ACCESSORS(Code, next_code_link, Object, kNextCodeLinkOffset) void Code::WipeOutHeader() { WRITE_FIELD(this, kRelocationInfoOffset, NULL); WRITE_FIELD(this, kHandlerTableOffset, NULL); WRITE_FIELD(this, kDeoptimizationDataOffset, NULL); WRITE_FIELD(this, kSourcePositionTableOffset, NULL); // Do not wipe out major/minor keys on a code stub or IC if (!READ_FIELD(this, kTypeFeedbackInfoOffset)->IsSmi()) { WRITE_FIELD(this, kTypeFeedbackInfoOffset, NULL); } WRITE_FIELD(this, kNextCodeLinkOffset, NULL); WRITE_FIELD(this, kGCMetadataOffset, NULL); } Object* Code::type_feedback_info() { DCHECK(kind() == FUNCTION); return raw_type_feedback_info(); } void Code::set_type_feedback_info(Object* value, WriteBarrierMode mode) { DCHECK(kind() == FUNCTION); set_raw_type_feedback_info(value, mode); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kTypeFeedbackInfoOffset, value, mode); } uint32_t Code::stub_key() { DCHECK(IsCodeStubOrIC()); Smi* smi_key = Smi::cast(raw_type_feedback_info()); return static_cast<uint32_t>(smi_key->value()); } void Code::set_stub_key(uint32_t key) { DCHECK(IsCodeStubOrIC()); set_raw_type_feedback_info(Smi::FromInt(key)); } ACCESSORS(Code, gc_metadata, Object, kGCMetadataOffset) INT_ACCESSORS(Code, ic_age, kICAgeOffset) byte* Code::instruction_start() { return FIELD_ADDR(this, kHeaderSize); } byte* Code::instruction_end() { return instruction_start() + instruction_size(); } int Code::GetUnwindingInfoSizeOffset() const { DCHECK(has_unwinding_info()); return RoundUp(kHeaderSize + instruction_size(), kInt64Size); } int Code::unwinding_info_size() const { DCHECK(has_unwinding_info()); return static_cast<int>( READ_UINT64_FIELD(this, GetUnwindingInfoSizeOffset())); } void Code::set_unwinding_info_size(int value) { DCHECK(has_unwinding_info()); WRITE_UINT64_FIELD(this, GetUnwindingInfoSizeOffset(), value); } byte* Code::unwinding_info_start() { DCHECK(has_unwinding_info()); return FIELD_ADDR(this, GetUnwindingInfoSizeOffset()) + kInt64Size; } byte* Code::unwinding_info_end() { DCHECK(has_unwinding_info()); return unwinding_info_start() + unwinding_info_size(); } int Code::body_size() { int unpadded_body_size = has_unwinding_info() ? static_cast<int>(unwinding_info_end() - instruction_start()) : instruction_size(); return RoundUp(unpadded_body_size, kObjectAlignment); } int Code::SizeIncludingMetadata() { int size = CodeSize(); size += relocation_info()->Size(); size += deoptimization_data()->Size(); size += handler_table()->Size(); if (kind() == FUNCTION) size += source_position_table()->Size(); return size; } ByteArray* Code::unchecked_relocation_info() { return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset)); } byte* Code::relocation_start() { return unchecked_relocation_info()->GetDataStartAddress(); } int Code::relocation_size() { return unchecked_relocation_info()->length(); } byte* Code::entry() { return instruction_start(); } bool Code::contains(byte* inner_pointer) { return (address() <= inner_pointer) && (inner_pointer <= address() + Size()); } int Code::ExecutableSize() { // Check that the assumptions about the layout of the code object holds. DCHECK_EQ(static_cast<int>(instruction_start() - address()), Code::kHeaderSize); return instruction_size() + Code::kHeaderSize; } int Code::CodeSize() { return SizeFor(body_size()); } ACCESSORS(JSArray, length, Object, kLengthOffset) void* JSArrayBuffer::backing_store() const { intptr_t ptr = READ_INTPTR_FIELD(this, kBackingStoreOffset); return reinterpret_cast<void*>(ptr); } void JSArrayBuffer::set_backing_store(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast<intptr_t>(value); WRITE_INTPTR_FIELD(this, kBackingStoreOffset, ptr); } ACCESSORS(JSArrayBuffer, byte_length, Object, kByteLengthOffset) void JSArrayBuffer::set_bit_field(uint32_t bits) { if (kInt32Size != kPointerSize) { #if V8_TARGET_LITTLE_ENDIAN WRITE_UINT32_FIELD(this, kBitFieldSlot + kInt32Size, 0); #else WRITE_UINT32_FIELD(this, kBitFieldSlot, 0); #endif } WRITE_UINT32_FIELD(this, kBitFieldOffset, bits); } uint32_t JSArrayBuffer::bit_field() const { return READ_UINT32_FIELD(this, kBitFieldOffset); } bool JSArrayBuffer::is_external() { return IsExternal::decode(bit_field()); } void JSArrayBuffer::set_is_external(bool value) { set_bit_field(IsExternal::update(bit_field(), value)); } bool JSArrayBuffer::is_neuterable() { return IsNeuterable::decode(bit_field()); } void JSArrayBuffer::set_is_neuterable(bool value) { set_bit_field(IsNeuterable::update(bit_field(), value)); } bool JSArrayBuffer::was_neutered() { return WasNeutered::decode(bit_field()); } void JSArrayBuffer::set_was_neutered(bool value) { set_bit_field(WasNeutered::update(bit_field(), value)); } bool JSArrayBuffer::is_shared() { return IsShared::decode(bit_field()); } void JSArrayBuffer::set_is_shared(bool value) { set_bit_field(IsShared::update(bit_field(), value)); } Object* JSArrayBufferView::byte_offset() const { if (WasNeutered()) return Smi::kZero; return Object::cast(READ_FIELD(this, kByteOffsetOffset)); } void JSArrayBufferView::set_byte_offset(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kByteOffsetOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteOffsetOffset, value, mode); } Object* JSArrayBufferView::byte_length() const { if (WasNeutered()) return Smi::kZero; return Object::cast(READ_FIELD(this, kByteLengthOffset)); } void JSArrayBufferView::set_byte_length(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kByteLengthOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteLengthOffset, value, mode); } ACCESSORS(JSArrayBufferView, buffer, Object, kBufferOffset) #ifdef VERIFY_HEAP ACCESSORS(JSArrayBufferView, raw_byte_offset, Object, kByteOffsetOffset) ACCESSORS(JSArrayBufferView, raw_byte_length, Object, kByteLengthOffset) #endif bool JSArrayBufferView::WasNeutered() const { return JSArrayBuffer::cast(buffer())->was_neutered(); } Object* JSTypedArray::length() const { if (WasNeutered()) return Smi::kZero; return Object::cast(READ_FIELD(this, kLengthOffset)); } uint32_t JSTypedArray::length_value() const { if (WasNeutered()) return 0; uint32_t index = 0; CHECK(Object::cast(READ_FIELD(this, kLengthOffset))->ToArrayLength(&index)); return index; } void JSTypedArray::set_length(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kLengthOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kLengthOffset, value, mode); } #ifdef VERIFY_HEAP ACCESSORS(JSTypedArray, raw_length, Object, kLengthOffset) #endif ACCESSORS(JSRegExp, data, Object, kDataOffset) ACCESSORS(JSRegExp, flags, Object, kFlagsOffset) ACCESSORS(JSRegExp, source, Object, kSourceOffset) JSRegExp::Type JSRegExp::TypeTag() { Object* data = this->data(); if (data->IsUndefined(GetIsolate())) return JSRegExp::NOT_COMPILED; Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex)); return static_cast<JSRegExp::Type>(smi->value()); } int JSRegExp::CaptureCount() { switch (TypeTag()) { case ATOM: return 0; case IRREGEXP: return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value(); default: UNREACHABLE(); return -1; } } JSRegExp::Flags JSRegExp::GetFlags() { DCHECK(this->data()->IsFixedArray()); Object* data = this->data(); Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex)); return Flags(smi->value()); } String* JSRegExp::Pattern() { DCHECK(this->data()->IsFixedArray()); Object* data = this->data(); String* pattern = String::cast(FixedArray::cast(data)->get(kSourceIndex)); return pattern; } Object* JSRegExp::DataAt(int index) { DCHECK(TypeTag() != NOT_COMPILED); return FixedArray::cast(data())->get(index); } void JSRegExp::SetDataAt(int index, Object* value) { DCHECK(TypeTag() != NOT_COMPILED); DCHECK(index >= kDataIndex); // Only implementation data can be set this way. FixedArray::cast(data())->set(index, value); } void JSRegExp::SetLastIndex(int index) { static const int offset = kSize + JSRegExp::kLastIndexFieldIndex * kPointerSize; Smi* value = Smi::FromInt(index); WRITE_FIELD(this, offset, value); } Object* JSRegExp::LastIndex() { static const int offset = kSize + JSRegExp::kLastIndexFieldIndex * kPointerSize; return READ_FIELD(this, offset); } ElementsKind JSObject::GetElementsKind() { ElementsKind kind = map()->elements_kind(); #if VERIFY_HEAP && DEBUG FixedArrayBase* fixed_array = reinterpret_cast<FixedArrayBase*>(READ_FIELD(this, kElementsOffset)); // If a GC was caused while constructing this object, the elements // pointer may point to a one pointer filler map. if (ElementsAreSafeToExamine()) { Map* map = fixed_array->map(); if (IsFastSmiOrObjectElementsKind(kind)) { DCHECK(map == GetHeap()->fixed_array_map() || map == GetHeap()->fixed_cow_array_map()); } else if (IsFastDoubleElementsKind(kind)) { DCHECK(fixed_array->IsFixedDoubleArray() || fixed_array == GetHeap()->empty_fixed_array()); } else if (kind == DICTIONARY_ELEMENTS) { DCHECK(fixed_array->IsFixedArray()); DCHECK(fixed_array->IsDictionary()); } else { DCHECK(kind > DICTIONARY_ELEMENTS); } DCHECK(!IsSloppyArgumentsElements(kind) || (elements()->IsFixedArray() && elements()->length() >= 2)); } #endif return kind; } bool JSObject::HasFastObjectElements() { return IsFastObjectElementsKind(GetElementsKind()); } bool JSObject::HasFastSmiElements() { return IsFastSmiElementsKind(GetElementsKind()); } bool JSObject::HasFastSmiOrObjectElements() { return IsFastSmiOrObjectElementsKind(GetElementsKind()); } bool JSObject::HasFastDoubleElements() { return IsFastDoubleElementsKind(GetElementsKind()); } bool JSObject::HasFastHoleyElements() { return IsFastHoleyElementsKind(GetElementsKind()); } bool JSObject::HasFastElements() { return IsFastElementsKind(GetElementsKind()); } bool JSObject::HasDictionaryElements() { return GetElementsKind() == DICTIONARY_ELEMENTS; } bool JSObject::HasFastArgumentsElements() { return GetElementsKind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS; } bool JSObject::HasSlowArgumentsElements() { return GetElementsKind() == SLOW_SLOPPY_ARGUMENTS_ELEMENTS; } bool JSObject::HasSloppyArgumentsElements() { return IsSloppyArgumentsElements(GetElementsKind()); } bool JSObject::HasStringWrapperElements() { return IsStringWrapperElementsKind(GetElementsKind()); } bool JSObject::HasFastStringWrapperElements() { return GetElementsKind() == FAST_STRING_WRAPPER_ELEMENTS; } bool JSObject::HasSlowStringWrapperElements() { return GetElementsKind() == SLOW_STRING_WRAPPER_ELEMENTS; } bool JSObject::HasFixedTypedArrayElements() { DCHECK_NOT_NULL(elements()); return map()->has_fixed_typed_array_elements(); } #define FIXED_TYPED_ELEMENTS_CHECK(Type, type, TYPE, ctype, size) \ bool JSObject::HasFixed##Type##Elements() { \ HeapObject* array = elements(); \ DCHECK(array != NULL); \ if (!array->IsHeapObject()) return false; \ return array->map()->instance_type() == FIXED_##TYPE##_ARRAY_TYPE; \ } TYPED_ARRAYS(FIXED_TYPED_ELEMENTS_CHECK) #undef FIXED_TYPED_ELEMENTS_CHECK bool JSObject::HasNamedInterceptor() { return map()->has_named_interceptor(); } bool JSObject::HasIndexedInterceptor() { return map()->has_indexed_interceptor(); } GlobalDictionary* JSObject::global_dictionary() { DCHECK(!HasFastProperties()); DCHECK(IsJSGlobalObject()); return GlobalDictionary::cast(properties()); } SeededNumberDictionary* JSObject::element_dictionary() { DCHECK(HasDictionaryElements() || HasSlowStringWrapperElements()); return SeededNumberDictionary::cast(elements()); } bool Name::IsHashFieldComputed(uint32_t field) { return (field & kHashNotComputedMask) == 0; } bool Name::HasHashCode() { return IsHashFieldComputed(hash_field()); } uint32_t Name::Hash() { // Fast case: has hash code already been computed? uint32_t field = hash_field(); if (IsHashFieldComputed(field)) return field >> kHashShift; // Slow case: compute hash code and set it. Has to be a string. return String::cast(this)->ComputeAndSetHash(); } bool Name::IsPrivate() { return this->IsSymbol() && Symbol::cast(this)->is_private(); } StringHasher::StringHasher(int length, uint32_t seed) : length_(length), raw_running_hash_(seed), array_index_(0), is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize), is_first_char_(true) { DCHECK(FLAG_randomize_hashes || raw_running_hash_ == 0); } bool StringHasher::has_trivial_hash() { return length_ > String::kMaxHashCalcLength; } uint32_t StringHasher::AddCharacterCore(uint32_t running_hash, uint16_t c) { running_hash += c; running_hash += (running_hash << 10); running_hash ^= (running_hash >> 6); return running_hash; } uint32_t StringHasher::GetHashCore(uint32_t running_hash) { running_hash += (running_hash << 3); running_hash ^= (running_hash >> 11); running_hash += (running_hash << 15); if ((running_hash & String::kHashBitMask) == 0) { return kZeroHash; } return running_hash; } uint32_t StringHasher::ComputeRunningHash(uint32_t running_hash, const uc16* chars, int length) { DCHECK_NOT_NULL(chars); DCHECK(length >= 0); for (int i = 0; i < length; ++i) { running_hash = AddCharacterCore(running_hash, *chars++); } return running_hash; } uint32_t StringHasher::ComputeRunningHashOneByte(uint32_t running_hash, const char* chars, int length) { DCHECK_NOT_NULL(chars); DCHECK(length >= 0); for (int i = 0; i < length; ++i) { uint16_t c = static_cast<uint16_t>(*chars++); running_hash = AddCharacterCore(running_hash, c); } return running_hash; } void StringHasher::AddCharacter(uint16_t c) { // Use the Jenkins one-at-a-time hash function to update the hash // for the given character. raw_running_hash_ = AddCharacterCore(raw_running_hash_, c); } bool StringHasher::UpdateIndex(uint16_t c) { DCHECK(is_array_index_); if (c < '0' || c > '9') { is_array_index_ = false; return false; } int d = c - '0'; if (is_first_char_) { is_first_char_ = false; if (c == '0' && length_ > 1) { is_array_index_ = false; return false; } } if (array_index_ > 429496729U - ((d + 3) >> 3)) { is_array_index_ = false; return false; } array_index_ = array_index_ * 10 + d; return true; } template<typename Char> inline void StringHasher::AddCharacters(const Char* chars, int length) { DCHECK(sizeof(Char) == 1 || sizeof(Char) == 2); int i = 0; if (is_array_index_) { for (; i < length; i++) { AddCharacter(chars[i]); if (!UpdateIndex(chars[i])) { i++; break; } } } for (; i < length; i++) { DCHECK(!is_array_index_); AddCharacter(chars[i]); } } template <typename schar> uint32_t StringHasher::HashSequentialString(const schar* chars, int length, uint32_t seed) { StringHasher hasher(length, seed); if (!hasher.has_trivial_hash()) hasher.AddCharacters(chars, length); return hasher.GetHashField(); } IteratingStringHasher::IteratingStringHasher(int len, uint32_t seed) : StringHasher(len, seed) {} uint32_t IteratingStringHasher::Hash(String* string, uint32_t seed) { IteratingStringHasher hasher(string->length(), seed); // Nothing to do. if (hasher.has_trivial_hash()) return hasher.GetHashField(); ConsString* cons_string = String::VisitFlat(&hasher, string); if (cons_string == nullptr) return hasher.GetHashField(); hasher.VisitConsString(cons_string); return hasher.GetHashField(); } void IteratingStringHasher::VisitOneByteString(const uint8_t* chars, int length) { AddCharacters(chars, length); } void IteratingStringHasher::VisitTwoByteString(const uint16_t* chars, int length) { AddCharacters(chars, length); } bool Name::AsArrayIndex(uint32_t* index) { return IsString() && String::cast(this)->AsArrayIndex(index); } bool String::AsArrayIndex(uint32_t* index) { uint32_t field = hash_field(); if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) { return false; } return SlowAsArrayIndex(index); } void String::SetForwardedInternalizedString(String* canonical) { DCHECK(IsInternalizedString()); DCHECK(HasHashCode()); if (canonical == this) return; // No need to forward. DCHECK(SlowEquals(canonical)); DCHECK(canonical->IsInternalizedString()); DCHECK(canonical->HasHashCode()); WRITE_FIELD(this, kHashFieldSlot, canonical); // Setting the hash field to a tagged value sets the LSB, causing the hash // code to be interpreted as uninitialized. We use this fact to recognize // that we have a forwarded string. DCHECK(!HasHashCode()); } String* String::GetForwardedInternalizedString() { DCHECK(IsInternalizedString()); if (HasHashCode()) return this; String* canonical = String::cast(READ_FIELD(this, kHashFieldSlot)); DCHECK(canonical->IsInternalizedString()); DCHECK(SlowEquals(canonical)); DCHECK(canonical->HasHashCode()); return canonical; } // static Maybe<bool> Object::GreaterThan(Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kEqual: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } // static Maybe<bool> Object::GreaterThanOrEqual(Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } // static Maybe<bool> Object::LessThan(Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } // static Maybe<bool> Object::LessThanOrEqual(Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement(name->GetIsolate(), object, name); return GetProperty(&it); } MaybeHandle<Object> Object::SetPropertyOrElement(Handle<Object> object, Handle<Name> name, Handle<Object> value, LanguageMode language_mode, StoreFromKeyed store_mode) { LookupIterator it = LookupIterator::PropertyOrElement(name->GetIsolate(), object, name); MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_mode)); return value; } MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> receiver, Handle<Name> name, Handle<JSReceiver> holder) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), receiver, name, holder); return GetProperty(&it); } void JSReceiver::initialize_properties() { DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_properties_dictionary())); if (map()->is_dictionary_map()) { WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_properties_dictionary()); } else { WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array()); } } bool JSReceiver::HasFastProperties() { DCHECK_EQ(properties()->IsDictionary(), map()->is_dictionary_map()); return !properties()->IsDictionary(); } NameDictionary* JSReceiver::property_dictionary() { DCHECK(!HasFastProperties()); DCHECK(!IsJSGlobalObject()); return NameDictionary::cast(properties()); } Maybe<bool> JSReceiver::HasProperty(Handle<JSReceiver> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement(object->GetIsolate(), object, name, object); return HasProperty(&it); } Maybe<bool> JSReceiver::HasOwnProperty(Handle<JSReceiver> object, Handle<Name> name) { if (object->IsJSObject()) { // Shortcut LookupIterator it = LookupIterator::PropertyOrElement( object->GetIsolate(), object, name, object, LookupIterator::OWN); return HasProperty(&it); } Maybe<PropertyAttributes> attributes = JSReceiver::GetOwnPropertyAttributes(object, name); MAYBE_RETURN(attributes, Nothing<bool>()); return Just(attributes.FromJust() != ABSENT); } Maybe<bool> JSReceiver::HasOwnProperty(Handle<JSReceiver> object, uint32_t index) { if (object->IsJSObject()) { // Shortcut LookupIterator it(object->GetIsolate(), object, index, object, LookupIterator::OWN); return HasProperty(&it); } Maybe<PropertyAttributes> attributes = JSReceiver::GetOwnPropertyAttributes(object, index); MAYBE_RETURN(attributes, Nothing<bool>()); return Just(attributes.FromJust() != ABSENT); } Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes( Handle<JSReceiver> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement(name->GetIsolate(), object, name, object); return GetPropertyAttributes(&it); } Maybe<PropertyAttributes> JSReceiver::GetOwnPropertyAttributes( Handle<JSReceiver> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), object, name, object, LookupIterator::OWN); return GetPropertyAttributes(&it); } Maybe<PropertyAttributes> JSReceiver::GetOwnPropertyAttributes( Handle<JSReceiver> object, uint32_t index) { LookupIterator it(object->GetIsolate(), object, index, object, LookupIterator::OWN); return GetPropertyAttributes(&it); } Maybe<bool> JSReceiver::HasElement(Handle<JSReceiver> object, uint32_t index) { LookupIterator it(object->GetIsolate(), object, index, object); return HasProperty(&it); } Maybe<PropertyAttributes> JSReceiver::GetElementAttributes( Handle<JSReceiver> object, uint32_t index) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index, object); return GetPropertyAttributes(&it); } Maybe<PropertyAttributes> JSReceiver::GetOwnElementAttributes( Handle<JSReceiver> object, uint32_t index) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index, object, LookupIterator::OWN); return GetPropertyAttributes(&it); } bool JSGlobalObject::IsDetached() { return JSGlobalProxy::cast(global_proxy())->IsDetachedFrom(this); } bool JSGlobalProxy::IsDetachedFrom(JSGlobalObject* global) const { const PrototypeIterator iter(this->GetIsolate(), const_cast<JSGlobalProxy*>(this)); return iter.GetCurrent() != global; } inline int JSGlobalProxy::SizeWithInternalFields(int internal_field_count) { DCHECK_GE(internal_field_count, 0); return kSize + internal_field_count * kPointerSize; } Smi* JSReceiver::GetOrCreateIdentityHash(Isolate* isolate, Handle<JSReceiver> object) { return object->IsJSProxy() ? JSProxy::GetOrCreateIdentityHash( isolate, Handle<JSProxy>::cast(object)) : JSObject::GetOrCreateIdentityHash( isolate, Handle<JSObject>::cast(object)); } Object* JSReceiver::GetIdentityHash(Isolate* isolate, Handle<JSReceiver> receiver) { return receiver->IsJSProxy() ? JSProxy::GetIdentityHash(Handle<JSProxy>::cast(receiver)) : JSObject::GetIdentityHash(isolate, Handle<JSObject>::cast(receiver)); } bool AccessorInfo::all_can_read() { return BooleanBit::get(flag(), kAllCanReadBit); } void AccessorInfo::set_all_can_read(bool value) { set_flag(BooleanBit::set(flag(), kAllCanReadBit, value)); } bool AccessorInfo::all_can_write() { return BooleanBit::get(flag(), kAllCanWriteBit); } void AccessorInfo::set_all_can_write(bool value) { set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value)); } bool AccessorInfo::is_special_data_property() { return BooleanBit::get(flag(), kSpecialDataProperty); } void AccessorInfo::set_is_special_data_property(bool value) { set_flag(BooleanBit::set(flag(), kSpecialDataProperty, value)); } bool AccessorInfo::replace_on_access() { return BooleanBit::get(flag(), kReplaceOnAccess); } void AccessorInfo::set_replace_on_access(bool value) { set_flag(BooleanBit::set(flag(), kReplaceOnAccess, value)); } bool AccessorInfo::is_sloppy() { return BooleanBit::get(flag(), kIsSloppy); } void AccessorInfo::set_is_sloppy(bool value) { set_flag(BooleanBit::set(flag(), kIsSloppy, value)); } PropertyAttributes AccessorInfo::property_attributes() { return AttributesField::decode(static_cast<uint32_t>(flag())); } void AccessorInfo::set_property_attributes(PropertyAttributes attributes) { set_flag(AttributesField::update(flag(), attributes)); } bool FunctionTemplateInfo::IsTemplateFor(JSObject* object) { return IsTemplateFor(object->map()); } bool AccessorInfo::IsCompatibleReceiver(Object* receiver) { if (!HasExpectedReceiverType()) return true; if (!receiver->IsJSObject()) return false; return FunctionTemplateInfo::cast(expected_receiver_type()) ->IsTemplateFor(JSObject::cast(receiver)->map()); } bool AccessorInfo::HasExpectedReceiverType() { return expected_receiver_type()->IsFunctionTemplateInfo(); } Object* AccessorPair::get(AccessorComponent component) { return component == ACCESSOR_GETTER ? getter() : setter(); } void AccessorPair::set(AccessorComponent component, Object* value) { if (component == ACCESSOR_GETTER) { set_getter(value); } else { set_setter(value); } } void AccessorPair::SetComponents(Object* getter, Object* setter) { Isolate* isolate = GetIsolate(); if (!getter->IsNull(isolate)) set_getter(getter); if (!setter->IsNull(isolate)) set_setter(setter); } bool AccessorPair::Equals(AccessorPair* pair) { return (this == pair) || pair->Equals(getter(), setter()); } bool AccessorPair::Equals(Object* getter_value, Object* setter_value) { return (getter() == getter_value) && (setter() == setter_value); } bool AccessorPair::ContainsAccessor() { return IsJSAccessor(getter()) || IsJSAccessor(setter()); } bool AccessorPair::IsJSAccessor(Object* obj) { return obj->IsCallable() || obj->IsUndefined(GetIsolate()); } template<typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::SetEntry(int entry, Handle<Object> key, Handle<Object> value) { this->SetEntry(entry, key, value, PropertyDetails(Smi::kZero)); } template<typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::SetEntry(int entry, Handle<Object> key, Handle<Object> value, PropertyDetails details) { Shape::SetEntry(static_cast<Derived*>(this), entry, key, value, details); } template <typename Key> template <typename Dictionary> void BaseDictionaryShape<Key>::SetEntry(Dictionary* dict, int entry, Handle<Object> key, Handle<Object> value, PropertyDetails details) { STATIC_ASSERT(Dictionary::kEntrySize == 2 || Dictionary::kEntrySize == 3); DCHECK(!key->IsName() || details.dictionary_index() > 0); int index = dict->EntryToIndex(entry); DisallowHeapAllocation no_gc; WriteBarrierMode mode = dict->GetWriteBarrierMode(no_gc); dict->set(index + Dictionary::kEntryKeyIndex, *key, mode); dict->set(index + Dictionary::kEntryValueIndex, *value, mode); if (Dictionary::kEntrySize == 3) { dict->set(index + Dictionary::kEntryDetailsIndex, details.AsSmi()); } } template <typename Dictionary> void GlobalDictionaryShape::SetEntry(Dictionary* dict, int entry, Handle<Object> key, Handle<Object> value, PropertyDetails details) { STATIC_ASSERT(Dictionary::kEntrySize == 2); DCHECK(!key->IsName() || details.dictionary_index() > 0); DCHECK(value->IsPropertyCell()); int index = dict->EntryToIndex(entry); DisallowHeapAllocation no_gc; WriteBarrierMode mode = dict->GetWriteBarrierMode(no_gc); dict->set(index + Dictionary::kEntryKeyIndex, *key, mode); dict->set(index + Dictionary::kEntryValueIndex, *value, mode); PropertyCell::cast(*value)->set_property_details(details); } bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) { DCHECK(other->IsNumber()); return key == static_cast<uint32_t>(other->Number()); } uint32_t UnseededNumberDictionaryShape::Hash(uint32_t key) { return ComputeIntegerHash(key, 0); } uint32_t UnseededNumberDictionaryShape::HashForObject(uint32_t key, Object* other) { DCHECK(other->IsNumber()); return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), 0); } Map* UnseededNumberDictionaryShape::GetMap(Isolate* isolate) { return isolate->heap()->unseeded_number_dictionary_map(); } uint32_t SeededNumberDictionaryShape::SeededHash(uint32_t key, uint32_t seed) { return ComputeIntegerHash(key, seed); } uint32_t SeededNumberDictionaryShape::SeededHashForObject(uint32_t key, uint32_t seed, Object* other) { DCHECK(other->IsNumber()); return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), seed); } Handle<Object> NumberDictionaryShape::AsHandle(Isolate* isolate, uint32_t key) { return isolate->factory()->NewNumberFromUint(key); } bool NameDictionaryShape::IsMatch(Handle<Name> key, Object* other) { // We know that all entries in a hash table had their hash keys created. // Use that knowledge to have fast failure. if (key->Hash() != Name::cast(other)->Hash()) return false; return key->Equals(Name::cast(other)); } uint32_t NameDictionaryShape::Hash(Handle<Name> key) { return key->Hash(); } uint32_t NameDictionaryShape::HashForObject(Handle<Name> key, Object* other) { return Name::cast(other)->Hash(); } Handle<Object> NameDictionaryShape::AsHandle(Isolate* isolate, Handle<Name> key) { DCHECK(key->IsUniqueName()); return key; } Handle<FixedArray> NameDictionary::DoGenerateNewEnumerationIndices( Handle<NameDictionary> dictionary) { return DerivedDictionary::GenerateNewEnumerationIndices(dictionary); } template <typename Dictionary> PropertyDetails GlobalDictionaryShape::DetailsAt(Dictionary* dict, int entry) { DCHECK(entry >= 0); // Not found is -1, which is not caught by get(). Object* raw_value = dict->ValueAt(entry); DCHECK(raw_value->IsPropertyCell()); PropertyCell* cell = PropertyCell::cast(raw_value); return cell->property_details(); } template <typename Dictionary> void GlobalDictionaryShape::DetailsAtPut(Dictionary* dict, int entry, PropertyDetails value) { DCHECK(entry >= 0); // Not found is -1, which is not caught by get(). Object* raw_value = dict->ValueAt(entry); DCHECK(raw_value->IsPropertyCell()); PropertyCell* cell = PropertyCell::cast(raw_value); cell->set_property_details(value); } template <typename Dictionary> bool GlobalDictionaryShape::IsDeleted(Dictionary* dict, int entry) { DCHECK(dict->ValueAt(entry)->IsPropertyCell()); Isolate* isolate = dict->GetIsolate(); return PropertyCell::cast(dict->ValueAt(entry))->value()->IsTheHole(isolate); } bool ObjectHashTableShape::IsMatch(Handle<Object> key, Object* other) { return key->SameValue(other); } uint32_t ObjectHashTableShape::Hash(Handle<Object> key) { return Smi::cast(key->GetHash())->value(); } uint32_t ObjectHashTableShape::HashForObject(Handle<Object> key, Object* other) { return Smi::cast(other->GetHash())->value(); } Handle<Object> ObjectHashTableShape::AsHandle(Isolate* isolate, Handle<Object> key) { return key; } Handle<ObjectHashTable> ObjectHashTable::Shrink( Handle<ObjectHashTable> table, Handle<Object> key) { return DerivedHashTable::Shrink(table, key); } Object* OrderedHashMap::ValueAt(int entry) { return get(EntryToIndex(entry) + kValueOffset); } template <int entrysize> bool WeakHashTableShape<entrysize>::IsMatch(Handle<Object> key, Object* other) { if (other->IsWeakCell()) other = WeakCell::cast(other)->value(); return key->IsWeakCell() ? WeakCell::cast(*key)->value() == other : *key == other; } template <int entrysize> uint32_t WeakHashTableShape<entrysize>::Hash(Handle<Object> key) { intptr_t hash = key->IsWeakCell() ? reinterpret_cast<intptr_t>(WeakCell::cast(*key)->value()) : reinterpret_cast<intptr_t>(*key); return (uint32_t)(hash & 0xFFFFFFFF); } template <int entrysize> uint32_t WeakHashTableShape<entrysize>::HashForObject(Handle<Object> key, Object* other) { if (other->IsWeakCell()) other = WeakCell::cast(other)->value(); intptr_t hash = reinterpret_cast<intptr_t>(other); return (uint32_t)(hash & 0xFFFFFFFF); } template <int entrysize> Handle<Object> WeakHashTableShape<entrysize>::AsHandle(Isolate* isolate, Handle<Object> key) { return key; } bool ScopeInfo::IsAsmModule() { return AsmModuleField::decode(Flags()); } bool ScopeInfo::IsAsmFunction() { return AsmFunctionField::decode(Flags()); } bool ScopeInfo::HasSimpleParameters() { return HasSimpleParametersField::decode(Flags()); } #define SCOPE_INFO_FIELD_ACCESSORS(name) \ void ScopeInfo::Set##name(int value) { set(k##name, Smi::FromInt(value)); } \ int ScopeInfo::name() { \ if (length() > 0) { \ return Smi::cast(get(k##name))->value(); \ } else { \ return 0; \ } \ } FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(SCOPE_INFO_FIELD_ACCESSORS) #undef SCOPE_INFO_FIELD_ACCESSORS ACCESSORS(ModuleInfoEntry, export_name, Object, kExportNameOffset) ACCESSORS(ModuleInfoEntry, local_name, Object, kLocalNameOffset) ACCESSORS(ModuleInfoEntry, import_name, Object, kImportNameOffset) SMI_ACCESSORS(ModuleInfoEntry, module_request, kModuleRequestOffset) SMI_ACCESSORS(ModuleInfoEntry, cell_index, kCellIndexOffset) SMI_ACCESSORS(ModuleInfoEntry, beg_pos, kBegPosOffset) SMI_ACCESSORS(ModuleInfoEntry, end_pos, kEndPosOffset) FixedArray* ModuleInfo::module_requests() const { return FixedArray::cast(get(kModuleRequestsIndex)); } FixedArray* ModuleInfo::special_exports() const { return FixedArray::cast(get(kSpecialExportsIndex)); } FixedArray* ModuleInfo::regular_exports() const { return FixedArray::cast(get(kRegularExportsIndex)); } FixedArray* ModuleInfo::regular_imports() const { return FixedArray::cast(get(kRegularImportsIndex)); } FixedArray* ModuleInfo::namespace_imports() const { return FixedArray::cast(get(kNamespaceImportsIndex)); } #ifdef DEBUG bool ModuleInfo::Equals(ModuleInfo* other) const { return regular_exports() == other->regular_exports() && regular_imports() == other->regular_imports() && special_exports() == other->special_exports() && namespace_imports() == other->namespace_imports(); } #endif void Map::ClearCodeCache(Heap* heap) { // No write barrier is needed since empty_fixed_array is not in new space. // Please note this function is used during marking: // - MarkCompactCollector::MarkUnmarkedObject // - IncrementalMarking::Step WRITE_FIELD(this, kCodeCacheOffset, heap->empty_fixed_array()); } int Map::SlackForArraySize(int old_size, int size_limit) { const int max_slack = size_limit - old_size; CHECK_LE(0, max_slack); if (old_size < 4) { DCHECK_LE(1, max_slack); return 1; } return Min(max_slack, old_size / 4); } void JSArray::set_length(Smi* length) { // Don't need a write barrier for a Smi. set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER); } bool JSArray::SetLengthWouldNormalize(Heap* heap, uint32_t new_length) { // If the new array won't fit in a some non-trivial fraction of the max old // space size, then force it to go dictionary mode. uint32_t max_fast_array_size = static_cast<uint32_t>((heap->MaxOldGenerationSize() / kDoubleSize) / 4); return new_length >= max_fast_array_size; } bool JSArray::AllowsSetLength() { bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray(); DCHECK(result == !HasFixedTypedArrayElements()); return result; } void JSArray::SetContent(Handle<JSArray> array, Handle<FixedArrayBase> storage) { EnsureCanContainElements(array, storage, storage->length(), ALLOW_COPIED_DOUBLE_ELEMENTS); DCHECK((storage->map() == array->GetHeap()->fixed_double_array_map() && IsFastDoubleElementsKind(array->GetElementsKind())) || ((storage->map() != array->GetHeap()->fixed_double_array_map()) && (IsFastObjectElementsKind(array->GetElementsKind()) || (IsFastSmiElementsKind(array->GetElementsKind()) && Handle<FixedArray>::cast(storage)->ContainsOnlySmisOrHoles())))); array->set_elements(*storage); array->set_length(Smi::FromInt(storage->length())); } bool JSArray::HasArrayPrototype(Isolate* isolate) { return map()->prototype() == *isolate->initial_array_prototype(); } int TypeFeedbackInfo::ic_total_count() { int current = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); return ICTotalCountField::decode(current); } void TypeFeedbackInfo::set_ic_total_count(int count) { int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); value = ICTotalCountField::update(value, ICTotalCountField::decode(count)); WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value)); } int TypeFeedbackInfo::ic_with_type_info_count() { int current = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); return ICsWithTypeInfoCountField::decode(current); } void TypeFeedbackInfo::change_ic_with_type_info_count(int delta) { if (delta == 0) return; int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); int new_count = ICsWithTypeInfoCountField::decode(value) + delta; // We can get negative count here when the type-feedback info is // shared between two code objects. The can only happen when // the debugger made a shallow copy of code object (see Heap::CopyCode). // Since we do not optimize when the debugger is active, we can skip // this counter update. if (new_count >= 0) { new_count &= ICsWithTypeInfoCountField::kMask; value = ICsWithTypeInfoCountField::update(value, new_count); WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value)); } } int TypeFeedbackInfo::ic_generic_count() { return Smi::cast(READ_FIELD(this, kStorage3Offset))->value(); } void TypeFeedbackInfo::change_ic_generic_count(int delta) { if (delta == 0) return; int new_count = ic_generic_count() + delta; if (new_count >= 0) { new_count &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage3Offset, Smi::FromInt(new_count)); } } void TypeFeedbackInfo::initialize_storage() { WRITE_FIELD(this, kStorage1Offset, Smi::kZero); WRITE_FIELD(this, kStorage2Offset, Smi::kZero); WRITE_FIELD(this, kStorage3Offset, Smi::kZero); } void TypeFeedbackInfo::change_own_type_change_checksum() { int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); int checksum = OwnTypeChangeChecksum::decode(value); checksum = (checksum + 1) % (1 << kTypeChangeChecksumBits); value = OwnTypeChangeChecksum::update(value, checksum); // Ensure packed bit field is in Smi range. if (value > Smi::kMaxValue) value |= Smi::kMinValue; if (value < Smi::kMinValue) value &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value)); } void TypeFeedbackInfo::set_inlined_type_change_checksum(int checksum) { int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); int mask = (1 << kTypeChangeChecksumBits) - 1; value = InlinedTypeChangeChecksum::update(value, checksum & mask); // Ensure packed bit field is in Smi range. if (value > Smi::kMaxValue) value |= Smi::kMinValue; if (value < Smi::kMinValue) value &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value)); } int TypeFeedbackInfo::own_type_change_checksum() { int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); return OwnTypeChangeChecksum::decode(value); } bool TypeFeedbackInfo::matches_inlined_type_change_checksum(int checksum) { int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); int mask = (1 << kTypeChangeChecksumBits) - 1; return InlinedTypeChangeChecksum::decode(value) == (checksum & mask); } SMI_ACCESSORS(AliasedArgumentsEntry, aliased_context_slot, kAliasedContextSlot) Relocatable::Relocatable(Isolate* isolate) { isolate_ = isolate; prev_ = isolate->relocatable_top(); isolate->set_relocatable_top(this); } Relocatable::~Relocatable() { DCHECK_EQ(isolate_->relocatable_top(), this); isolate_->set_relocatable_top(prev_); } template<class Derived, class TableType> Object* OrderedHashTableIterator<Derived, TableType>::CurrentKey() { TableType* table(TableType::cast(this->table())); int index = Smi::cast(this->index())->value(); Object* key = table->KeyAt(index); DCHECK(!key->IsTheHole(table->GetIsolate())); return key; } void JSSetIterator::PopulateValueArray(FixedArray* array) { array->set(0, CurrentKey()); } void JSMapIterator::PopulateValueArray(FixedArray* array) { array->set(0, CurrentKey()); array->set(1, CurrentValue()); } Object* JSMapIterator::CurrentValue() { OrderedHashMap* table(OrderedHashMap::cast(this->table())); int index = Smi::cast(this->index())->value(); Object* value = table->ValueAt(index); DCHECK(!value->IsTheHole(table->GetIsolate())); return value; } String::SubStringRange::SubStringRange(String* string, int first, int length) : string_(string), first_(first), length_(length == -1 ? string->length() : length) {} class String::SubStringRange::iterator final { public: typedef std::forward_iterator_tag iterator_category; typedef int difference_type; typedef uc16 value_type; typedef uc16* pointer; typedef uc16& reference; iterator(const iterator& other) : content_(other.content_), offset_(other.offset_) {} uc16 operator*() { return content_.Get(offset_); } bool operator==(const iterator& other) const { return content_.UsesSameString(other.content_) && offset_ == other.offset_; } bool operator!=(const iterator& other) const { return !content_.UsesSameString(other.content_) || offset_ != other.offset_; } iterator& operator++() { ++offset_; return *this; } iterator operator++(int); private: friend class String; iterator(String* from, int offset) : content_(from->GetFlatContent()), offset_(offset) {} String::FlatContent content_; int offset_; }; String::SubStringRange::iterator String::SubStringRange::begin() { return String::SubStringRange::iterator(string_, first_); } String::SubStringRange::iterator String::SubStringRange::end() { return String::SubStringRange::iterator(string_, first_ + length_); } // Predictably converts HeapObject* or Address to uint32 by calculating // offset of the address in respective MemoryChunk. static inline uint32_t ObjectAddressForHashing(void* object) { uint32_t value = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(object)); return value & MemoryChunk::kAlignmentMask; } static inline Handle<Object> MakeEntryPair(Isolate* isolate, uint32_t index, Handle<Object> value) { Handle<Object> key = isolate->factory()->Uint32ToString(index); Handle<FixedArray> entry_storage = isolate->factory()->NewUninitializedFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, FAST_ELEMENTS, 2); } static inline Handle<Object> MakeEntryPair(Isolate* isolate, Handle<Name> key, Handle<Object> value) { Handle<FixedArray> entry_storage = isolate->factory()->NewUninitializedFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, FAST_ELEMENTS, 2); } ACCESSORS(JSIteratorResult, value, Object, kValueOffset) ACCESSORS(JSIteratorResult, done, Object, kDoneOffset) ACCESSORS(JSArrayIterator, object, Object, kIteratedObjectOffset) ACCESSORS(JSArrayIterator, index, Object, kNextIndexOffset) ACCESSORS(JSArrayIterator, object_map, Object, kIteratedObjectMapOffset) ACCESSORS(JSStringIterator, string, String, kStringOffset) SMI_ACCESSORS(JSStringIterator, index, kNextIndexOffset) #undef TYPE_CHECKER #undef CAST_ACCESSOR #undef INT_ACCESSORS #undef ACCESSORS #undef SMI_ACCESSORS #undef SYNCHRONIZED_SMI_ACCESSORS #undef NOBARRIER_SMI_ACCESSORS #undef BOOL_GETTER #undef BOOL_ACCESSORS #undef FIELD_ADDR #undef FIELD_ADDR_CONST #undef READ_FIELD #undef NOBARRIER_READ_FIELD #undef WRITE_FIELD #undef NOBARRIER_WRITE_FIELD #undef WRITE_BARRIER #undef CONDITIONAL_WRITE_BARRIER #undef READ_DOUBLE_FIELD #undef WRITE_DOUBLE_FIELD #undef READ_INT_FIELD #undef WRITE_INT_FIELD #undef READ_INTPTR_FIELD #undef WRITE_INTPTR_FIELD #undef READ_UINT8_FIELD #undef WRITE_UINT8_FIELD #undef READ_INT8_FIELD #undef WRITE_INT8_FIELD #undef READ_UINT16_FIELD #undef WRITE_UINT16_FIELD #undef READ_INT16_FIELD #undef WRITE_INT16_FIELD #undef READ_UINT32_FIELD #undef WRITE_UINT32_FIELD #undef READ_INT32_FIELD #undef WRITE_INT32_FIELD #undef READ_FLOAT_FIELD #undef WRITE_FLOAT_FIELD #undef READ_UINT64_FIELD #undef WRITE_UINT64_FIELD #undef READ_INT64_FIELD #undef WRITE_INT64_FIELD #undef READ_BYTE_FIELD #undef WRITE_BYTE_FIELD #undef NOBARRIER_READ_BYTE_FIELD #undef NOBARRIER_WRITE_BYTE_FIELD } // namespace internal } // namespace v8 #endif // V8_OBJECTS_INL_H_