# Copyright 2016, VIXL authors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of ARM Limited nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import json import re import os import hashlib import collections import itertools from test_generator import data_types from test_generator import generator class DataTypeBuilder(object): """ Factory object for building `data_types.Operand` and `data_types.Input` objects. This object stores information about all operand and input types described in JSON as dictionnaries indexed by their identifier. See `test/a32/config/data-types.json` as a reference. Attributes: operand_types Dictionnary of type names corresponding to the JSON "type" field. operand_variants Dictionnary of (variants, default) tuples. input_types Dictionnary of type names corresponding to the JSON "type" field. input_values Dictionnary of (values, default) tuples. """ def __init__(self, operand_types, operand_variants, input_types, input_values): self.operand_types = operand_types self.operand_variants = operand_variants self.input_types = input_types self.input_values = input_values def BuildOperand(self, name, identifier): """ Build a `data_types.Operand` object with the name `name`. `identifier` identifies which type we want to create, as declared in JSON. """ type_name = self.operand_types[identifier] variants, default = self.operand_variants[identifier] # We simply pass the `type_name` as a parameter which will be used verbatim # in the code. return data_types.Operand(name, type_name, variants, default) def BuildInput(self, name, identifier): """ Build a `data_types.Input` object with the name `name`. `identifier` identifies which type we want to create, as declared in JSON. """ type_name = self.input_types[identifier] values, default = self.input_values[identifier] # For `data_types.Input` types, the `type_name` refers to the actual name of # the Python class, inheriting from `Input`. This is done so that different # input types can generate different C++ code by overriding the `Load` and # `Store` methods. input_constructor = getattr(data_types, type_name) return input_constructor(name, values, default) def LoadJSON(filename): """ Read `filename`, strip its comments and load as JSON. """ with open(filename, "r") as f: match_cpp_comments = re.compile("//.*\n") # The order in which structures are described in JSON matters as we use them # as a seed. Computing a hash from a unordered dict always gives a different # value. We use the `object_pairs_hook` to make the json module create # `OrderedDict` objects instead of builtin `dict` objects. return json.loads(match_cpp_comments.sub("", f.read()), object_pairs_hook=collections.OrderedDict) def ParseDataTypes(json_data_types): """ Build a `DataTypeBuilder` object containing all information from the JSON description in `json_data_types`. ~~~ { "operands": [ { "identifier": "AllRegistersButPC" "type": "Register" "variants": [ "r0", "r1", "r2", "r3" ] "default": "r0" }, { ... } ], "inputs": [ { "identifier": "Register" "type": "Register" "values": [ "0x00000000", "0xffffffff", "0xabababab" ] "default": "0xabababab" }, { ... } ] } ~~~ """ operand_types = { json_operand_type["identifier"]: json_operand_type["type"] for json_operand_type in json_data_types["operands"] } operand_variants = { json_operand_type["identifier"]: (json_operand_type["variants"], json_operand_type["default"]) for json_operand_type in json_data_types["operands"] } input_types = { json_input_type["identifier"]: json_input_type["type"] for json_input_type in json_data_types["inputs"] } input_values = { json_input_type["identifier"]: (json_input_type["values"], json_input_type["default"]) for json_input_type in json_data_types["inputs"] } return DataTypeBuilder(operand_types, operand_variants, input_types, input_values) def ParseDescription(data_type_builder, json_description): """ Parse the instruction description into a (`generator.OperandList`, `generator.InputList`) tuple. Example for an instruction that takes a condidition code, two registers and an immediate as operand. It will also need inputs for the registers, as well as NZCV flags. ~~~ { "operands": [ { "name": "cond", "type": "Condition", }, { "name": "rd", "type": "RegisterScratch", }, { "name": "rn", "type": "RegisterScratch", }, // The last operand needs to be wrapped into a C++ `Operand` object. We // declare the operands that need to be wrapped as a list. { "name": "op", "wrapper": "Operand", "operands": [ { "name": "immediate", "type": "ModifiedImmediate", } ] } ], "inputs": [ { "name": "apsr", "type": "NZCV" }, { "name": "rd", "type": "Register" }, { "name": "rn", "type": "Register" } ] ] ~~~ """ operands = [] for json_operand in json_description["operands"]: if "name" in json_operand and "type" in json_operand: operands.append(data_type_builder.BuildOperand(json_operand["name"], json_operand["type"])) elif "name" in json_operand and \ "wrapper" in json_operand and \ "operands" in json_operand: wrapped_operands = [ data_type_builder.BuildOperand(json_wrapped_operand["name"], json_wrapped_operand["type"]) for json_wrapped_operand in json_operand["operands"] ] operands.append(data_types.OperandWrapper(json_operand["name"], json_operand["wrapper"], wrapped_operands)) else: raise Exception("Parser failed to recognize JSON \"description\".") operand_list = generator.OperandList(operands) json_description_inputs = json_description["inputs"] input_list = generator.InputList([ data_type_builder.BuildInput(json_input["name"], json_input["type"]) for json_input in json_description_inputs ]) return operand_list, input_list def ParseTestCase(json_test_case): """ Build a `generator.TestCase` object from its JSON description. ~~~ { "name": "RdIsNotRn", "operands": [ "rd", "rn" ], "inputs": [ "rd", "rn" ], "operand-filter": "rd != rn", // Python code to limit operand generation. "operand-limit": 10 // Choose a random sample of 10 operands. } ... { "name": "Flags", "operands": [ "cond" ], "inputs": [ "apsr", "q" ], "input-filter": "q == \"QFlag\"", // Python code to limit input generation "input-limit": 200 // Choose a random sample of 200 inputs. } ... { "name": "InITBlock", "operands": [ "cond", "rd", "rn", "rm" ], "in-it-block": "{cond}", // Generate an extra IT instruction. This string // will be used as the operand passed to IT. One // needs to specify under what name the condition // operand is represented, in braces. "operand-filter": "cond != 'al' and rd == rm" } ~~~ """ # TODO: The fields in "operands" and "inputs" respectively refer to operands # and inputs declared in the instruction description (see `ParseDescription`). # We should assert that the user hasn't miss typed them and raise an # exception. # If the fields are not present, give them default values (empty list, # "True", or "None"). operand_names = json_test_case["operands"] \ if "operands" in json_test_case else [] input_names = json_test_case["inputs"] if "inputs" in json_test_case else [] operand_filter = json_test_case["operand-filter"] \ if "operand-filter" in json_test_case else "True" input_filter = json_test_case["input-filter"] \ if "input-filter" in json_test_case else "True" operand_limit = json_test_case["operand-limit"] \ if "operand-limit" in json_test_case else None input_limit = json_test_case["input-limit"] \ if "input-limit" in json_test_case else None in_it_block = json_test_case["in-it-block"] \ if "in-it-block" in json_test_case else None # Create a seed from the test case description. It will only change if the # test case has changed. md5 = hashlib.md5(str(json_test_case).encode()) seed = md5.hexdigest() return generator.TestCase(json_test_case["name"], seed, operand_names, input_names, operand_filter, input_filter, operand_limit, input_limit, in_it_block) def ParseTestFile(test_name, test_isa, mnemonics, operand_list, input_list, json_test_file): """ Build a `generator.Generator` object from a test file description. We have one for each generated test files. ~~~ { "type": "simulator", // Type of the test. This will control the prefix we // use when naming the file to generate. "name": "special-case", // Optional name that will be included in the // generated filename. "mnemonics": [ // Optional list of instruction, overriding the top-level "Adc", // one. "Add", ... ], "test-cases": [ ... // Test case descriptions parsed with `ParseTestCase`. ] } ~~~ """ name = json_test_file["name"] if "name" in json_test_file else "" if name is not "": test_name = test_name + "-" + name # Override the top-level mnemonics list with a subset. if "mnemonics" in json_test_file: if set(json_test_file["mnemonics"]) == set(mnemonics): raise Exception( "Overriding mnemonic list is identical to the top-level list") if not(set(json_test_file["mnemonics"]) < set(mnemonics)): raise Exception( "Overriding mnemonic list should a subset of the top-level list") mnemonics = json_test_file["mnemonics"] test_cases = [ ParseTestCase(json_test_case) for json_test_case in json_test_file["test-cases"] ] return generator.Generator(test_name, test_isa, json_test_file["type"], mnemonics, operand_list, input_list, test_cases) def ParseConfig(test_name, test_isa, data_type_builder, json_config): """ Return a list of `generator.Generator` objects from a JSON description. This is the top-level description. ~~~ { "mnemonics": [ "Adc", "Add", ... ], "description": [ ... // Instruction description parsed with `ParseDescription`. ], "test-files": [ ... // Test files descriptions parsed with `ParseTestFile`. ] } ~~~ """ mnemonics = json_config["mnemonics"] operand_list, input_list = ParseDescription( data_type_builder, json_config["description"]) return [ ParseTestFile(test_name, test_isa, mnemonics, operand_list, input_list, json_test_file) for json_test_file in json_config["test-files"] ] def GetTestNameFromFileName(filename): """ Return the name given to this test from its file name. """ return os.path.splitext(os.path.basename(filename))[0] def GetISAFromFileName(filename): """ Return the ISA from the file name, either "a32" or "t32". """ isa = GetTestNameFromFileName(filename).split("-")[-1] assert(isa in ["a32", "t32"]) return isa def Parse(data_type_file, config_files): """ Parse the `data_type_file` and `test_case_files` json description files into a list of (name, test_case) tuples. Test cases are `generator.TestCase` objects that can be used to generate C++. """ # Create a `DataTypeBuilder` object. This object will passed down and used to # instantiate `data_types.Operand` and `data_types.Input` objects. data_type_builder = ParseDataTypes(LoadJSON(data_type_file)) # Build a list of (name, JSON) tuples to represent the new tests. json_configs = [ # We create the name of the test by looking at the file name stripped of # its extension. (GetTestNameFromFileName(config_file), GetISAFromFileName(config_file), LoadJSON(config_file)) for config_file in config_files ] # Return a list of Generator objects. The generator is the entry point to # generate a file. # Note that `ParseConfig` returns a list of generators already. We use `chain` # here to flatten a list of lists into just a list. return itertools.chain(*[ ParseConfig(test_name, test_isa, data_type_builder, json_config) for test_name, test_isa, json_config in json_configs ])