// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X87 #include "src/codegen.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/register-configuration.h" #include "src/safepoint-table.h" #include "src/x87/frames-x87.h" namespace v8 { namespace internal { const int Deoptimizer::table_entry_size_ = 10; int Deoptimizer::patch_size() { return Assembler::kCallInstructionLength; } void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) { Isolate* isolate = code->GetIsolate(); HandleScope scope(isolate); // Compute the size of relocation information needed for the code // patching in Deoptimizer::PatchCodeForDeoptimization below. int min_reloc_size = 0; int prev_pc_offset = 0; DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); for (int i = 0; i < deopt_data->DeoptCount(); i++) { int pc_offset = deopt_data->Pc(i)->value(); if (pc_offset == -1) continue; pc_offset = pc_offset + 1; // We will encode the pc offset after the call. DCHECK_GE(pc_offset, prev_pc_offset); int pc_delta = pc_offset - prev_pc_offset; // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes // if encodable with small pc delta encoding and up to 6 bytes // otherwise. if (pc_delta <= RelocInfo::kMaxSmallPCDelta) { min_reloc_size += 2; } else { min_reloc_size += 6; } prev_pc_offset = pc_offset; } // If the relocation information is not big enough we create a new // relocation info object that is padded with comments to make it // big enough for lazy doptimization. int reloc_length = code->relocation_info()->length(); if (min_reloc_size > reloc_length) { int comment_reloc_size = RelocInfo::kMinRelocCommentSize; // Padding needed. int min_padding = min_reloc_size - reloc_length; // Number of comments needed to take up at least that much space. int additional_comments = (min_padding + comment_reloc_size - 1) / comment_reloc_size; // Actual padding size. int padding = additional_comments * comment_reloc_size; // Allocate new relocation info and copy old relocation to the end // of the new relocation info array because relocation info is // written and read backwards. Factory* factory = isolate->factory(); Handle<ByteArray> new_reloc = factory->NewByteArray(reloc_length + padding, TENURED); MemCopy(new_reloc->GetDataStartAddress() + padding, code->relocation_info()->GetDataStartAddress(), reloc_length); // Create a relocation writer to write the comments in the padding // space. Use position 0 for everything to ensure short encoding. RelocInfoWriter reloc_info_writer( new_reloc->GetDataStartAddress() + padding, 0); intptr_t comment_string = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString); RelocInfo rinfo(isolate, 0, RelocInfo::COMMENT, comment_string, NULL); for (int i = 0; i < additional_comments; ++i) { #ifdef DEBUG byte* pos_before = reloc_info_writer.pos(); #endif reloc_info_writer.Write(&rinfo); DCHECK(RelocInfo::kMinRelocCommentSize == pos_before - reloc_info_writer.pos()); } // Replace relocation information on the code object. code->set_relocation_info(*new_reloc); } } void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) { Address code_start_address = code->instruction_start(); if (FLAG_zap_code_space) { // Fail hard and early if we enter this code object again. byte* pointer = code->FindCodeAgeSequence(); if (pointer != NULL) { pointer += kNoCodeAgeSequenceLength; } else { pointer = code->instruction_start(); } CodePatcher patcher(isolate, pointer, 1); patcher.masm()->int3(); DeoptimizationInputData* data = DeoptimizationInputData::cast(code->deoptimization_data()); int osr_offset = data->OsrPcOffset()->value(); if (osr_offset > 0) { CodePatcher osr_patcher(isolate, code->instruction_start() + osr_offset, 1); osr_patcher.masm()->int3(); } } // We will overwrite the code's relocation info in-place. Relocation info // is written backward. The relocation info is the payload of a byte // array. Later on we will slide this to the start of the byte array and // create a filler object in the remaining space. ByteArray* reloc_info = code->relocation_info(); Address reloc_end_address = reloc_info->address() + reloc_info->Size(); RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address); // Since the call is a relative encoding, write new // reloc info. We do not need any of the existing reloc info because the // existing code will not be used again (we zap it in debug builds). // // Emit call to lazy deoptimization at all lazy deopt points. DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); #ifdef DEBUG Address prev_call_address = NULL; #endif // For each LLazyBailout instruction insert a call to the corresponding // deoptimization entry. for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; // Patch lazy deoptimization entry. Address call_address = code_start_address + deopt_data->Pc(i)->value(); CodePatcher patcher(isolate, call_address, patch_size()); Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY); patcher.masm()->call(deopt_entry, RelocInfo::NONE32); // We use RUNTIME_ENTRY for deoptimization bailouts. RelocInfo rinfo(isolate, call_address + 1, // 1 after the call opcode. RelocInfo::RUNTIME_ENTRY, reinterpret_cast<intptr_t>(deopt_entry), NULL); reloc_info_writer.Write(&rinfo); DCHECK_GE(reloc_info_writer.pos(), reloc_info->address() + ByteArray::kHeaderSize); DCHECK(prev_call_address == NULL || call_address >= prev_call_address + patch_size()); DCHECK(call_address + patch_size() <= code->instruction_end()); #ifdef DEBUG prev_call_address = call_address; #endif } // Move the relocation info to the beginning of the byte array. const int new_reloc_length = reloc_end_address - reloc_info_writer.pos(); MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_length); // Right trim the relocation info to free up remaining space. const int delta = reloc_info->length() - new_reloc_length; if (delta > 0) { isolate->heap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>( reloc_info, delta); } } void Deoptimizer::SetPlatformCompiledStubRegisters( FrameDescription* output_frame, CodeStubDescriptor* descriptor) { intptr_t handler = reinterpret_cast<intptr_t>(descriptor->deoptimization_handler()); int params = descriptor->GetHandlerParameterCount(); output_frame->SetRegister(eax.code(), params); output_frame->SetRegister(ebx.code(), handler); } void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) { for (int i = 0; i < X87Register::kMaxNumRegisters; ++i) { double double_value = input_->GetDoubleRegister(i); output_frame->SetDoubleRegister(i, double_value); } } #define __ masm()-> void Deoptimizer::TableEntryGenerator::Generate() { GeneratePrologue(); // Save all general purpose registers before messing with them. const int kNumberOfRegisters = Register::kNumRegisters; const int kDoubleRegsSize = kDoubleSize * X87Register::kMaxNumRegisters; // Reserve space for x87 fp registers. __ sub(esp, Immediate(kDoubleRegsSize)); __ pushad(); ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate()); __ mov(Operand::StaticVariable(c_entry_fp_address), ebp); // GP registers are safe to use now. // Save used x87 fp registers in correct position of previous reserve space. Label loop, done; // Get the layout of x87 stack. __ sub(esp, Immediate(kPointerSize)); __ fistp_s(MemOperand(esp, 0)); __ pop(eax); // Preserve stack layout in edi __ mov(edi, eax); // Get the x87 stack depth, the first 3 bits. __ mov(ecx, eax); __ and_(ecx, 0x7); __ j(zero, &done, Label::kNear); __ bind(&loop); __ shr(eax, 0x3); __ mov(ebx, eax); __ and_(ebx, 0x7); // Extract the st_x index into ebx. // Pop TOS to the correct position. The disp(0x20) is due to pushad. // The st_i should be saved to (esp + ebx * kDoubleSize + 0x20). __ fstp_d(Operand(esp, ebx, times_8, 0x20)); __ dec(ecx); // Decrease stack depth. __ j(not_zero, &loop, Label::kNear); __ bind(&done); const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize + kDoubleRegsSize; // Get the bailout id from the stack. __ mov(ebx, Operand(esp, kSavedRegistersAreaSize)); // Get the address of the location in the code object // and compute the fp-to-sp delta in register edx. __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize)); __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize)); __ sub(edx, ebp); __ neg(edx); __ push(edi); // Allocate a new deoptimizer object. __ PrepareCallCFunction(6, eax); __ mov(eax, Immediate(0)); Label context_check; __ mov(edi, Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset)); __ JumpIfSmi(edi, &context_check); __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ bind(&context_check); __ mov(Operand(esp, 0 * kPointerSize), eax); // Function. __ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type. __ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id. __ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0. __ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta. __ mov(Operand(esp, 5 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6); } __ pop(edi); // Preserve deoptimizer object in register eax and get the input // frame descriptor pointer. __ mov(ebx, Operand(eax, Deoptimizer::input_offset())); // Fill in the input registers. for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ pop(Operand(ebx, offset)); } int double_regs_offset = FrameDescription::double_registers_offset(); const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); // Fill in the double input registers. for (int i = 0; i < X87Register::kMaxNumAllocatableRegisters; ++i) { int code = config->GetAllocatableDoubleCode(i); int dst_offset = code * kDoubleSize + double_regs_offset; int src_offset = code * kDoubleSize; __ fld_d(Operand(esp, src_offset)); __ fstp_d(Operand(ebx, dst_offset)); } // Clear FPU all exceptions. // TODO(ulan): Find out why the TOP register is not zero here in some cases, // and check that the generated code never deoptimizes with unbalanced stack. __ fnclex(); // Remove the bailout id, return address and the double registers. __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize)); // Compute a pointer to the unwinding limit in register ecx; that is // the first stack slot not part of the input frame. __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); __ add(ecx, esp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset())); Label pop_loop_header; __ jmp(&pop_loop_header); Label pop_loop; __ bind(&pop_loop); __ pop(Operand(edx, 0)); __ add(edx, Immediate(sizeof(uint32_t))); __ bind(&pop_loop_header); __ cmp(ecx, esp); __ j(not_equal, &pop_loop); // Compute the output frame in the deoptimizer. __ push(edi); __ push(eax); __ PrepareCallCFunction(1, ebx); __ mov(Operand(esp, 0 * kPointerSize), eax); { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction( ExternalReference::compute_output_frames_function(isolate()), 1); } __ pop(eax); __ pop(edi); __ mov(esp, Operand(eax, Deoptimizer::caller_frame_top_offset())); // Replace the current (input) frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: eax = current FrameDescription**, edx = one past the // last FrameDescription**. __ mov(edx, Operand(eax, Deoptimizer::output_count_offset())); __ mov(eax, Operand(eax, Deoptimizer::output_offset())); __ lea(edx, Operand(eax, edx, times_4, 0)); __ jmp(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: ebx = current FrameDescription*, ecx = loop index. __ mov(ebx, Operand(eax, 0)); __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); __ jmp(&inner_loop_header); __ bind(&inner_push_loop); __ sub(ecx, Immediate(sizeof(uint32_t))); __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset())); __ bind(&inner_loop_header); __ test(ecx, ecx); __ j(not_zero, &inner_push_loop); __ add(eax, Immediate(kPointerSize)); __ bind(&outer_loop_header); __ cmp(eax, edx); __ j(below, &outer_push_loop); // In case of a failed STUB, we have to restore the x87 stack. // x87 stack layout is in edi. Label loop2, done2; // Get the x87 stack depth, the first 3 bits. __ mov(ecx, edi); __ and_(ecx, 0x7); __ j(zero, &done2, Label::kNear); __ lea(ecx, Operand(ecx, ecx, times_2, 0)); __ bind(&loop2); __ mov(eax, edi); __ shr_cl(eax); __ and_(eax, 0x7); __ fld_d(Operand(ebx, eax, times_8, double_regs_offset)); __ sub(ecx, Immediate(0x3)); __ j(not_zero, &loop2, Label::kNear); __ bind(&done2); // Push state, pc, and continuation from the last output frame. __ push(Operand(ebx, FrameDescription::state_offset())); __ push(Operand(ebx, FrameDescription::pc_offset())); __ push(Operand(ebx, FrameDescription::continuation_offset())); // Push the registers from the last output frame. for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ push(Operand(ebx, offset)); } // Restore the registers from the stack. __ popad(); // Return to the continuation point. __ ret(0); } void Deoptimizer::TableEntryGenerator::GeneratePrologue() { // Create a sequence of deoptimization entries. Label done; for (int i = 0; i < count(); i++) { int start = masm()->pc_offset(); USE(start); __ push_imm32(i); __ jmp(&done); DCHECK(masm()->pc_offset() - start == table_entry_size_); } __ bind(&done); } void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) { // No embedded constant pool support. UNREACHABLE(); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X87