// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/profiler/profile-generator.h" #include "src/base/adapters.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/global-handles.h" #include "src/profiler/cpu-profiler.h" #include "src/profiler/profile-generator-inl.h" #include "src/tracing/trace-event.h" #include "src/tracing/traced-value.h" #include "src/unicode.h" namespace v8 { namespace internal { JITLineInfoTable::JITLineInfoTable() {} JITLineInfoTable::~JITLineInfoTable() {} void JITLineInfoTable::SetPosition(int pc_offset, int line) { DCHECK(pc_offset >= 0); DCHECK(line > 0); // The 1-based number of the source line. if (GetSourceLineNumber(pc_offset) != line) { pc_offset_map_.insert(std::make_pair(pc_offset, line)); } } int JITLineInfoTable::GetSourceLineNumber(int pc_offset) const { PcOffsetMap::const_iterator it = pc_offset_map_.lower_bound(pc_offset); if (it == pc_offset_map_.end()) { if (pc_offset_map_.empty()) return v8::CpuProfileNode::kNoLineNumberInfo; return (--pc_offset_map_.end())->second; } return it->second; } const char* const CodeEntry::kEmptyNamePrefix = ""; const char* const CodeEntry::kEmptyResourceName = ""; const char* const CodeEntry::kEmptyBailoutReason = ""; const char* const CodeEntry::kNoDeoptReason = ""; const char* const CodeEntry::kProgramEntryName = "(program)"; const char* const CodeEntry::kIdleEntryName = "(idle)"; const char* const CodeEntry::kGarbageCollectorEntryName = "(garbage collector)"; const char* const CodeEntry::kUnresolvedFunctionName = "(unresolved function)"; base::LazyDynamicInstance<CodeEntry, CodeEntry::ProgramEntryCreateTrait>::type CodeEntry::kProgramEntry = LAZY_DYNAMIC_INSTANCE_INITIALIZER; base::LazyDynamicInstance<CodeEntry, CodeEntry::IdleEntryCreateTrait>::type CodeEntry::kIdleEntry = LAZY_DYNAMIC_INSTANCE_INITIALIZER; base::LazyDynamicInstance<CodeEntry, CodeEntry::GCEntryCreateTrait>::type CodeEntry::kGCEntry = LAZY_DYNAMIC_INSTANCE_INITIALIZER; base::LazyDynamicInstance<CodeEntry, CodeEntry::UnresolvedEntryCreateTrait>::type CodeEntry::kUnresolvedEntry = LAZY_DYNAMIC_INSTANCE_INITIALIZER; CodeEntry* CodeEntry::ProgramEntryCreateTrait::Create() { return new CodeEntry(Logger::FUNCTION_TAG, CodeEntry::kProgramEntryName); } CodeEntry* CodeEntry::IdleEntryCreateTrait::Create() { return new CodeEntry(Logger::FUNCTION_TAG, CodeEntry::kIdleEntryName); } CodeEntry* CodeEntry::GCEntryCreateTrait::Create() { return new CodeEntry(Logger::BUILTIN_TAG, CodeEntry::kGarbageCollectorEntryName); } CodeEntry* CodeEntry::UnresolvedEntryCreateTrait::Create() { return new CodeEntry(Logger::FUNCTION_TAG, CodeEntry::kUnresolvedFunctionName); } CodeEntry::~CodeEntry() { delete line_info_; for (auto location : inline_locations_) { for (auto entry : location.second) { delete entry; } } } uint32_t CodeEntry::GetHash() const { uint32_t hash = ComputeIntegerHash(tag(), v8::internal::kZeroHashSeed); if (script_id_ != v8::UnboundScript::kNoScriptId) { hash ^= ComputeIntegerHash(static_cast<uint32_t>(script_id_), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash(static_cast<uint32_t>(position_), v8::internal::kZeroHashSeed); } else { hash ^= ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_prefix_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash(line_number_, v8::internal::kZeroHashSeed); } return hash; } bool CodeEntry::IsSameFunctionAs(CodeEntry* entry) const { if (this == entry) return true; if (script_id_ != v8::UnboundScript::kNoScriptId) { return script_id_ == entry->script_id_ && position_ == entry->position_; } return name_prefix_ == entry->name_prefix_ && name_ == entry->name_ && resource_name_ == entry->resource_name_ && line_number_ == entry->line_number_; } void CodeEntry::SetBuiltinId(Builtins::Name id) { bit_field_ = TagField::update(bit_field_, CodeEventListener::BUILTIN_TAG); bit_field_ = BuiltinIdField::update(bit_field_, id); } int CodeEntry::GetSourceLine(int pc_offset) const { if (line_info_ && !line_info_->empty()) { return line_info_->GetSourceLineNumber(pc_offset); } return v8::CpuProfileNode::kNoLineNumberInfo; } void CodeEntry::AddInlineStack(int pc_offset, std::vector<CodeEntry*> inline_stack) { inline_locations_.insert(std::make_pair(pc_offset, std::move(inline_stack))); } const std::vector<CodeEntry*>* CodeEntry::GetInlineStack(int pc_offset) const { auto it = inline_locations_.find(pc_offset); return it != inline_locations_.end() ? &it->second : NULL; } void CodeEntry::AddDeoptInlinedFrames( int deopt_id, std::vector<CpuProfileDeoptFrame> inlined_frames) { deopt_inlined_frames_.insert( std::make_pair(deopt_id, std::move(inlined_frames))); } bool CodeEntry::HasDeoptInlinedFramesFor(int deopt_id) const { return deopt_inlined_frames_.find(deopt_id) != deopt_inlined_frames_.end(); } void CodeEntry::FillFunctionInfo(SharedFunctionInfo* shared) { if (!shared->script()->IsScript()) return; Script* script = Script::cast(shared->script()); set_script_id(script->id()); set_position(shared->start_position()); set_bailout_reason(GetBailoutReason(shared->disable_optimization_reason())); } CpuProfileDeoptInfo CodeEntry::GetDeoptInfo() { DCHECK(has_deopt_info()); CpuProfileDeoptInfo info; info.deopt_reason = deopt_reason_; DCHECK_NE(kNoDeoptimizationId, deopt_id_); if (deopt_inlined_frames_.find(deopt_id_) == deopt_inlined_frames_.end()) { info.stack.push_back(CpuProfileDeoptFrame( {script_id_, static_cast<size_t>(std::max(0, position()))})); } else { info.stack = deopt_inlined_frames_[deopt_id_]; } return info; } void ProfileNode::CollectDeoptInfo(CodeEntry* entry) { deopt_infos_.push_back(entry->GetDeoptInfo()); entry->clear_deopt_info(); } ProfileNode* ProfileNode::FindChild(CodeEntry* entry) { base::HashMap::Entry* map_entry = children_.Lookup(entry, CodeEntryHash(entry)); return map_entry != NULL ? reinterpret_cast<ProfileNode*>(map_entry->value) : NULL; } ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) { base::HashMap::Entry* map_entry = children_.LookupOrInsert(entry, CodeEntryHash(entry)); ProfileNode* node = reinterpret_cast<ProfileNode*>(map_entry->value); if (!node) { node = new ProfileNode(tree_, entry, this); map_entry->value = node; children_list_.Add(node); } return node; } void ProfileNode::IncrementLineTicks(int src_line) { if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) return; // Increment a hit counter of a certain source line. // Add a new source line if not found. base::HashMap::Entry* e = line_ticks_.LookupOrInsert(reinterpret_cast<void*>(src_line), src_line); DCHECK(e); e->value = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(e->value) + 1); } bool ProfileNode::GetLineTicks(v8::CpuProfileNode::LineTick* entries, unsigned int length) const { if (entries == NULL || length == 0) return false; unsigned line_count = line_ticks_.occupancy(); if (line_count == 0) return true; if (length < line_count) return false; v8::CpuProfileNode::LineTick* entry = entries; for (base::HashMap::Entry *p = line_ticks_.Start(); p != NULL; p = line_ticks_.Next(p), entry++) { entry->line = static_cast<unsigned int>(reinterpret_cast<uintptr_t>(p->key)); entry->hit_count = static_cast<unsigned int>(reinterpret_cast<uintptr_t>(p->value)); } return true; } void ProfileNode::Print(int indent) { base::OS::Print("%5u %*s %s%s %d #%d", self_ticks_, indent, "", entry_->name_prefix(), entry_->name(), entry_->script_id(), id()); if (entry_->resource_name()[0] != '\0') base::OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number()); base::OS::Print("\n"); for (size_t i = 0; i < deopt_infos_.size(); ++i) { CpuProfileDeoptInfo& info = deopt_infos_[i]; base::OS::Print("%*s;;; deopted at script_id: %d position: %" PRIuS " with reason '%s'.\n", indent + 10, "", info.stack[0].script_id, info.stack[0].position, info.deopt_reason); for (size_t index = 1; index < info.stack.size(); ++index) { base::OS::Print("%*s;;; Inline point: script_id %d position: %" PRIuS ".\n", indent + 10, "", info.stack[index].script_id, info.stack[index].position); } } const char* bailout_reason = entry_->bailout_reason(); if (bailout_reason != GetBailoutReason(BailoutReason::kNoReason) && bailout_reason != CodeEntry::kEmptyBailoutReason) { base::OS::Print("%*s bailed out due to '%s'\n", indent + 10, "", bailout_reason); } for (base::HashMap::Entry* p = children_.Start(); p != NULL; p = children_.Next(p)) { reinterpret_cast<ProfileNode*>(p->value)->Print(indent + 2); } } class DeleteNodesCallback { public: void BeforeTraversingChild(ProfileNode*, ProfileNode*) { } void AfterAllChildrenTraversed(ProfileNode* node) { delete node; } void AfterChildTraversed(ProfileNode*, ProfileNode*) { } }; ProfileTree::ProfileTree(Isolate* isolate) : root_entry_(CodeEventListener::FUNCTION_TAG, "(root)"), next_node_id_(1), root_(new ProfileNode(this, &root_entry_, nullptr)), isolate_(isolate), next_function_id_(1), function_ids_(ProfileNode::CodeEntriesMatch) {} ProfileTree::~ProfileTree() { DeleteNodesCallback cb; TraverseDepthFirst(&cb); } unsigned ProfileTree::GetFunctionId(const ProfileNode* node) { CodeEntry* code_entry = node->entry(); base::HashMap::Entry* entry = function_ids_.LookupOrInsert(code_entry, code_entry->GetHash()); if (!entry->value) { entry->value = reinterpret_cast<void*>(next_function_id_++); } return static_cast<unsigned>(reinterpret_cast<uintptr_t>(entry->value)); } ProfileNode* ProfileTree::AddPathFromEnd(const std::vector<CodeEntry*>& path, int src_line, bool update_stats) { ProfileNode* node = root_; CodeEntry* last_entry = NULL; for (auto it = path.rbegin(); it != path.rend(); ++it) { if (*it == NULL) continue; last_entry = *it; node = node->FindOrAddChild(*it); } if (last_entry && last_entry->has_deopt_info()) { node->CollectDeoptInfo(last_entry); } if (update_stats) { node->IncrementSelfTicks(); if (src_line != v8::CpuProfileNode::kNoLineNumberInfo) { node->IncrementLineTicks(src_line); } } return node; } struct NodesPair { NodesPair(ProfileNode* src, ProfileNode* dst) : src(src), dst(dst) { } ProfileNode* src; ProfileNode* dst; }; class Position { public: explicit Position(ProfileNode* node) : node(node), child_idx_(0) { } INLINE(ProfileNode* current_child()) { return node->children()->at(child_idx_); } INLINE(bool has_current_child()) { return child_idx_ < node->children()->length(); } INLINE(void next_child()) { ++child_idx_; } ProfileNode* node; private: int child_idx_; }; // Non-recursive implementation of a depth-first post-order tree traversal. template <typename Callback> void ProfileTree::TraverseDepthFirst(Callback* callback) { List<Position> stack(10); stack.Add(Position(root_)); while (stack.length() > 0) { Position& current = stack.last(); if (current.has_current_child()) { callback->BeforeTraversingChild(current.node, current.current_child()); stack.Add(Position(current.current_child())); } else { callback->AfterAllChildrenTraversed(current.node); if (stack.length() > 1) { Position& parent = stack[stack.length() - 2]; callback->AfterChildTraversed(parent.node, current.node); parent.next_child(); } // Remove child from the stack. stack.RemoveLast(); } } } using v8::tracing::TracedValue; CpuProfile::CpuProfile(CpuProfiler* profiler, const char* title, bool record_samples) : title_(title), record_samples_(record_samples), start_time_(base::TimeTicks::HighResolutionNow()), top_down_(profiler->isolate()), profiler_(profiler), streaming_next_sample_(0) { auto value = TracedValue::Create(); value->SetDouble("startTime", (start_time_ - base::TimeTicks()).InMicroseconds()); TRACE_EVENT_SAMPLE_WITH_ID1(TRACE_DISABLED_BY_DEFAULT("v8.cpu_profiler"), "Profile", this, "data", std::move(value)); } void CpuProfile::AddPath(base::TimeTicks timestamp, const std::vector<CodeEntry*>& path, int src_line, bool update_stats) { ProfileNode* top_frame_node = top_down_.AddPathFromEnd(path, src_line, update_stats); if (record_samples_ && !timestamp.IsNull()) { timestamps_.Add(timestamp); samples_.Add(top_frame_node); } const int kSamplesFlushCount = 100; const int kNodesFlushCount = 10; if (samples_.length() - streaming_next_sample_ >= kSamplesFlushCount || top_down_.pending_nodes_count() >= kNodesFlushCount) { StreamPendingTraceEvents(); } } namespace { void BuildNodeValue(const ProfileNode* node, TracedValue* value) { const CodeEntry* entry = node->entry(); value->BeginDictionary("callFrame"); value->SetString("functionName", entry->name()); if (*entry->resource_name()) { value->SetString("url", entry->resource_name()); } value->SetInteger("scriptId", entry->script_id()); if (entry->line_number()) { value->SetInteger("lineNumber", entry->line_number() - 1); } if (entry->column_number()) { value->SetInteger("columnNumber", entry->column_number() - 1); } value->EndDictionary(); value->SetInteger("id", node->id()); if (node->parent()) { value->SetInteger("parent", node->parent()->id()); } const char* deopt_reason = entry->bailout_reason(); if (deopt_reason && deopt_reason[0] && strcmp(deopt_reason, "no reason")) { value->SetString("deoptReason", deopt_reason); } } } // namespace void CpuProfile::StreamPendingTraceEvents() { std::vector<const ProfileNode*> pending_nodes = top_down_.TakePendingNodes(); if (pending_nodes.empty() && !samples_.length()) return; auto value = TracedValue::Create(); if (!pending_nodes.empty() || streaming_next_sample_ != samples_.length()) { value->BeginDictionary("cpuProfile"); if (!pending_nodes.empty()) { value->BeginArray("nodes"); for (auto node : pending_nodes) { value->BeginDictionary(); BuildNodeValue(node, value.get()); value->EndDictionary(); } value->EndArray(); } if (streaming_next_sample_ != samples_.length()) { value->BeginArray("samples"); for (int i = streaming_next_sample_; i < samples_.length(); ++i) { value->AppendInteger(samples_[i]->id()); } value->EndArray(); } value->EndDictionary(); } if (streaming_next_sample_ != samples_.length()) { value->BeginArray("timeDeltas"); base::TimeTicks lastTimestamp = streaming_next_sample_ ? timestamps_[streaming_next_sample_ - 1] : start_time(); for (int i = streaming_next_sample_; i < timestamps_.length(); ++i) { value->AppendInteger( static_cast<int>((timestamps_[i] - lastTimestamp).InMicroseconds())); lastTimestamp = timestamps_[i]; } value->EndArray(); DCHECK(samples_.length() == timestamps_.length()); streaming_next_sample_ = samples_.length(); } TRACE_EVENT_SAMPLE_WITH_ID1(TRACE_DISABLED_BY_DEFAULT("v8.cpu_profiler"), "ProfileChunk", this, "data", std::move(value)); } void CpuProfile::FinishProfile() { end_time_ = base::TimeTicks::HighResolutionNow(); StreamPendingTraceEvents(); auto value = TracedValue::Create(); value->SetDouble("endTime", (end_time_ - base::TimeTicks()).InMicroseconds()); TRACE_EVENT_SAMPLE_WITH_ID1(TRACE_DISABLED_BY_DEFAULT("v8.cpu_profiler"), "ProfileChunk", this, "data", std::move(value)); } void CpuProfile::Print() { base::OS::Print("[Top down]:\n"); top_down_.Print(); } void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) { DeleteAllCoveredCode(addr, addr + size); code_map_.insert({addr, CodeEntryInfo(entry, size)}); } void CodeMap::DeleteAllCoveredCode(Address start, Address end) { auto left = code_map_.upper_bound(start); if (left != code_map_.begin()) { --left; if (left->first + left->second.size <= start) ++left; } auto right = left; while (right != code_map_.end() && right->first < end) ++right; code_map_.erase(left, right); } CodeEntry* CodeMap::FindEntry(Address addr) { auto it = code_map_.upper_bound(addr); if (it == code_map_.begin()) return nullptr; --it; Address end_address = it->first + it->second.size; return addr < end_address ? it->second.entry : nullptr; } void CodeMap::MoveCode(Address from, Address to) { if (from == to) return; auto it = code_map_.find(from); if (it == code_map_.end()) return; CodeEntryInfo info = it->second; code_map_.erase(it); AddCode(to, info.entry, info.size); } void CodeMap::Print() { for (auto it = code_map_.begin(); it != code_map_.end(); ++it) { base::OS::Print("%p %5d %s\n", static_cast<void*>(it->first), it->second.size, it->second.entry->name()); } } CpuProfilesCollection::CpuProfilesCollection(Isolate* isolate) : resource_names_(isolate->heap()), profiler_(nullptr), current_profiles_semaphore_(1) {} static void DeleteCpuProfile(CpuProfile** profile_ptr) { delete *profile_ptr; } CpuProfilesCollection::~CpuProfilesCollection() { finished_profiles_.Iterate(DeleteCpuProfile); current_profiles_.Iterate(DeleteCpuProfile); } bool CpuProfilesCollection::StartProfiling(const char* title, bool record_samples) { current_profiles_semaphore_.Wait(); if (current_profiles_.length() >= kMaxSimultaneousProfiles) { current_profiles_semaphore_.Signal(); return false; } for (int i = 0; i < current_profiles_.length(); ++i) { if (strcmp(current_profiles_[i]->title(), title) == 0) { // Ignore attempts to start profile with the same title... current_profiles_semaphore_.Signal(); // ... though return true to force it collect a sample. return true; } } current_profiles_.Add(new CpuProfile(profiler_, title, record_samples)); current_profiles_semaphore_.Signal(); return true; } CpuProfile* CpuProfilesCollection::StopProfiling(const char* title) { const int title_len = StrLength(title); CpuProfile* profile = nullptr; current_profiles_semaphore_.Wait(); for (int i = current_profiles_.length() - 1; i >= 0; --i) { if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) { profile = current_profiles_.Remove(i); break; } } current_profiles_semaphore_.Signal(); if (!profile) return nullptr; profile->FinishProfile(); finished_profiles_.Add(profile); return profile; } bool CpuProfilesCollection::IsLastProfile(const char* title) { // Called from VM thread, and only it can mutate the list, // so no locking is needed here. if (current_profiles_.length() != 1) return false; return StrLength(title) == 0 || strcmp(current_profiles_[0]->title(), title) == 0; } void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) { // Called from VM thread for a completed profile. for (int i = 0; i < finished_profiles_.length(); i++) { if (profile == finished_profiles_[i]) { finished_profiles_.Remove(i); return; } } UNREACHABLE(); } void CpuProfilesCollection::AddPathToCurrentProfiles( base::TimeTicks timestamp, const std::vector<CodeEntry*>& path, int src_line, bool update_stats) { // As starting / stopping profiles is rare relatively to this // method, we don't bother minimizing the duration of lock holding, // e.g. copying contents of the list to a local vector. current_profiles_semaphore_.Wait(); for (int i = 0; i < current_profiles_.length(); ++i) { current_profiles_[i]->AddPath(timestamp, path, src_line, update_stats); } current_profiles_semaphore_.Signal(); } ProfileGenerator::ProfileGenerator(Isolate* isolate, CpuProfilesCollection* profiles) : isolate_(isolate), profiles_(profiles) {} void ProfileGenerator::RecordTickSample(const TickSample& sample) { std::vector<CodeEntry*> entries; // Conservatively reserve space for stack frames + pc + function + vm-state. // There could in fact be more of them because of inlined entries. entries.reserve(sample.frames_count + 3); // The ProfileNode knows nothing about all versions of generated code for // the same JS function. The line number information associated with // the latest version of generated code is used to find a source line number // for a JS function. Then, the detected source line is passed to // ProfileNode to increase the tick count for this source line. int src_line = v8::CpuProfileNode::kNoLineNumberInfo; bool src_line_not_found = true; if (sample.pc != nullptr) { if (sample.has_external_callback && sample.state == EXTERNAL) { // Don't use PC when in external callback code, as it can point // inside callback's code, and we will erroneously report // that a callback calls itself. entries.push_back(FindEntry(sample.external_callback_entry)); } else { CodeEntry* pc_entry = FindEntry(sample.pc); // If there is no pc_entry we're likely in native code. // Find out, if top of stack was pointing inside a JS function // meaning that we have encountered a frameless invocation. if (!pc_entry && !sample.has_external_callback) { pc_entry = FindEntry(sample.tos); } // If pc is in the function code before it set up stack frame or after the // frame was destroyed SafeStackFrameIterator incorrectly thinks that // ebp contains return address of the current function and skips caller's // frame. Check for this case and just skip such samples. if (pc_entry) { int pc_offset = static_cast<int>(reinterpret_cast<Address>(sample.pc) - pc_entry->instruction_start()); src_line = pc_entry->GetSourceLine(pc_offset); if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) { src_line = pc_entry->line_number(); } src_line_not_found = false; entries.push_back(pc_entry); if (pc_entry->builtin_id() == Builtins::kFunctionPrototypeApply || pc_entry->builtin_id() == Builtins::kFunctionPrototypeCall) { // When current function is either the Function.prototype.apply or the // Function.prototype.call builtin the top frame is either frame of // the calling JS function or internal frame. // In the latter case we know the caller for sure but in the // former case we don't so we simply replace the frame with // 'unresolved' entry. if (!sample.has_external_callback) { entries.push_back(CodeEntry::unresolved_entry()); } } } } for (unsigned i = 0; i < sample.frames_count; ++i) { Address stack_pos = reinterpret_cast<Address>(sample.stack[i]); CodeEntry* entry = FindEntry(stack_pos); if (entry) { // Find out if the entry has an inlining stack associated. int pc_offset = static_cast<int>(stack_pos - entry->instruction_start()); const std::vector<CodeEntry*>* inline_stack = entry->GetInlineStack(pc_offset); if (inline_stack) { entries.insert(entries.end(), inline_stack->rbegin(), inline_stack->rend()); } // Skip unresolved frames (e.g. internal frame) and get source line of // the first JS caller. if (src_line_not_found) { src_line = entry->GetSourceLine(pc_offset); if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) { src_line = entry->line_number(); } src_line_not_found = false; } } entries.push_back(entry); } } if (FLAG_prof_browser_mode) { bool no_symbolized_entries = true; for (auto e : entries) { if (e != NULL) { no_symbolized_entries = false; break; } } // If no frames were symbolized, put the VM state entry in. if (no_symbolized_entries) { entries.push_back(EntryForVMState(sample.state)); } } profiles_->AddPathToCurrentProfiles(sample.timestamp, entries, src_line, sample.update_stats); } CodeEntry* ProfileGenerator::FindEntry(void* address) { CodeEntry* entry = code_map_.FindEntry(reinterpret_cast<Address>(address)); if (!entry) { RuntimeCallStats* rcs = isolate_->counters()->runtime_call_stats(); void* start = reinterpret_cast<void*>(rcs); void* end = reinterpret_cast<void*>(rcs + 1); if (start <= address && address < end) { RuntimeCallCounter* counter = reinterpret_cast<RuntimeCallCounter*>(address); entry = new CodeEntry(CodeEventListener::FUNCTION_TAG, counter->name, CodeEntry::kEmptyNamePrefix, "native V8Runtime"); code_map_.AddCode(reinterpret_cast<Address>(address), entry, 1); } } return entry; } CodeEntry* ProfileGenerator::EntryForVMState(StateTag tag) { switch (tag) { case GC: return CodeEntry::gc_entry(); case JS: case COMPILER: // DOM events handlers are reported as OTHER / EXTERNAL entries. // To avoid confusing people, let's put all these entries into // one bucket. case OTHER: case EXTERNAL: return CodeEntry::program_entry(); case IDLE: return CodeEntry::idle_entry(); default: return NULL; } } } // namespace internal } // namespace v8