// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X87 #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/runtime/runtime.h" #include "src/x87/frames-x87.h" #include "src/x87/macro-assembler-x87.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // MacroAssembler implementation. MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size, CodeObjectRequired create_code_object) : Assembler(arg_isolate, buffer, size), generating_stub_(false), has_frame_(false) { if (create_code_object == CodeObjectRequired::kYes) { code_object_ = Handle<Object>::New(isolate()->heap()->undefined_value(), isolate()); } } void MacroAssembler::Load(Register dst, const Operand& src, Representation r) { DCHECK(!r.IsDouble()); if (r.IsInteger8()) { movsx_b(dst, src); } else if (r.IsUInteger8()) { movzx_b(dst, src); } else if (r.IsInteger16()) { movsx_w(dst, src); } else if (r.IsUInteger16()) { movzx_w(dst, src); } else { mov(dst, src); } } void MacroAssembler::Store(Register src, const Operand& dst, Representation r) { DCHECK(!r.IsDouble()); if (r.IsInteger8() || r.IsUInteger8()) { mov_b(dst, src); } else if (r.IsInteger16() || r.IsUInteger16()) { mov_w(dst, src); } else { if (r.IsHeapObject()) { AssertNotSmi(src); } else if (r.IsSmi()) { AssertSmi(src); } mov(dst, src); } } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) { mov(destination, isolate()->heap()->root_handle(index)); return; } ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); mov(destination, Immediate(index)); mov(destination, Operand::StaticArray(destination, times_pointer_size, roots_array_start)); } void MacroAssembler::StoreRoot(Register source, Register scratch, Heap::RootListIndex index) { DCHECK(Heap::RootCanBeWrittenAfterInitialization(index)); ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); mov(scratch, Immediate(index)); mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start), source); } void MacroAssembler::CompareRoot(Register with, Register scratch, Heap::RootListIndex index) { ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); mov(scratch, Immediate(index)); cmp(with, Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); } void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); cmp(with, isolate()->heap()->root_handle(index)); } void MacroAssembler::CompareRoot(const Operand& with, Heap::RootListIndex index) { DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); cmp(with, isolate()->heap()->root_handle(index)); } void MacroAssembler::PushRoot(Heap::RootListIndex index) { DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); Push(isolate()->heap()->root_handle(index)); } #define REG(Name) \ { Register::kCode_##Name } static const Register saved_regs[] = {REG(eax), REG(ecx), REG(edx)}; #undef REG static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register); void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. for (int i = 0; i < kNumberOfSavedRegs; i++) { Register reg = saved_regs[i]; if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) { push(reg); } } if (fp_mode == kSaveFPRegs) { // Save FPU state in m108byte. sub(esp, Immediate(108)); fnsave(Operand(esp, 0)); } } void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { if (fp_mode == kSaveFPRegs) { // Restore FPU state in m108byte. frstor(Operand(esp, 0)); add(esp, Immediate(108)); } for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) { Register reg = saved_regs[i]; if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) { pop(reg); } } } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc, Label* condition_met, Label::Distance distance) { CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cc, condition_met, distance); } void MacroAssembler::RememberedSetHelper( Register object, // Only used for debug checks. Register addr, Register scratch, SaveFPRegsMode save_fp, MacroAssembler::RememberedSetFinalAction and_then) { Label done; if (emit_debug_code()) { Label ok; JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear); int3(); bind(&ok); } // Load store buffer top. ExternalReference store_buffer = ExternalReference::store_buffer_top(isolate()); mov(scratch, Operand::StaticVariable(store_buffer)); // Store pointer to buffer. mov(Operand(scratch, 0), addr); // Increment buffer top. add(scratch, Immediate(kPointerSize)); // Write back new top of buffer. mov(Operand::StaticVariable(store_buffer), scratch); // Call stub on end of buffer. // Check for end of buffer. test(scratch, Immediate(StoreBuffer::kStoreBufferMask)); if (and_then == kReturnAtEnd) { Label buffer_overflowed; j(equal, &buffer_overflowed, Label::kNear); ret(0); bind(&buffer_overflowed); } else { DCHECK(and_then == kFallThroughAtEnd); j(not_equal, &done, Label::kNear); } StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp); CallStub(&store_buffer_overflow); if (and_then == kReturnAtEnd) { ret(0); } else { DCHECK(and_then == kFallThroughAtEnd); bind(&done); } } void MacroAssembler::ClampTOSToUint8(Register result_reg) { Label done, conv_failure; sub(esp, Immediate(kPointerSize)); fnclex(); fist_s(Operand(esp, 0)); pop(result_reg); X87CheckIA(); j(equal, &conv_failure, Label::kNear); test(result_reg, Immediate(0xFFFFFF00)); j(zero, &done, Label::kNear); setcc(sign, result_reg); sub(result_reg, Immediate(1)); and_(result_reg, Immediate(255)); jmp(&done, Label::kNear); bind(&conv_failure); fnclex(); fldz(); fld(1); FCmp(); setcc(below, result_reg); // 1 if negative, 0 if positive. dec_b(result_reg); // 0 if negative, 255 if positive. bind(&done); } void MacroAssembler::ClampUint8(Register reg) { Label done; test(reg, Immediate(0xFFFFFF00)); j(zero, &done, Label::kNear); setcc(negative, reg); // 1 if negative, 0 if positive. dec_b(reg); // 0 if negative, 255 if positive. bind(&done); } void MacroAssembler::SlowTruncateToI(Register result_reg, Register input_reg, int offset) { DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true); call(stub.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::TruncateX87TOSToI(Register result_reg) { sub(esp, Immediate(kDoubleSize)); fst_d(MemOperand(esp, 0)); SlowTruncateToI(result_reg, esp, 0); add(esp, Immediate(kDoubleSize)); } void MacroAssembler::X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode, Label* lost_precision, Label* is_nan, Label* minus_zero, Label::Distance dst) { Label done; sub(esp, Immediate(kPointerSize)); fld(0); fist_s(MemOperand(esp, 0)); fild_s(MemOperand(esp, 0)); pop(result_reg); FCmp(); j(not_equal, lost_precision, dst); j(parity_even, is_nan, dst); if (minus_zero_mode == FAIL_ON_MINUS_ZERO) { test(result_reg, Operand(result_reg)); j(not_zero, &done, Label::kNear); // To check for minus zero, we load the value again as float, and check // if that is still 0. sub(esp, Immediate(kPointerSize)); fst_s(MemOperand(esp, 0)); pop(result_reg); test(result_reg, Operand(result_reg)); j(not_zero, minus_zero, dst); } bind(&done); } void MacroAssembler::TruncateHeapNumberToI(Register result_reg, Register input_reg) { Label done, slow_case; SlowTruncateToI(result_reg, input_reg); bind(&done); } void MacroAssembler::LoadUint32NoSSE2(const Operand& src) { Label done; push(src); fild_s(Operand(esp, 0)); cmp(src, Immediate(0)); j(not_sign, &done, Label::kNear); ExternalReference uint32_bias = ExternalReference::address_of_uint32_bias(); fld_d(Operand::StaticVariable(uint32_bias)); faddp(1); bind(&done); add(esp, Immediate(kPointerSize)); } void MacroAssembler::RecordWriteArray( Register object, Register value, Register index, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { DCHECK_EQ(0, kSmiTag); test(value, Immediate(kSmiTagMask)); j(zero, &done); } // Array access: calculate the destination address in the same manner as // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset // into an array of words. Register dst = index; lea(dst, Operand(object, index, times_half_pointer_size, FixedArray::kHeaderSize - kHeapObjectTag)); RecordWrite(object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK, pointers_to_here_check_for_value); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Immediate(bit_cast<int32_t>(kZapValue))); mov(index, Immediate(bit_cast<int32_t>(kZapValue))); } } void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register dst, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done, Label::kNear); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); lea(dst, FieldOperand(object, offset)); if (emit_debug_code()) { Label ok; test_b(dst, Immediate((1 << kPointerSizeLog2) - 1)); j(zero, &ok, Label::kNear); int3(); bind(&ok); } RecordWrite(object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK, pointers_to_here_check_for_value); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Immediate(bit_cast<int32_t>(kZapValue))); mov(dst, Immediate(bit_cast<int32_t>(kZapValue))); } } void MacroAssembler::RecordWriteForMap(Register object, Handle<Map> map, Register scratch1, Register scratch2, SaveFPRegsMode save_fp) { Label done; Register address = scratch1; Register value = scratch2; if (emit_debug_code()) { Label ok; lea(address, FieldOperand(object, HeapObject::kMapOffset)); test_b(address, Immediate((1 << kPointerSizeLog2) - 1)); j(zero, &ok, Label::kNear); int3(); bind(&ok); } DCHECK(!object.is(value)); DCHECK(!object.is(address)); DCHECK(!value.is(address)); AssertNotSmi(object); if (!FLAG_incremental_marking) { return; } // Compute the address. lea(address, FieldOperand(object, HeapObject::kMapOffset)); // A single check of the map's pages interesting flag suffices, since it is // only set during incremental collection, and then it's also guaranteed that // the from object's page's interesting flag is also set. This optimization // relies on the fact that maps can never be in new space. DCHECK(!isolate()->heap()->InNewSpace(*map)); CheckPageFlagForMap(map, MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, Label::kNear); RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET, save_fp); CallStub(&stub); bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Immediate(bit_cast<int32_t>(kZapValue))); mov(scratch1, Immediate(bit_cast<int32_t>(kZapValue))); mov(scratch2, Immediate(bit_cast<int32_t>(kZapValue))); } } void MacroAssembler::RecordWrite( Register object, Register address, Register value, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { DCHECK(!object.is(value)); DCHECK(!object.is(address)); DCHECK(!value.is(address)); AssertNotSmi(object); if (remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) { return; } if (emit_debug_code()) { Label ok; cmp(value, Operand(address, 0)); j(equal, &ok, Label::kNear); int3(); bind(&ok); } // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; if (smi_check == INLINE_SMI_CHECK) { // Skip barrier if writing a smi. JumpIfSmi(value, &done, Label::kNear); } if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, Label::kNear); } CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done, Label::kNear); RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, fp_mode); CallStub(&stub); bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(address, Immediate(bit_cast<int32_t>(kZapValue))); mov(value, Immediate(bit_cast<int32_t>(kZapValue))); } } void MacroAssembler::RecordWriteCodeEntryField(Register js_function, Register code_entry, Register scratch) { const int offset = JSFunction::kCodeEntryOffset; // Since a code entry (value) is always in old space, we don't need to update // remembered set. If incremental marking is off, there is nothing for us to // do. if (!FLAG_incremental_marking) return; DCHECK(!js_function.is(code_entry)); DCHECK(!js_function.is(scratch)); DCHECK(!code_entry.is(scratch)); AssertNotSmi(js_function); if (emit_debug_code()) { Label ok; lea(scratch, FieldOperand(js_function, offset)); cmp(code_entry, Operand(scratch, 0)); j(equal, &ok, Label::kNear); int3(); bind(&ok); } // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; CheckPageFlag(code_entry, scratch, MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, Label::kNear); CheckPageFlag(js_function, scratch, MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done, Label::kNear); // Save input registers. push(js_function); push(code_entry); const Register dst = scratch; lea(dst, FieldOperand(js_function, offset)); // Save caller-saved registers. PushCallerSaved(kDontSaveFPRegs, js_function, code_entry); int argument_count = 3; PrepareCallCFunction(argument_count, code_entry); mov(Operand(esp, 0 * kPointerSize), js_function); mov(Operand(esp, 1 * kPointerSize), dst); // Slot. mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); { AllowExternalCallThatCantCauseGC scope(this); CallCFunction( ExternalReference::incremental_marking_record_write_code_entry_function( isolate()), argument_count); } // Restore caller-saved registers. PopCallerSaved(kDontSaveFPRegs, js_function, code_entry); // Restore input registers. pop(code_entry); pop(js_function); bind(&done); } void MacroAssembler::DebugBreak() { Move(eax, Immediate(0)); mov(ebx, Immediate(ExternalReference(Runtime::kHandleDebuggerStatement, isolate()))); CEntryStub ces(isolate(), 1); call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT); } void MacroAssembler::ShlPair(Register high, Register low, uint8_t shift) { if (shift >= 32) { mov(high, low); shl(high, shift - 32); xor_(low, low); } else { shld(high, low, shift); shl(low, shift); } } void MacroAssembler::ShlPair_cl(Register high, Register low) { shld_cl(high, low); shl_cl(low); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(high, low); xor_(low, low); bind(&done); } void MacroAssembler::ShrPair(Register high, Register low, uint8_t shift) { if (shift >= 32) { mov(low, high); shr(low, shift - 32); xor_(high, high); } else { shrd(high, low, shift); shr(high, shift); } } void MacroAssembler::ShrPair_cl(Register high, Register low) { shrd_cl(low, high); shr_cl(high); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(low, high); xor_(high, high); bind(&done); } void MacroAssembler::SarPair(Register high, Register low, uint8_t shift) { if (shift >= 32) { mov(low, high); sar(low, shift - 32); sar(high, 31); } else { shrd(high, low, shift); sar(high, shift); } } void MacroAssembler::SarPair_cl(Register high, Register low) { shrd_cl(low, high); sar_cl(high); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(low, high); sar(high, 31); bind(&done); } bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) { static const int kMaxImmediateBits = 17; if (!RelocInfo::IsNone(x.rmode_)) return false; return !is_intn(x.x_, kMaxImmediateBits); } void MacroAssembler::SafeMove(Register dst, const Immediate& x) { if (IsUnsafeImmediate(x) && jit_cookie() != 0) { Move(dst, Immediate(x.x_ ^ jit_cookie())); xor_(dst, jit_cookie()); } else { Move(dst, x); } } void MacroAssembler::SafePush(const Immediate& x) { if (IsUnsafeImmediate(x) && jit_cookie() != 0) { push(Immediate(x.x_ ^ jit_cookie())); xor_(Operand(esp, 0), Immediate(jit_cookie())); } else { push(x); } } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type)); } void MacroAssembler::CheckFastObjectElements(Register map, Label* fail, Label::Distance distance) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); cmpb(FieldOperand(map, Map::kBitField2Offset), Immediate(Map::kMaximumBitField2FastHoleySmiElementValue)); j(below_equal, fail, distance); cmpb(FieldOperand(map, Map::kBitField2Offset), Immediate(Map::kMaximumBitField2FastHoleyElementValue)); j(above, fail, distance); } void MacroAssembler::CheckFastSmiElements(Register map, Label* fail, Label::Distance distance) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); cmpb(FieldOperand(map, Map::kBitField2Offset), Immediate(Map::kMaximumBitField2FastHoleySmiElementValue)); j(above, fail, distance); } void MacroAssembler::StoreNumberToDoubleElements( Register maybe_number, Register elements, Register key, Register scratch, Label* fail, int elements_offset) { Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value; JumpIfSmi(maybe_number, &smi_value, Label::kNear); CheckMap(maybe_number, isolate()->factory()->heap_number_map(), fail, DONT_DO_SMI_CHECK); fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset)); jmp(&done, Label::kNear); bind(&smi_value); // Value is a smi. Convert to a double and store. // Preserve original value. mov(scratch, maybe_number); SmiUntag(scratch); push(scratch); fild_s(Operand(esp, 0)); pop(scratch); bind(&done); fstp_d(FieldOperand(elements, key, times_4, FixedDoubleArray::kHeaderSize - elements_offset)); } void MacroAssembler::CompareMap(Register obj, Handle<Map> map) { cmp(FieldOperand(obj, HeapObject::kMapOffset), map); } void MacroAssembler::CheckMap(Register obj, Handle<Map> map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } CompareMap(obj, map); j(not_equal, fail); } void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1, Register scratch2, Handle<WeakCell> cell, Handle<Code> success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } mov(scratch1, FieldOperand(obj, HeapObject::kMapOffset)); CmpWeakValue(scratch1, cell, scratch2); j(equal, success); bind(&fail); } Condition MacroAssembler::IsObjectStringType(Register heap_object, Register map, Register instance_type) { mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); test(instance_type, Immediate(kIsNotStringMask)); return zero; } Condition MacroAssembler::IsObjectNameType(Register heap_object, Register map, Register instance_type) { mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); cmpb(instance_type, Immediate(LAST_NAME_TYPE)); return below_equal; } void MacroAssembler::FCmp() { fucompp(); push(eax); fnstsw_ax(); sahf(); pop(eax); } void MacroAssembler::FXamMinusZero() { fxam(); push(eax); fnstsw_ax(); and_(eax, Immediate(0x4700)); // For minus zero, C3 == 1 && C1 == 1. cmp(eax, Immediate(0x4200)); pop(eax); fstp(0); } void MacroAssembler::FXamSign() { fxam(); push(eax); fnstsw_ax(); // For negative value (including -0.0), C1 == 1. and_(eax, Immediate(0x0200)); pop(eax); fstp(0); } void MacroAssembler::X87CheckIA() { push(eax); fnstsw_ax(); // For #IA, IE == 1 && SF == 0. and_(eax, Immediate(0x0041)); cmp(eax, Immediate(0x0001)); pop(eax); } // rc=00B, round to nearest. // rc=01B, round down. // rc=10B, round up. // rc=11B, round toward zero. void MacroAssembler::X87SetRC(int rc) { sub(esp, Immediate(kPointerSize)); fnstcw(MemOperand(esp, 0)); and_(MemOperand(esp, 0), Immediate(0xF3FF)); or_(MemOperand(esp, 0), Immediate(rc)); fldcw(MemOperand(esp, 0)); add(esp, Immediate(kPointerSize)); } void MacroAssembler::X87SetFPUCW(int cw) { RecordComment("-- X87SetFPUCW start --"); push(Immediate(cw)); fldcw(MemOperand(esp, 0)); add(esp, Immediate(kPointerSize)); RecordComment("-- X87SetFPUCW end--"); } void MacroAssembler::AssertNumber(Register object) { if (emit_debug_code()) { Label ok; JumpIfSmi(object, &ok); cmp(FieldOperand(object, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); Check(equal, kOperandNotANumber); bind(&ok); } } void MacroAssembler::AssertNotNumber(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsANumber); cmp(FieldOperand(object, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); Check(not_equal, kOperandIsANumber); } } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(equal, kOperandIsNotASmi); } } void MacroAssembler::AssertString(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotAString); push(object); mov(object, FieldOperand(object, HeapObject::kMapOffset)); CmpInstanceType(object, FIRST_NONSTRING_TYPE); pop(object); Check(below, kOperandIsNotAString); } } void MacroAssembler::AssertName(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotAName); push(object); mov(object, FieldOperand(object, HeapObject::kMapOffset)); CmpInstanceType(object, LAST_NAME_TYPE); pop(object); Check(below_equal, kOperandIsNotAName); } } void MacroAssembler::AssertFunction(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotAFunction); Push(object); CmpObjectType(object, JS_FUNCTION_TYPE, object); Pop(object); Check(equal, kOperandIsNotAFunction); } } void MacroAssembler::AssertBoundFunction(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotABoundFunction); Push(object); CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object); Pop(object); Check(equal, kOperandIsNotABoundFunction); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotAGeneratorObject); Push(object); CmpObjectType(object, JS_GENERATOR_OBJECT_TYPE, object); Pop(object); Check(equal, kOperandIsNotAGeneratorObject); } } void MacroAssembler::AssertReceiver(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotAReceiver); Push(object); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); CmpObjectType(object, FIRST_JS_RECEIVER_TYPE, object); Pop(object); Check(above_equal, kOperandIsNotAReceiver); } } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); cmp(object, isolate()->factory()->undefined_value()); j(equal, &done_checking); cmp(FieldOperand(object, 0), Immediate(isolate()->factory()->allocation_site_map())); Assert(equal, kExpectedUndefinedOrCell); bind(&done_checking); } } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmi); } } void MacroAssembler::StubPrologue(StackFrame::Type type) { push(ebp); // Caller's frame pointer. mov(ebp, esp); push(Immediate(Smi::FromInt(type))); } void MacroAssembler::Prologue(bool code_pre_aging) { PredictableCodeSizeScope predictible_code_size_scope(this, kNoCodeAgeSequenceLength); if (code_pre_aging) { // Pre-age the code. call(isolate()->builtins()->MarkCodeAsExecutedOnce(), RelocInfo::CODE_AGE_SEQUENCE); Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength); } else { push(ebp); // Caller's frame pointer. mov(ebp, esp); push(esi); // Callee's context. push(edi); // Callee's JS function. } } void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) { mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); mov(vector, FieldOperand(vector, JSFunction::kLiteralsOffset)); mov(vector, FieldOperand(vector, LiteralsArray::kFeedbackVectorOffset)); } void MacroAssembler::EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // Out-of-line constant pool not implemented on x87. UNREACHABLE(); } void MacroAssembler::EnterFrame(StackFrame::Type type) { push(ebp); mov(ebp, esp); push(Immediate(Smi::FromInt(type))); if (type == StackFrame::INTERNAL) { push(Immediate(CodeObject())); } if (emit_debug_code()) { cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value())); Check(not_equal, kCodeObjectNotProperlyPatched); } } void MacroAssembler::LeaveFrame(StackFrame::Type type) { if (emit_debug_code()) { cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(Smi::FromInt(type))); Check(equal, kStackFrameTypesMustMatch); } leave(); } void MacroAssembler::EnterBuiltinFrame(Register context, Register target, Register argc) { Push(ebp); Move(ebp, esp); Push(context); Push(target); Push(argc); } void MacroAssembler::LeaveBuiltinFrame(Register context, Register target, Register argc) { Pop(argc); Pop(target); Pop(context); leave(); } void MacroAssembler::EnterExitFramePrologue(StackFrame::Type frame_type) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the frame structure on the stack. DCHECK_EQ(+2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); DCHECK_EQ(+1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); push(ebp); mov(ebp, esp); // Reserve room for entry stack pointer and push the code object. push(Immediate(Smi::FromInt(frame_type))); DCHECK_EQ(-2 * kPointerSize, ExitFrameConstants::kSPOffset); push(Immediate(0)); // Saved entry sp, patched before call. DCHECK_EQ(-3 * kPointerSize, ExitFrameConstants::kCodeOffset); push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot. // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate()); ExternalReference context_address(Isolate::kContextAddress, isolate()); ExternalReference c_function_address(Isolate::kCFunctionAddress, isolate()); mov(Operand::StaticVariable(c_entry_fp_address), ebp); mov(Operand::StaticVariable(context_address), esi); mov(Operand::StaticVariable(c_function_address), ebx); } void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) { // Optionally save FPU state. if (save_doubles) { // Store FPU state to m108byte. int space = 108 + argc * kPointerSize; sub(esp, Immediate(space)); const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; fnsave(MemOperand(ebp, offset - 108)); } else { sub(esp, Immediate(argc * kPointerSize)); } // Get the required frame alignment for the OS. const int kFrameAlignment = base::OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment)); and_(esp, -kFrameAlignment); } // Patch the saved entry sp. mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); } void MacroAssembler::EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type) { EnterExitFramePrologue(frame_type); // Set up argc and argv in callee-saved registers. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; mov(edi, eax); lea(esi, Operand(ebp, eax, times_4, offset)); // Reserve space for argc, argv and isolate. EnterExitFrameEpilogue(argc, save_doubles); } void MacroAssembler::EnterApiExitFrame(int argc) { EnterExitFramePrologue(StackFrame::EXIT); EnterExitFrameEpilogue(argc, false); } void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) { // Optionally restore FPU state. if (save_doubles) { const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; frstor(MemOperand(ebp, offset - 108)); } if (pop_arguments) { // Get the return address from the stack and restore the frame pointer. mov(ecx, Operand(ebp, 1 * kPointerSize)); mov(ebp, Operand(ebp, 0 * kPointerSize)); // Pop the arguments and the receiver from the caller stack. lea(esp, Operand(esi, 1 * kPointerSize)); // Push the return address to get ready to return. push(ecx); } else { // Otherwise just leave the exit frame. leave(); } LeaveExitFrameEpilogue(true); } void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) { // Restore current context from top and clear it in debug mode. ExternalReference context_address(Isolate::kContextAddress, isolate()); if (restore_context) { mov(esi, Operand::StaticVariable(context_address)); } #ifdef DEBUG mov(Operand::StaticVariable(context_address), Immediate(0)); #endif // Clear the top frame. ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate()); mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); } void MacroAssembler::LeaveApiExitFrame(bool restore_context) { mov(esp, ebp); pop(ebp); LeaveExitFrameEpilogue(restore_context); } void MacroAssembler::PushStackHandler() { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); // Link the current handler as the next handler. ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); push(Operand::StaticVariable(handler_address)); // Set this new handler as the current one. mov(Operand::StaticVariable(handler_address), esp); } void MacroAssembler::PopStackHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); pop(Operand::StaticVariable(handler_address)); add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize)); } // Compute the hash code from the untagged key. This must be kept in sync with // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in // code-stub-hydrogen.cc // // Note: r0 will contain hash code void MacroAssembler::GetNumberHash(Register r0, Register scratch) { // Xor original key with a seed. if (serializer_enabled()) { ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); mov(scratch, Immediate(Heap::kHashSeedRootIndex)); mov(scratch, Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); SmiUntag(scratch); xor_(r0, scratch); } else { int32_t seed = isolate()->heap()->HashSeed(); xor_(r0, Immediate(seed)); } // hash = ~hash + (hash << 15); mov(scratch, r0); not_(r0); shl(scratch, 15); add(r0, scratch); // hash = hash ^ (hash >> 12); mov(scratch, r0); shr(scratch, 12); xor_(r0, scratch); // hash = hash + (hash << 2); lea(r0, Operand(r0, r0, times_4, 0)); // hash = hash ^ (hash >> 4); mov(scratch, r0); shr(scratch, 4); xor_(r0, scratch); // hash = hash * 2057; imul(r0, r0, 2057); // hash = hash ^ (hash >> 16); mov(scratch, r0); shr(scratch, 16); xor_(r0, scratch); and_(r0, 0x3fffffff); } void MacroAssembler::LoadAllocationTopHelper(Register result, Register scratch, AllocationFlags flags) { ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); // Just return if allocation top is already known. if ((flags & RESULT_CONTAINS_TOP) != 0) { // No use of scratch if allocation top is provided. DCHECK(scratch.is(no_reg)); #ifdef DEBUG // Assert that result actually contains top on entry. cmp(result, Operand::StaticVariable(allocation_top)); Check(equal, kUnexpectedAllocationTop); #endif return; } // Move address of new object to result. Use scratch register if available. if (scratch.is(no_reg)) { mov(result, Operand::StaticVariable(allocation_top)); } else { mov(scratch, Immediate(allocation_top)); mov(result, Operand(scratch, 0)); } } void MacroAssembler::UpdateAllocationTopHelper(Register result_end, Register scratch, AllocationFlags flags) { if (emit_debug_code()) { test(result_end, Immediate(kObjectAlignmentMask)); Check(zero, kUnalignedAllocationInNewSpace); } ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); // Update new top. Use scratch if available. if (scratch.is(no_reg)) { mov(Operand::StaticVariable(allocation_top), result_end); } else { mov(Operand(scratch, 0), result_end); } } void MacroAssembler::Allocate(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0); DCHECK(object_size <= kMaxRegularHeapObjectSize); DCHECK((flags & ALLOCATION_FOLDED) == 0); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Immediate(0x7091)); if (result_end.is_valid()) { mov(result_end, Immediate(0x7191)); } if (scratch.is_valid()) { mov(scratch, Immediate(0x7291)); } } jmp(gc_required); return; } DCHECK(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. if ((flags & DOUBLE_ALIGNMENT) != 0) { DCHECK(kPointerAlignment * 2 == kDoubleAlignment); Label aligned; test(result, Immediate(kDoubleAlignmentMask)); j(zero, &aligned, Label::kNear); if ((flags & PRETENURE) != 0) { cmp(result, Operand::StaticVariable(allocation_limit)); j(above_equal, gc_required); } mov(Operand(result, 0), Immediate(isolate()->factory()->one_pointer_filler_map())); add(result, Immediate(kDoubleSize / 2)); bind(&aligned); } // Calculate new top and bail out if space is exhausted. Register top_reg = result_end.is_valid() ? result_end : result; if (!top_reg.is(result)) { mov(top_reg, result); } add(top_reg, Immediate(object_size)); cmp(top_reg, Operand::StaticVariable(allocation_limit)); j(above, gc_required); if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) { // The top pointer is not updated for allocation folding dominators. UpdateAllocationTopHelper(top_reg, scratch, flags); } if (top_reg.is(result)) { sub(result, Immediate(object_size - kHeapObjectTag)); } else { // Tag the result. DCHECK(kHeapObjectTag == 1); inc(result); } } void MacroAssembler::Allocate(int header_size, ScaleFactor element_size, Register element_count, RegisterValueType element_count_type, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { DCHECK((flags & SIZE_IN_WORDS) == 0); DCHECK((flags & ALLOCATION_FOLDING_DOMINATOR) == 0); DCHECK((flags & ALLOCATION_FOLDED) == 0); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Immediate(0x7091)); mov(result_end, Immediate(0x7191)); if (scratch.is_valid()) { mov(scratch, Immediate(0x7291)); } // Register element_count is not modified by the function. } jmp(gc_required); return; } DCHECK(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. if ((flags & DOUBLE_ALIGNMENT) != 0) { DCHECK(kPointerAlignment * 2 == kDoubleAlignment); Label aligned; test(result, Immediate(kDoubleAlignmentMask)); j(zero, &aligned, Label::kNear); if ((flags & PRETENURE) != 0) { cmp(result, Operand::StaticVariable(allocation_limit)); j(above_equal, gc_required); } mov(Operand(result, 0), Immediate(isolate()->factory()->one_pointer_filler_map())); add(result, Immediate(kDoubleSize / 2)); bind(&aligned); } // Calculate new top and bail out if space is exhausted. // We assume that element_count*element_size + header_size does not // overflow. if (element_count_type == REGISTER_VALUE_IS_SMI) { STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1); STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2); STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4); DCHECK(element_size >= times_2); DCHECK(kSmiTagSize == 1); element_size = static_cast<ScaleFactor>(element_size - 1); } else { DCHECK(element_count_type == REGISTER_VALUE_IS_INT32); } lea(result_end, Operand(element_count, element_size, header_size)); add(result_end, result); j(carry, gc_required); cmp(result_end, Operand::StaticVariable(allocation_limit)); j(above, gc_required); // Tag result. DCHECK(kHeapObjectTag == 1); inc(result); // Update allocation top. UpdateAllocationTopHelper(result_end, scratch, flags); } void MacroAssembler::Allocate(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0); DCHECK((flags & ALLOCATION_FOLDED) == 0); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Immediate(0x7091)); mov(result_end, Immediate(0x7191)); if (scratch.is_valid()) { mov(scratch, Immediate(0x7291)); } // object_size is left unchanged by this function. } jmp(gc_required); return; } DCHECK(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. if ((flags & DOUBLE_ALIGNMENT) != 0) { DCHECK(kPointerAlignment * 2 == kDoubleAlignment); Label aligned; test(result, Immediate(kDoubleAlignmentMask)); j(zero, &aligned, Label::kNear); if ((flags & PRETENURE) != 0) { cmp(result, Operand::StaticVariable(allocation_limit)); j(above_equal, gc_required); } mov(Operand(result, 0), Immediate(isolate()->factory()->one_pointer_filler_map())); add(result, Immediate(kDoubleSize / 2)); bind(&aligned); } // Calculate new top and bail out if space is exhausted. if (!object_size.is(result_end)) { mov(result_end, object_size); } add(result_end, result); cmp(result_end, Operand::StaticVariable(allocation_limit)); j(above, gc_required); // Tag result. DCHECK(kHeapObjectTag == 1); inc(result); if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) { // The top pointer is not updated for allocation folding dominators. UpdateAllocationTopHelper(result_end, scratch, flags); } } void MacroAssembler::FastAllocate(int object_size, Register result, Register result_end, AllocationFlags flags) { DCHECK(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, no_reg, flags); if ((flags & DOUBLE_ALIGNMENT) != 0) { DCHECK(kPointerAlignment * 2 == kDoubleAlignment); Label aligned; test(result, Immediate(kDoubleAlignmentMask)); j(zero, &aligned, Label::kNear); mov(Operand(result, 0), Immediate(isolate()->factory()->one_pointer_filler_map())); add(result, Immediate(kDoubleSize / 2)); bind(&aligned); } lea(result_end, Operand(result, object_size)); UpdateAllocationTopHelper(result_end, no_reg, flags); DCHECK(kHeapObjectTag == 1); inc(result); } void MacroAssembler::FastAllocate(Register object_size, Register result, Register result_end, AllocationFlags flags) { DCHECK(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, no_reg, flags); if ((flags & DOUBLE_ALIGNMENT) != 0) { DCHECK(kPointerAlignment * 2 == kDoubleAlignment); Label aligned; test(result, Immediate(kDoubleAlignmentMask)); j(zero, &aligned, Label::kNear); mov(Operand(result, 0), Immediate(isolate()->factory()->one_pointer_filler_map())); add(result, Immediate(kDoubleSize / 2)); bind(&aligned); } lea(result_end, Operand(result, object_size, times_1, 0)); UpdateAllocationTopHelper(result_end, no_reg, flags); DCHECK(kHeapObjectTag == 1); inc(result); } void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Label* gc_required, MutableMode mode) { // Allocate heap number in new space. Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); Handle<Map> map = mode == MUTABLE ? isolate()->factory()->mutable_heap_number_map() : isolate()->factory()->heap_number_map(); // Set the map. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(map)); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); DCHECK(kShortSize == 2); // scratch1 = length * 2 + kObjectAlignmentMask. lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask)); and_(scratch1, Immediate(~kObjectAlignmentMask)); // Allocate two byte string in new space. Allocate(SeqTwoByteString::kHeaderSize, times_1, scratch1, REGISTER_VALUE_IS_INT32, result, scratch2, scratch3, gc_required, NO_ALLOCATION_FLAGS); // Set the map, length and hash field. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->string_map())); mov(scratch1, length); SmiTag(scratch1); mov(FieldOperand(result, String::kLengthOffset), scratch1); mov(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); mov(scratch1, length); DCHECK(kCharSize == 1); add(scratch1, Immediate(kObjectAlignmentMask)); and_(scratch1, Immediate(~kObjectAlignmentMask)); // Allocate one-byte string in new space. Allocate(SeqOneByteString::kHeaderSize, times_1, scratch1, REGISTER_VALUE_IS_INT32, result, scratch2, scratch3, gc_required, NO_ALLOCATION_FLAGS); // Set the map, length and hash field. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->one_byte_string_map())); mov(scratch1, length); SmiTag(scratch1); mov(FieldOperand(result, String::kLengthOffset), scratch1); mov(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateOneByteString(Register result, int length, Register scratch1, Register scratch2, Label* gc_required) { DCHECK(length > 0); // Allocate one-byte string in new space. Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); // Set the map, length and hash field. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->one_byte_string_map())); mov(FieldOperand(result, String::kLengthOffset), Immediate(Smi::FromInt(length))); mov(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); // Set the map. The other fields are left uninitialized. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->cons_string_map())); } void MacroAssembler::AllocateOneByteConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); // Set the map. The other fields are left uninitialized. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->cons_one_byte_string_map())); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); // Set the map. The other fields are left uninitialized. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->sliced_string_map())); } void MacroAssembler::AllocateOneByteSlicedString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); // Set the map. The other fields are left uninitialized. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->sliced_one_byte_string_map())); } void MacroAssembler::AllocateJSValue(Register result, Register constructor, Register value, Register scratch, Label* gc_required) { DCHECK(!result.is(constructor)); DCHECK(!result.is(scratch)); DCHECK(!result.is(value)); // Allocate JSValue in new space. Allocate(JSValue::kSize, result, scratch, no_reg, gc_required, NO_ALLOCATION_FLAGS); // Initialize the JSValue. LoadGlobalFunctionInitialMap(constructor, scratch); mov(FieldOperand(result, HeapObject::kMapOffset), scratch); LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex); mov(FieldOperand(result, JSObject::kPropertiesOffset), scratch); mov(FieldOperand(result, JSObject::kElementsOffset), scratch); mov(FieldOperand(result, JSValue::kValueOffset), value); STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); } void MacroAssembler::InitializeFieldsWithFiller(Register current_address, Register end_address, Register filler) { Label loop, entry; jmp(&entry, Label::kNear); bind(&loop); mov(Operand(current_address, 0), filler); add(current_address, Immediate(kPointerSize)); bind(&entry); cmp(current_address, end_address); j(below, &loop, Label::kNear); } void MacroAssembler::BooleanBitTest(Register object, int field_offset, int bit_index) { bit_index += kSmiTagSize + kSmiShiftSize; DCHECK(base::bits::IsPowerOfTwo32(kBitsPerByte)); int byte_index = bit_index / kBitsPerByte; int byte_bit_index = bit_index & (kBitsPerByte - 1); test_b(FieldOperand(object, field_offset + byte_index), Immediate(1 << byte_bit_index)); } void MacroAssembler::NegativeZeroTest(Register result, Register op, Label* then_label) { Label ok; test(result, result); j(not_zero, &ok, Label::kNear); test(op, op); j(sign, then_label, Label::kNear); bind(&ok); } void MacroAssembler::NegativeZeroTest(Register result, Register op1, Register op2, Register scratch, Label* then_label) { Label ok; test(result, result); j(not_zero, &ok, Label::kNear); mov(scratch, op1); or_(scratch, op2); j(sign, then_label, Label::kNear); bind(&ok); } void MacroAssembler::GetMapConstructor(Register result, Register map, Register temp) { Label done, loop; mov(result, FieldOperand(map, Map::kConstructorOrBackPointerOffset)); bind(&loop); JumpIfSmi(result, &done, Label::kNear); CmpObjectType(result, MAP_TYPE, temp); j(not_equal, &done, Label::kNear); mov(result, FieldOperand(result, Map::kConstructorOrBackPointerOffset)); jmp(&loop); bind(&done); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss) { // Get the prototype or initial map from the function. mov(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. cmp(result, Immediate(isolate()->factory()->the_hole_value())); j(equal, miss); // If the function does not have an initial map, we're done. Label done; CmpObjectType(result, MAP_TYPE, scratch); j(not_equal, &done, Label::kNear); // Get the prototype from the initial map. mov(result, FieldOperand(result, Map::kPrototypeOffset)); // All done. bind(&done); } void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) { DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs. call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id); } void MacroAssembler::TailCallStub(CodeStub* stub) { jmp(stub->GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::StubReturn(int argc) { DCHECK(argc >= 1 && generating_stub()); ret((argc - 1) * kPointerSize); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame_ || !stub->SometimesSetsUpAFrame(); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Move(eax, Immediate(num_arguments)); mov(ebx, Immediate(ExternalReference(f, isolate()))); CEntryStub ces(isolate(), 1, save_doubles); CallStub(&ces); } void MacroAssembler::CallExternalReference(ExternalReference ref, int num_arguments) { mov(eax, Immediate(num_arguments)); mov(ebx, Immediate(ref)); CEntryStub stub(isolate(), 1); CallStub(&stub); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[8] : argument num_arguments - 1 // ... // -- esp[8 * num_arguments] : argument 0 (receiver) // // For runtime functions with variable arguments: // -- eax : number of arguments // ----------------------------------- const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(eax, Immediate(function->nargs)); } JumpToExternalReference(ExternalReference(fid, isolate())); } void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, bool builtin_exit_frame) { // Set the entry point and jump to the C entry runtime stub. mov(ebx, Immediate(ext)); CEntryStub ces(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame); jmp(ces.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::PrepareForTailCall( const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1, ReturnAddressState ra_state, int number_of_temp_values_after_return_address) { #if DEBUG if (callee_args_count.is_reg()) { DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, scratch1)); } else { DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); } DCHECK(ra_state != ReturnAddressState::kNotOnStack || number_of_temp_values_after_return_address == 0); #endif // Calculate the destination address where we will put the return address // after we drop current frame. Register new_sp_reg = scratch0; if (callee_args_count.is_reg()) { sub(caller_args_count_reg, callee_args_count.reg()); lea(new_sp_reg, Operand(ebp, caller_args_count_reg, times_pointer_size, StandardFrameConstants::kCallerPCOffset - number_of_temp_values_after_return_address * kPointerSize)); } else { lea(new_sp_reg, Operand(ebp, caller_args_count_reg, times_pointer_size, StandardFrameConstants::kCallerPCOffset - (callee_args_count.immediate() + number_of_temp_values_after_return_address) * kPointerSize)); } if (FLAG_debug_code) { cmp(esp, new_sp_reg); Check(below, kStackAccessBelowStackPointer); } // Copy return address from caller's frame to current frame's return address // to avoid its trashing and let the following loop copy it to the right // place. Register tmp_reg = scratch1; if (ra_state == ReturnAddressState::kOnStack) { mov(tmp_reg, Operand(ebp, StandardFrameConstants::kCallerPCOffset)); mov(Operand(esp, number_of_temp_values_after_return_address * kPointerSize), tmp_reg); } else { DCHECK(ReturnAddressState::kNotOnStack == ra_state); DCHECK_EQ(0, number_of_temp_values_after_return_address); Push(Operand(ebp, StandardFrameConstants::kCallerPCOffset)); } // Restore caller's frame pointer now as it could be overwritten by // the copying loop. mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); // +2 here is to copy both receiver and return address. Register count_reg = caller_args_count_reg; if (callee_args_count.is_reg()) { lea(count_reg, Operand(callee_args_count.reg(), 2 + number_of_temp_values_after_return_address)); } else { mov(count_reg, Immediate(callee_args_count.immediate() + 2 + number_of_temp_values_after_return_address)); // TODO(ishell): Unroll copying loop for small immediate values. } // Now copy callee arguments to the caller frame going backwards to avoid // callee arguments corruption (source and destination areas could overlap). Label loop, entry; jmp(&entry, Label::kNear); bind(&loop); dec(count_reg); mov(tmp_reg, Operand(esp, count_reg, times_pointer_size, 0)); mov(Operand(new_sp_reg, count_reg, times_pointer_size, 0), tmp_reg); bind(&entry); cmp(count_reg, Immediate(0)); j(not_equal, &loop, Label::kNear); // Leave current frame. mov(esp, new_sp_reg); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, Label::Distance done_near, const CallWrapper& call_wrapper) { bool definitely_matches = false; *definitely_mismatches = false; Label invoke; if (expected.is_immediate()) { DCHECK(actual.is_immediate()); mov(eax, actual.immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; mov(ebx, expected.immediate()); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. mov(eax, actual.immediate()); cmp(expected.reg(), actual.immediate()); j(equal, &invoke); DCHECK(expected.reg().is(ebx)); } else if (!expected.reg().is(actual.reg())) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmp(expected.reg(), actual.reg()); j(equal, &invoke); DCHECK(actual.reg().is(eax)); DCHECK(expected.reg().is(ebx)); } else { Move(eax, actual.reg()); } } if (!definitely_matches) { Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET)); call(adaptor, RelocInfo::CODE_TARGET); call_wrapper.AfterCall(); if (!*definitely_mismatches) { jmp(done, done_near); } } else { jmp(adaptor, RelocInfo::CODE_TARGET); } bind(&invoke); } } void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual) { Label skip_flooding; ExternalReference last_step_action = ExternalReference::debug_last_step_action_address(isolate()); STATIC_ASSERT(StepFrame > StepIn); cmpb(Operand::StaticVariable(last_step_action), Immediate(StepIn)); j(less, &skip_flooding); { FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); if (expected.is_reg()) { SmiTag(expected.reg()); Push(expected.reg()); } if (actual.is_reg()) { SmiTag(actual.reg()); Push(actual.reg()); } if (new_target.is_valid()) { Push(new_target); } Push(fun); Push(fun); CallRuntime(Runtime::kDebugPrepareStepInIfStepping); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } if (actual.is_reg()) { Pop(actual.reg()); SmiUntag(actual.reg()); } if (expected.is_reg()) { Pop(expected.reg()); SmiUntag(expected.reg()); } } bind(&skip_flooding); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function.is(edi)); DCHECK_IMPLIES(new_target.is_valid(), new_target.is(edx)); if (call_wrapper.NeedsDebugStepCheck()) { FloodFunctionIfStepping(function, new_target, expected, actual); } // Clear the new.target register if not given. if (!new_target.is_valid()) { mov(edx, isolate()->factory()->undefined_value()); } Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, &done, &definitely_mismatches, flag, Label::kNear, call_wrapper); if (!definitely_mismatches) { // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Operand code = FieldOperand(function, JSFunction::kCodeEntryOffset); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); call(code); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); jmp(code); } bind(&done); } } void MacroAssembler::InvokeFunction(Register fun, Register new_target, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(fun.is(edi)); mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFormalParameterCountOffset)); SmiUntag(ebx); ParameterCount expected(ebx); InvokeFunctionCode(edi, new_target, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(fun.is(edi)); mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); InvokeFunctionCode(edi, no_reg, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { LoadHeapObject(edi, function); InvokeFunction(edi, expected, actual, flag, call_wrapper); } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in esi). mov(dst, esi); } // We should not have found a with context by walking the context chain // (i.e., the static scope chain and runtime context chain do not agree). // A variable occurring in such a scope should have slot type LOOKUP and // not CONTEXT. if (emit_debug_code()) { cmp(FieldOperand(dst, HeapObject::kMapOffset), isolate()->factory()->with_context_map()); Check(not_equal, kVariableResolvedToWithContext); } } void MacroAssembler::LoadGlobalProxy(Register dst) { mov(dst, NativeContextOperand()); mov(dst, ContextOperand(dst, Context::GLOBAL_PROXY_INDEX)); } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match) { DCHECK(IsFastElementsKind(expected_kind)); DCHECK(IsFastElementsKind(transitioned_kind)); // Check that the function's map is the same as the expected cached map. mov(scratch, NativeContextOperand()); cmp(map_in_out, ContextOperand(scratch, Context::ArrayMapIndex(expected_kind))); j(not_equal, no_map_match); // Use the transitioned cached map. mov(map_in_out, ContextOperand(scratch, Context::ArrayMapIndex(transitioned_kind))); } void MacroAssembler::LoadGlobalFunction(int index, Register function) { // Load the native context from the current context. mov(function, NativeContextOperand()); // Load the function from the native context. mov(function, ContextOperand(function, index)); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map) { // Load the initial map. The global functions all have initial maps. mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK); jmp(&ok); bind(&fail); Abort(kGlobalFunctionsMustHaveInitialMap); bind(&ok); } } // Store the value in register src in the safepoint register stack // slot for register dst. void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) { mov(SafepointRegisterSlot(dst), src); } void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) { mov(SafepointRegisterSlot(dst), src); } void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { mov(dst, SafepointRegisterSlot(src)); } Operand MacroAssembler::SafepointRegisterSlot(Register reg) { return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the lowest encoding, // which means that lowest encodings are furthest away from // the stack pointer. DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); return kNumSafepointRegisters - reg_code - 1; } void MacroAssembler::LoadHeapObject(Register result, Handle<HeapObject> object) { mov(result, object); } void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) { cmp(reg, object); } void MacroAssembler::PushHeapObject(Handle<HeapObject> object) { Push(object); } void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch) { mov(scratch, cell); cmp(value, FieldOperand(scratch, WeakCell::kValueOffset)); } void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) { mov(value, cell); mov(value, FieldOperand(value, WeakCell::kValueOffset)); } void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss) { GetWeakValue(value, cell); JumpIfSmi(value, miss); } void MacroAssembler::Ret() { ret(0); } void MacroAssembler::Ret(int bytes_dropped, Register scratch) { if (is_uint16(bytes_dropped)) { ret(bytes_dropped); } else { pop(scratch); add(esp, Immediate(bytes_dropped)); push(scratch); ret(0); } } void MacroAssembler::VerifyX87StackDepth(uint32_t depth) { // Turn off the stack depth check when serializer is enabled to reduce the // code size. if (serializer_enabled()) return; // Make sure the floating point stack is either empty or has depth items. DCHECK(depth <= 7); // This is very expensive. DCHECK(FLAG_debug_code && FLAG_enable_slow_asserts); // The top-of-stack (tos) is 7 if there is one item pushed. int tos = (8 - depth) % 8; const int kTopMask = 0x3800; push(eax); fwait(); fnstsw_ax(); and_(eax, kTopMask); shr(eax, 11); cmp(eax, Immediate(tos)); Check(equal, kUnexpectedFPUStackDepthAfterInstruction); fnclex(); pop(eax); } void MacroAssembler::Drop(int stack_elements) { if (stack_elements > 0) { add(esp, Immediate(stack_elements * kPointerSize)); } } void MacroAssembler::Move(Register dst, Register src) { if (!dst.is(src)) { mov(dst, src); } } void MacroAssembler::Move(Register dst, const Immediate& x) { if (x.is_zero() && RelocInfo::IsNone(x.rmode_)) { xor_(dst, dst); // Shorter than mov of 32-bit immediate 0. } else { mov(dst, x); } } void MacroAssembler::Move(const Operand& dst, const Immediate& x) { mov(dst, x); } void MacroAssembler::Lzcnt(Register dst, const Operand& src) { // TODO(intel): Add support for LZCNT (with ABM/BMI1). Label not_zero_src; bsr(dst, src); j(not_zero, ¬_zero_src, Label::kNear); Move(dst, Immediate(63)); // 63^31 == 32 bind(¬_zero_src); xor_(dst, Immediate(31)); // for x in [0..31], 31^x == 31-x. } void MacroAssembler::Tzcnt(Register dst, const Operand& src) { // TODO(intel): Add support for TZCNT (with ABM/BMI1). Label not_zero_src; bsf(dst, src); j(not_zero, ¬_zero_src, Label::kNear); Move(dst, Immediate(32)); // The result of tzcnt is 32 if src = 0. bind(¬_zero_src); } void MacroAssembler::Popcnt(Register dst, const Operand& src) { // TODO(intel): Add support for POPCNT (with POPCNT) // if (CpuFeatures::IsSupported(POPCNT)) { // CpuFeatureScope scope(this, POPCNT); // popcnt(dst, src); // return; // } UNREACHABLE(); } void MacroAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = Operand::StaticVariable(ExternalReference(counter)); if (value == 1) { inc(operand); } else { add(operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = Operand::StaticVariable(ExternalReference(counter)); if (value == 1) { dec(operand); } else { sub(operand, Immediate(value)); } } } void MacroAssembler::IncrementCounter(Condition cc, StatsCounter* counter, int value) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Label skip; j(NegateCondition(cc), &skip); pushfd(); IncrementCounter(counter, value); popfd(); bind(&skip); } } void MacroAssembler::DecrementCounter(Condition cc, StatsCounter* counter, int value) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Label skip; j(NegateCondition(cc), &skip); pushfd(); DecrementCounter(counter, value); popfd(); bind(&skip); } } void MacroAssembler::Assert(Condition cc, BailoutReason reason) { if (emit_debug_code()) Check(cc, reason); } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { Factory* factory = isolate()->factory(); Label ok; cmp(FieldOperand(elements, HeapObject::kMapOffset), Immediate(factory->fixed_array_map())); j(equal, &ok); cmp(FieldOperand(elements, HeapObject::kMapOffset), Immediate(factory->fixed_double_array_map())); j(equal, &ok); cmp(FieldOperand(elements, HeapObject::kMapOffset), Immediate(factory->fixed_cow_array_map())); j(equal, &ok); Abort(kJSObjectWithFastElementsMapHasSlowElements); bind(&ok); } } void MacroAssembler::Check(Condition cc, BailoutReason reason) { Label L; j(cc, &L); Abort(reason); // will not return here bind(&L); } void MacroAssembler::CheckStackAlignment() { int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); Label alignment_as_expected; test(esp, Immediate(frame_alignment_mask)); j(zero, &alignment_as_expected); // Abort if stack is not aligned. int3(); bind(&alignment_as_expected); } } void MacroAssembler::Abort(BailoutReason reason) { #ifdef DEBUG const char* msg = GetBailoutReason(reason); if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } if (FLAG_trap_on_abort) { int3(); return; } #endif // Check if Abort() has already been initialized. DCHECK(isolate()->builtins()->Abort()->IsHeapObject()); Move(edx, Smi::FromInt(static_cast<int>(reason))); // Disable stub call restrictions to always allow calls to abort. if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET); } else { Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET); } // will not return here int3(); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset)); } void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { mov(dst, FieldOperand(map, Map::kBitField3Offset)); DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); } void MacroAssembler::LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor) { mov(dst, FieldOperand(holder, HeapObject::kMapOffset)); LoadInstanceDescriptors(dst, dst); mov(dst, FieldOperand(dst, DescriptorArray::GetValueOffset(accessor_index))); int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset : AccessorPair::kSetterOffset; mov(dst, FieldOperand(dst, offset)); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte( Register instance_type, Register scratch, Label* failure) { if (!scratch.is(instance_type)) { mov(scratch, instance_type); } and_(scratch, kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag); j(not_equal, failure); } void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register object1, Register object2, Register scratch1, Register scratch2, Label* failure) { // Check that both objects are not smis. STATIC_ASSERT(kSmiTag == 0); mov(scratch1, object1); and_(scratch1, object2); JumpIfSmi(scratch1, failure); // Load instance type for both strings. mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset)); mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset)); movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); // Check that both are flat one-byte strings. const int kFlatOneByteStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; // Interleave bits from both instance types and compare them in one check. DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3)); and_(scratch1, kFlatOneByteStringMask); and_(scratch2, kFlatOneByteStringMask); lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); cmp(scratch1, kFlatOneByteStringTag | (kFlatOneByteStringTag << 3)); j(not_equal, failure); } void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name, Label::Distance distance) { STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); Label succeed; test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); j(zero, &succeed); cmpb(operand, Immediate(SYMBOL_TYPE)); j(not_equal, not_unique_name, distance); bind(&succeed); } void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index, Register value, uint32_t encoding_mask) { Label is_object; JumpIfNotSmi(string, &is_object, Label::kNear); Abort(kNonObject); bind(&is_object); push(value); mov(value, FieldOperand(string, HeapObject::kMapOffset)); movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset)); and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask)); cmp(value, Immediate(encoding_mask)); pop(value); Check(equal, kUnexpectedStringType); // The index is assumed to be untagged coming in, tag it to compare with the // string length without using a temp register, it is restored at the end of // this function. SmiTag(index); Check(no_overflow, kIndexIsTooLarge); cmp(index, FieldOperand(string, String::kLengthOffset)); Check(less, kIndexIsTooLarge); cmp(index, Immediate(Smi::kZero)); Check(greater_equal, kIndexIsNegative); // Restore the index SmiUntag(index); } void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { int frame_alignment = base::OS::ActivationFrameAlignment(); if (frame_alignment != 0) { // Make stack end at alignment and make room for num_arguments words // and the original value of esp. mov(scratch, esp); sub(esp, Immediate((num_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); and_(esp, -frame_alignment); mov(Operand(esp, num_arguments * kPointerSize), scratch); } else { sub(esp, Immediate(num_arguments * kPointerSize)); } } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { // Trashing eax is ok as it will be the return value. mov(eax, Immediate(function)); CallCFunction(eax, num_arguments); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { DCHECK(has_frame()); // Check stack alignment. if (emit_debug_code()) { CheckStackAlignment(); } call(function); if (base::OS::ActivationFrameAlignment() != 0) { mov(esp, Operand(esp, num_arguments * kPointerSize)); } else { add(esp, Immediate(num_arguments * kPointerSize)); } } #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6, Register reg7, Register reg8) { int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + reg7.is_valid() + reg8.is_valid(); RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); if (reg7.is_valid()) regs |= reg7.bit(); if (reg8.is_valid()) regs |= reg8.bit(); int n_of_non_aliasing_regs = NumRegs(regs); return n_of_valid_regs != n_of_non_aliasing_regs; } #endif CodePatcher::CodePatcher(Isolate* isolate, byte* address, int size) : address_(address), size_(size), masm_(isolate, address, size + Assembler::kGap, CodeObjectRequired::kNo) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. Assembler::FlushICache(masm_.isolate(), address_, size_); // Check that the code was patched as expected. DCHECK(masm_.pc_ == address_ + size_); DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void MacroAssembler::CheckPageFlag( Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance) { DCHECK(cc == zero || cc == not_zero); if (scratch.is(object)) { and_(scratch, Immediate(~Page::kPageAlignmentMask)); } else { mov(scratch, Immediate(~Page::kPageAlignmentMask)); and_(scratch, object); } if (mask < (1 << kBitsPerByte)) { test_b(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); } else { test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); } j(cc, condition_met, condition_met_distance); } void MacroAssembler::CheckPageFlagForMap( Handle<Map> map, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance) { DCHECK(cc == zero || cc == not_zero); Page* page = Page::FromAddress(map->address()); DCHECK(!serializer_enabled()); // Serializer cannot match page_flags. ExternalReference reference(ExternalReference::page_flags(page)); // The inlined static address check of the page's flags relies // on maps never being compacted. DCHECK(!isolate()->heap()->mark_compact_collector()-> IsOnEvacuationCandidate(*map)); if (mask < (1 << kBitsPerByte)) { test_b(Operand::StaticVariable(reference), Immediate(mask)); } else { test(Operand::StaticVariable(reference), Immediate(mask)); } j(cc, condition_met, condition_met_distance); } void MacroAssembler::JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black, Label::Distance on_black_near) { HasColor(object, scratch0, scratch1, on_black, on_black_near, 1, 1); // kBlackBitPattern. DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); } void MacroAssembler::HasColor(Register object, Register bitmap_scratch, Register mask_scratch, Label* has_color, Label::Distance has_color_distance, int first_bit, int second_bit) { DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx)); GetMarkBits(object, bitmap_scratch, mask_scratch); Label other_color, word_boundary; test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear); add(mask_scratch, mask_scratch); // Shift left 1 by adding. j(zero, &word_boundary, Label::kNear); test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance); jmp(&other_color, Label::kNear); bind(&word_boundary); test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), Immediate(1)); j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance); bind(&other_color); } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg) { DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx)); mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask)); and_(bitmap_reg, addr_reg); mov(ecx, addr_reg); int shift = Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2; shr(ecx, shift); and_(ecx, (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1)); add(bitmap_reg, ecx); mov(ecx, addr_reg); shr(ecx, kPointerSizeLog2); and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1); mov(mask_reg, Immediate(1)); shl_cl(mask_reg); } void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch, Register mask_scratch, Label* value_is_white, Label::Distance distance) { DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx)); GetMarkBits(value, bitmap_scratch, mask_scratch); // If the value is black or grey we don't need to do anything. DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0); DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); j(zero, value_is_white, Label::kNear); } void MacroAssembler::EnumLength(Register dst, Register map) { STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); mov(dst, FieldOperand(map, Map::kBitField3Offset)); and_(dst, Immediate(Map::EnumLengthBits::kMask)); SmiTag(dst); } void MacroAssembler::CheckEnumCache(Label* call_runtime) { Label next, start; mov(ecx, eax); // Check if the enum length field is properly initialized, indicating that // there is an enum cache. mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); EnumLength(edx, ebx); cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel))); j(equal, call_runtime); jmp(&start); bind(&next); mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); // For all objects but the receiver, check that the cache is empty. EnumLength(edx, ebx); cmp(edx, Immediate(Smi::kZero)); j(not_equal, call_runtime); bind(&start); // Check that there are no elements. Register rcx contains the current JS // object we've reached through the prototype chain. Label no_elements; mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset)); cmp(ecx, isolate()->factory()->empty_fixed_array()); j(equal, &no_elements); // Second chance, the object may be using the empty slow element dictionary. cmp(ecx, isolate()->factory()->empty_slow_element_dictionary()); j(not_equal, call_runtime); bind(&no_elements); mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset)); cmp(ecx, isolate()->factory()->null_value()); j(not_equal, &next); } void MacroAssembler::TestJSArrayForAllocationMemento( Register receiver_reg, Register scratch_reg, Label* no_memento_found) { Label map_check; Label top_check; ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag; const int kMementoLastWordOffset = kMementoMapOffset + AllocationMemento::kSize - kPointerSize; // Bail out if the object is not in new space. JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found); // If the object is in new space, we need to check whether it is on the same // page as the current top. lea(scratch_reg, Operand(receiver_reg, kMementoLastWordOffset)); xor_(scratch_reg, Operand::StaticVariable(new_space_allocation_top)); test(scratch_reg, Immediate(~Page::kPageAlignmentMask)); j(zero, &top_check); // The object is on a different page than allocation top. Bail out if the // object sits on the page boundary as no memento can follow and we cannot // touch the memory following it. lea(scratch_reg, Operand(receiver_reg, kMementoLastWordOffset)); xor_(scratch_reg, receiver_reg); test(scratch_reg, Immediate(~Page::kPageAlignmentMask)); j(not_zero, no_memento_found); // Continue with the actual map check. jmp(&map_check); // If top is on the same page as the current object, we need to check whether // we are below top. bind(&top_check); lea(scratch_reg, Operand(receiver_reg, kMementoLastWordOffset)); cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top)); j(greater_equal, no_memento_found); // Memento map check. bind(&map_check); mov(scratch_reg, Operand(receiver_reg, kMementoMapOffset)); cmp(scratch_reg, Immediate(isolate()->factory()->allocation_memento_map())); } void MacroAssembler::JumpIfDictionaryInPrototypeChain( Register object, Register scratch0, Register scratch1, Label* found) { DCHECK(!scratch1.is(scratch0)); Factory* factory = isolate()->factory(); Register current = scratch0; Label loop_again, end; // scratch contained elements pointer. mov(current, object); mov(current, FieldOperand(current, HeapObject::kMapOffset)); mov(current, FieldOperand(current, Map::kPrototypeOffset)); cmp(current, Immediate(factory->null_value())); j(equal, &end); // Loop based on the map going up the prototype chain. bind(&loop_again); mov(current, FieldOperand(current, HeapObject::kMapOffset)); STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE); STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE); CmpInstanceType(current, JS_OBJECT_TYPE); j(below, found); mov(scratch1, FieldOperand(current, Map::kBitField2Offset)); DecodeField<Map::ElementsKindBits>(scratch1); cmp(scratch1, Immediate(DICTIONARY_ELEMENTS)); j(equal, found); mov(current, FieldOperand(current, Map::kPrototypeOffset)); cmp(current, Immediate(factory->null_value())); j(not_equal, &loop_again); bind(&end); } void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) { DCHECK(!dividend.is(eax)); DCHECK(!dividend.is(edx)); base::MagicNumbersForDivision<uint32_t> mag = base::SignedDivisionByConstant(static_cast<uint32_t>(divisor)); mov(eax, Immediate(mag.multiplier)); imul(dividend); bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0; if (divisor > 0 && neg) add(edx, dividend); if (divisor < 0 && !neg && mag.multiplier > 0) sub(edx, dividend); if (mag.shift > 0) sar(edx, mag.shift); mov(eax, dividend); shr(eax, 31); add(edx, eax); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X87