#!/usr/bin/python3 -i # # Copyright (c) 2015-2016 The Khronos Group Inc. # Copyright (c) 2015-2016 Valve Corporation # Copyright (c) 2015-2016 LunarG, Inc. # Copyright (c) 2015-2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Tobin Ehlis <tobine@google.com> # Author: Mark Lobodzinski <mark@lunarg.com> import os,re,sys import xml.etree.ElementTree as etree from generator import * from collections import namedtuple # UniqueObjectsGeneratorOptions - subclass of GeneratorOptions. # # Adds options used by UniqueObjectsOutputGenerator objects during # unique objects layer generation. # # Additional members # prefixText - list of strings to prefix generated header with # (usually a copyright statement + calling convention macros). # protectFile - True if multiple inclusion protection should be # generated (based on the filename) around the entire header. # protectFeature - True if #ifndef..#endif protection should be # generated around a feature interface in the header file. # genFuncPointers - True if function pointer typedefs should be # generated # protectProto - If conditional protection should be generated # around prototype declarations, set to either '#ifdef' # to require opt-in (#ifdef protectProtoStr) or '#ifndef' # to require opt-out (#ifndef protectProtoStr). Otherwise # set to None. # protectProtoStr - #ifdef/#ifndef symbol to use around prototype # declarations, if protectProto is set # apicall - string to use for the function declaration prefix, # such as APICALL on Windows. # apientry - string to use for the calling convention macro, # in typedefs, such as APIENTRY. # apientryp - string to use for the calling convention macro # in function pointer typedefs, such as APIENTRYP. # indentFuncProto - True if prototype declarations should put each # parameter on a separate line # indentFuncPointer - True if typedefed function pointers should put each # parameter on a separate line # alignFuncParam - if nonzero and parameters are being put on a # separate line, align parameter names at the specified column class UniqueObjectsGeneratorOptions(GeneratorOptions): def __init__(self, filename = None, directory = '.', apiname = None, profile = None, versions = '.*', emitversions = '.*', defaultExtensions = None, addExtensions = None, removeExtensions = None, sortProcedure = regSortFeatures, prefixText = "", genFuncPointers = True, protectFile = True, protectFeature = True, protectProto = None, protectProtoStr = None, apicall = '', apientry = '', apientryp = '', indentFuncProto = True, indentFuncPointer = False, alignFuncParam = 0): GeneratorOptions.__init__(self, filename, directory, apiname, profile, versions, emitversions, defaultExtensions, addExtensions, removeExtensions, sortProcedure) self.prefixText = prefixText self.genFuncPointers = genFuncPointers self.protectFile = protectFile self.protectFeature = protectFeature self.protectProto = protectProto self.protectProtoStr = protectProtoStr self.apicall = apicall self.apientry = apientry self.apientryp = apientryp self.indentFuncProto = indentFuncProto self.indentFuncPointer = indentFuncPointer self.alignFuncParam = alignFuncParam # UniqueObjectsOutputGenerator - subclass of OutputGenerator. # Generates unique objects layer non-dispatchable handle-wrapping code. # # ---- methods ---- # UniqueObjectsOutputGenerator(errFile, warnFile, diagFile) - args as for OutputGenerator. Defines additional internal state. # ---- methods overriding base class ---- # beginFile(genOpts) # endFile() # beginFeature(interface, emit) # endFeature() # genCmd(cmdinfo) # genStruct() # genType() class UniqueObjectsOutputGenerator(OutputGenerator): """Generate UniqueObjects code based on XML element attributes""" # This is an ordered list of sections in the header file. ALL_SECTIONS = ['command'] def __init__(self, errFile = sys.stderr, warnFile = sys.stderr, diagFile = sys.stdout): OutputGenerator.__init__(self, errFile, warnFile, diagFile) self.INDENT_SPACES = 4 # Commands to ignore self.intercepts = [] # Commands which are not autogenerated but still intercepted self.no_autogen_list = [ 'vkGetDeviceProcAddr', 'vkGetInstanceProcAddr', 'vkCreateInstance', 'vkDestroyInstance', 'vkCreateDevice', 'vkDestroyDevice', 'vkAllocateMemory', 'vkCreateComputePipelines', 'vkCreateGraphicsPipelines', 'vkCreateSwapchainKHR', 'vkGetSwapchainImagesKHR', 'vkEnumerateInstanceLayerProperties', 'vkEnumerateDeviceLayerProperties', 'vkEnumerateInstanceExtensionProperties', ] # Commands shadowed by interface functions and are not implemented self.interface_functions = [ 'vkGetPhysicalDeviceDisplayPropertiesKHR', 'vkGetPhysicalDeviceDisplayPlanePropertiesKHR', 'vkGetDisplayPlaneSupportedDisplaysKHR', 'vkGetDisplayModePropertiesKHR', # DebugReport APIs are hooked, but handled separately in the source file 'vkCreateDebugReportCallbackEXT', 'vkDestroyDebugReportCallbackEXT', 'vkDebugReportMessageEXT', ] self.headerVersion = None # Internal state - accumulators for different inner block text self.sections = dict([(section, []) for section in self.ALL_SECTIONS]) self.structNames = [] # List of Vulkan struct typenames self.structTypes = dict() # Map of Vulkan struct typename to required VkStructureType self.handleTypes = set() # Set of handle type names self.commands = [] # List of CommandData records for all Vulkan commands self.structMembers = [] # List of StructMemberData records for all Vulkan structs self.flags = set() # Map of flags typenames # Named tuples to store struct and command data self.StructType = namedtuple('StructType', ['name', 'value']) self.CommandParam = namedtuple('CommandParam', ['type', 'name', 'ispointer', 'isconst', 'iscount', 'len', 'extstructs', 'cdecl', 'islocal', 'iscreate', 'isdestroy']) self.CommandData = namedtuple('CommandData', ['name', 'return_type', 'params', 'cdecl']) self.StructMemberData = namedtuple('StructMemberData', ['name', 'members']) # def incIndent(self, indent): inc = ' ' * self.INDENT_SPACES if indent: return indent + inc return inc # def decIndent(self, indent): if indent and (len(indent) > self.INDENT_SPACES): return indent[:-self.INDENT_SPACES] return '' # # Override makeProtoName to drop the "vk" prefix def makeProtoName(self, name, tail): return self.genOpts.apientry + name[2:] + tail # # Check if the parameter passed in is a pointer to an array def paramIsArray(self, param): return param.attrib.get('len') is not None # def beginFile(self, genOpts): OutputGenerator.beginFile(self, genOpts) # User-supplied prefix text, if any (list of strings) if (genOpts.prefixText): for s in genOpts.prefixText: write(s, file=self.outFile) # Namespace self.newline() write('namespace unique_objects {', file = self.outFile) # def endFile(self): self.newline() # Record intercepted procedures write('// intercepts', file=self.outFile) write('struct { const char* name; PFN_vkVoidFunction pFunc;} procmap[] = {', file=self.outFile) write('\n'.join(self.intercepts), file=self.outFile) write('};\n', file=self.outFile) self.newline() write('} // namespace unique_objects', file=self.outFile) # Finish processing in superclass OutputGenerator.endFile(self) # def beginFeature(self, interface, emit): # Start processing in superclass OutputGenerator.beginFeature(self, interface, emit) self.headerVersion = None self.sections = dict([(section, []) for section in self.ALL_SECTIONS]) self.structNames = [] self.structTypes = dict() self.handleTypes = set() self.commands = [] self.structMembers = [] self.cmdMembers = [] self.flags = set() self.StructMemberData = namedtuple('StructMemberData', ['name', 'members']) self.CmdMemberData = namedtuple('CmdMemberData', ['name', 'members']) # def endFeature(self): # Actually write the interface to the output file. if (self.emit): self.newline() if (self.featureExtraProtect != None): write('#ifdef', self.featureExtraProtect, file=self.outFile) # Write the unique_objects code to the file if (self.sections['command']): if (self.genOpts.protectProto): write(self.genOpts.protectProto, self.genOpts.protectProtoStr, file=self.outFile) write('\n'.join(self.sections['command']), end='', file=self.outFile) if (self.featureExtraProtect != None): write('\n#endif //', self.featureExtraProtect, file=self.outFile) else: self.newline() # Finish processing in superclass OutputGenerator.endFeature(self) # def genType(self, typeinfo, name): OutputGenerator.genType(self, typeinfo, name) typeElem = typeinfo.elem # If the type is a struct type, traverse the imbedded <member> tags generating a structure. # Otherwise, emit the tag text. category = typeElem.get('category') if (category == 'struct' or category == 'union'): self.structNames.append(name) self.genStruct(typeinfo, name) # # Append a definition to the specified section def appendSection(self, section, text): # self.sections[section].append('SECTION: ' + section + '\n') self.sections[section].append(text) # # Check if the parameter passed in is a pointer def paramIsPointer(self, param): ispointer = False for elem in param: if ((elem.tag is not 'type') and (elem.tail is not None)) and '*' in elem.tail: ispointer = True return ispointer # # Get the category of a type def getTypeCategory(self, typename): types = self.registry.tree.findall("types/type") for elem in types: if (elem.find("name") is not None and elem.find('name').text == typename) or elem.attrib.get('name') == typename: return elem.attrib.get('category') # # Check if a parent object is dispatchable or not def isHandleTypeNonDispatchable(self, handletype): handle = self.registry.tree.find("types/type/[name='" + handletype + "'][@category='handle']") if handle is not None and handle.find('type').text == 'VK_DEFINE_NON_DISPATCHABLE_HANDLE': return True else: return False # # Retrieve the type and name for a parameter def getTypeNameTuple(self, param): type = '' name = '' for elem in param: if elem.tag == 'type': type = noneStr(elem.text) elif elem.tag == 'name': name = noneStr(elem.text) return (type, name) # # Retrieve the value of the len tag def getLen(self, param): result = None len = param.attrib.get('len') if len and len != 'null-terminated': # For string arrays, 'len' can look like 'count,null-terminated', indicating that we # have a null terminated array of strings. We strip the null-terminated from the # 'len' field and only return the parameter specifying the string count if 'null-terminated' in len: result = len.split(',')[0] else: result = len # Spec has now notation for len attributes, using :: instead of platform specific pointer symbol result = str(result).replace('::', '->') return result # # Generate a VkStructureType based on a structure typename def genVkStructureType(self, typename): # Add underscore between lowercase then uppercase value = re.sub('([a-z0-9])([A-Z])', r'\1_\2', typename) # Change to uppercase value = value.upper() # Add STRUCTURE_TYPE_ return re.sub('VK_', 'VK_STRUCTURE_TYPE_', value) # # Struct parameter check generation. # This is a special case of the <type> tag where the contents are interpreted as a set of # <member> tags instead of freeform C type declarations. The <member> tags are just like # <param> tags - they are a declaration of a struct or union member. Only simple member # declarations are supported (no nested structs etc.) def genStruct(self, typeinfo, typeName): OutputGenerator.genStruct(self, typeinfo, typeName) members = typeinfo.elem.findall('.//member') # Iterate over members once to get length parameters for arrays lens = set() for member in members: len = self.getLen(member) if len: lens.add(len) # Generate member info membersInfo = [] for member in members: # Get the member's type and name info = self.getTypeNameTuple(member) type = info[0] name = info[1] cdecl = self.makeCParamDecl(member, 0) # Process VkStructureType if type == 'VkStructureType': # Extract the required struct type value from the comments # embedded in the original text defining the 'typeinfo' element rawXml = etree.tostring(typeinfo.elem).decode('ascii') result = re.search(r'VK_STRUCTURE_TYPE_\w+', rawXml) if result: value = result.group(0) else: value = self.genVkStructureType(typeName) # Store the required type value self.structTypes[typeName] = self.StructType(name=name, value=value) # Store pointer/array/string info membersInfo.append(self.CommandParam(type=type, name=name, ispointer=self.paramIsPointer(member), isconst=True if 'const' in cdecl else False, iscount=True if name in lens else False, len=self.getLen(member), extstructs=member.attrib.get('validextensionstructs') if name == 'pNext' else None, cdecl=cdecl, islocal=False, iscreate=False, isdestroy=False)) self.structMembers.append(self.StructMemberData(name=typeName, members=membersInfo)) # # Insert a lock_guard line def lock_guard(self, indent): return '%sstd::lock_guard<std::mutex> lock(global_lock);\n' % indent # # Determine if a struct has an NDO as a member or an embedded member def struct_contains_ndo(self, struct_item): struct_member_dict = dict(self.structMembers) struct_members = struct_member_dict[struct_item] for member in struct_members: if self.isHandleTypeNonDispatchable(member.type): return True elif member.type in struct_member_dict: if self.struct_contains_ndo(member.type) == True: return True return False # # Return list of struct members which contain, or which sub-structures contain # an NDO in a given list of parameters or members def getParmeterStructsWithNdos(self, item_list): struct_list = set() for item in item_list: paramtype = item.find('type') typecategory = self.getTypeCategory(paramtype.text) if typecategory == 'struct': if self.struct_contains_ndo(paramtype.text) == True: struct_list.add(item) return struct_list # # Return list of non-dispatchable objects from a given list of parameters or members def getNdosInParameterList(self, item_list, create_func): ndo_list = set() if create_func == True: member_list = item_list[0:-1] else: member_list = item_list for item in member_list: if self.isHandleTypeNonDispatchable(paramtype.text): ndo_list.add(item) return ndo_list # # Generate source for creating a non-dispatchable object def generate_create_ndo_code(self, indent, proto, params, cmd_info): create_ndo_code = '' if True in [create_txt in proto.text for create_txt in ['Create', 'Allocate']]: handle_type = params[-1].find('type') if self.isHandleTypeNonDispatchable(handle_type.text): # Check for special case where multiple handles are returned ndo_array = False if cmd_info[-1].len is not None: ndo_array = True; handle_name = params[-1].find('name') create_ndo_code += '%sif (VK_SUCCESS == result) {\n' % (indent) indent = self.incIndent(indent) create_ndo_code += '%sstd::lock_guard<std::mutex> lock(global_lock);\n' % (indent) ndo_dest = '*%s' % handle_name.text if ndo_array == True: create_ndo_code += '%sfor (uint32_t index0 = 0; index0 < %s; index0++) {\n' % (indent, cmd_info[-1].len) indent = self.incIndent(indent) ndo_dest = '%s[index0]' % cmd_info[-1].name create_ndo_code += '%suint64_t unique_id = global_unique_id++;\n' % (indent) create_ndo_code += '%sdev_data->unique_id_mapping[unique_id] = reinterpret_cast<uint64_t &>(%s);\n' % (indent, ndo_dest) create_ndo_code += '%s%s = reinterpret_cast<%s&>(unique_id);\n' % (indent, ndo_dest, handle_type.text) if ndo_array == True: indent = self.decIndent(indent) create_ndo_code += '%s}\n' % indent indent = self.decIndent(indent) create_ndo_code += '%s}\n' % (indent) return create_ndo_code # # Generate source for destroying a non-dispatchable object def generate_destroy_ndo_code(self, indent, proto, cmd_info): destroy_ndo_code = '' ndo_array = False if True in [destroy_txt in proto.text for destroy_txt in ['Destroy', 'Free']]: # Check for special case where multiple handles are returned if cmd_info[-1].len is not None: ndo_array = True; param = -1 else: param = -2 if self.isHandleTypeNonDispatchable(cmd_info[param].type) == True: if ndo_array == True: # This API is freeing an array of handles. Remove them from the unique_id map. destroy_ndo_code += '%sif ((VK_SUCCESS == result) && (%s)) {\n' % (indent, cmd_info[param].name) indent = self.incIndent(indent) destroy_ndo_code += '%sstd::unique_lock<std::mutex> lock(global_lock);\n' % (indent) destroy_ndo_code += '%sfor (uint32_t index0 = 0; index0 < %s; index0++) {\n' % (indent, cmd_info[param].len) indent = self.incIndent(indent) destroy_ndo_code += '%s%s handle = %s[index0];\n' % (indent, cmd_info[param].type, cmd_info[param].name) destroy_ndo_code += '%suint64_t unique_id = reinterpret_cast<uint64_t &>(handle);\n' % (indent) destroy_ndo_code += '%sdev_data->unique_id_mapping.erase(unique_id);\n' % (indent) indent = self.decIndent(indent); destroy_ndo_code += '%s}\n' % indent indent = self.decIndent(indent); destroy_ndo_code += '%s}\n' % indent else: # Remove a single handle from the map destroy_ndo_code += '%sstd::unique_lock<std::mutex> lock(global_lock);\n' % (indent) destroy_ndo_code += '%suint64_t %s_id = reinterpret_cast<uint64_t &>(%s);\n' % (indent, cmd_info[param].name, cmd_info[param].name) destroy_ndo_code += '%s%s = (%s)dev_data->unique_id_mapping[%s_id];\n' % (indent, cmd_info[param].name, cmd_info[param].type, cmd_info[param].name) destroy_ndo_code += '%sdev_data->unique_id_mapping.erase(%s_id);\n' % (indent, cmd_info[param].name) destroy_ndo_code += '%slock.unlock();\n' % (indent) return ndo_array, destroy_ndo_code # # Clean up local declarations def cleanUpLocalDeclarations(self, indent, prefix, name, len): cleanup = '%sif (local_%s%s)\n' % (indent, prefix, name) if len is not None: cleanup += '%s delete[] local_%s%s;\n' % (indent, prefix, name) else: cleanup += '%s delete local_%s%s;\n' % (indent, prefix, name) return cleanup # # Output UO code for a single NDO (ndo_count is NULL) or a counted list of NDOs def outputNDOs(self, ndo_type, ndo_name, ndo_count, prefix, index, indent, destroy_func, destroy_array, top_level): decl_code = '' pre_call_code = '' post_call_code = '' if ndo_count is not None: if top_level == True: decl_code += '%s%s *local_%s%s = NULL;\n' % (indent, ndo_type, prefix, ndo_name) pre_call_code += '%s if (%s%s) {\n' % (indent, prefix, ndo_name) indent = self.incIndent(indent) if top_level == True: pre_call_code += '%s local_%s%s = new %s[%s];\n' % (indent, prefix, ndo_name, ndo_type, ndo_count) pre_call_code += '%s for (uint32_t %s = 0; %s < %s; ++%s) {\n' % (indent, index, index, ndo_count, index) indent = self.incIndent(indent) pre_call_code += '%s local_%s%s[%s] = (%s)dev_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(%s[%s])];\n' % (indent, prefix, ndo_name, index, ndo_type, ndo_name, index) else: pre_call_code += '%s for (uint32_t %s = 0; %s < %s; ++%s) {\n' % (indent, index, index, ndo_count, index) indent = self.incIndent(indent) pre_call_code += '%s %s%s[%s] = (%s)dev_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(%s%s[%s])];\n' % (indent, prefix, ndo_name, index, ndo_type, prefix, ndo_name, index) indent = self.decIndent(indent) pre_call_code += '%s }\n' % indent indent = self.decIndent(indent) pre_call_code += '%s }\n' % indent if top_level == True: post_call_code += '%sif (local_%s%s)\n' % (indent, prefix, ndo_name) indent = self.incIndent(indent) post_call_code += '%sdelete[] local_%s;\n' % (indent, ndo_name) else: if top_level == True: if (destroy_func == False) or (destroy_array == True): #### LUGMAL This line needs to be skipped for destroy_ndo and not destroy_array pre_call_code += '%s %s = (%s)dev_data->unique_id_mapping[reinterpret_cast<uint64_t &>(%s)];\n' % (indent, ndo_name, ndo_type, ndo_name) else: # Make temp copy of this var with the 'local' removed. It may be better to not pass in 'local_' # as part of the string and explicitly print it fix = str(prefix).strip('local_'); pre_call_code += '%s if (%s%s) {\n' % (indent, fix, ndo_name) indent = self.incIndent(indent) pre_call_code += '%s %s%s = (%s)dev_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(%s%s)];\n' % (indent, prefix, ndo_name, ndo_type, fix, ndo_name) indent = self.decIndent(indent) pre_call_code += '%s }\n' % indent return decl_code, pre_call_code, post_call_code # # first_level_param indicates if elements are passed directly into the function else they're below a ptr/struct # create_func means that this is API creates or allocates NDOs # destroy_func indicates that this API destroys or frees NDOs # destroy_array means that the destroy_func operated on an array of NDOs def uniquify_members(self, members, indent, prefix, array_index, create_func, destroy_func, destroy_array, first_level_param): decls = '' pre_code = '' post_code = '' struct_member_dict = dict(self.structMembers) index = 'index%s' % str(array_index) array_index += 1 # Process any NDOs in this structure and recurse for any sub-structs in this struct for member in members: # Handle NDOs if self.isHandleTypeNonDispatchable(member.type) == True: count_name = member.len if (count_name is not None): if first_level_param == False: count_name = '%s%s' % (prefix, member.len) if (first_level_param == False) or (create_func == False): (tmp_decl, tmp_pre, tmp_post) = self.outputNDOs(member.type, member.name, count_name, prefix, index, indent, destroy_func, destroy_array, first_level_param) decls += tmp_decl pre_code += tmp_pre post_code += tmp_post # Handle Structs that contain NDOs at some level elif member.type in struct_member_dict: # All structs at first level will have an NDO if self.struct_contains_ndo(member.type) == True: struct_info = struct_member_dict[member.type] # Struct Array if member.len is not None: # Update struct prefix if first_level_param == True: new_prefix = 'local_%s' % member.name # Declare safe_VarType for struct decls += '%ssafe_%s *%s = NULL;\n' % (indent, member.type, new_prefix) else: new_prefix = '%s%s' % (prefix, member.name) pre_code += '%s if (%s%s) {\n' % (indent, prefix, member.name) indent = self.incIndent(indent) if first_level_param == True: pre_code += '%s %s = new safe_%s[%s];\n' % (indent, new_prefix, member.type, member.len) pre_code += '%s for (uint32_t %s = 0; %s < %s%s; ++%s) {\n' % (indent, index, index, prefix, member.len, index) indent = self.incIndent(indent) if first_level_param == True: pre_code += '%s %s[%s].initialize(&%s[%s]);\n' % (indent, new_prefix, index, member.name, index) local_prefix = '%s[%s].' % (new_prefix, index) # Process sub-structs in this struct (tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, local_prefix, array_index, create_func, destroy_func, destroy_array, False) decls += tmp_decl pre_code += tmp_pre post_code += tmp_post indent = self.decIndent(indent) pre_code += '%s }\n' % indent indent = self.decIndent(indent) pre_code += '%s }\n' % indent if first_level_param == True: post_code += self.cleanUpLocalDeclarations(indent, prefix, member.name, member.len) # Single Struct else: # Update struct prefix if first_level_param == True: new_prefix = 'local_%s->' % member.name decls += '%ssafe_%s *local_%s%s = NULL;\n' % (indent, member.type, prefix, member.name) else: new_prefix = '%s%s->' % (prefix, member.name) # Declare safe_VarType for struct pre_code += '%s if (%s%s) {\n' % (indent, prefix, member.name) indent = self.incIndent(indent) if first_level_param == True: pre_code += '%s local_%s%s = new safe_%s(%s);\n' % (indent, prefix, member.name, member.type, member.name) # Process sub-structs in this struct (tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, new_prefix, array_index, create_func, destroy_func, destroy_array, False) decls += tmp_decl pre_code += tmp_pre post_code += tmp_post indent = self.decIndent(indent) pre_code += '%s }\n' % indent if first_level_param == True: post_code += self.cleanUpLocalDeclarations(indent, prefix, member.name, member.len) return decls, pre_code, post_code # # For a particular API, generate the non-dispatchable-object wrapping/unwrapping code def generate_wrapping_code(self, cmd): indent = ' ' proto = cmd.find('proto/name') params = cmd.findall('param') if proto.text is not None: cmd_member_dict = dict(self.cmdMembers) cmd_info = cmd_member_dict[proto.text] # Handle ndo create/allocate operations if cmd_info[0].iscreate: create_ndo_code = self.generate_create_ndo_code(indent, proto, params, cmd_info) else: create_ndo_code = '' # Handle ndo destroy/free operations if cmd_info[0].isdestroy: (destroy_array, destroy_ndo_code) = self.generate_destroy_ndo_code(indent, proto, cmd_info) else: destroy_array = False destroy_ndo_code = '' paramdecl = '' param_pre_code = '' param_post_code = '' create_func = True if create_ndo_code else False destroy_func = True if destroy_ndo_code else False (paramdecl, param_pre_code, param_post_code) = self.uniquify_members(cmd_info, indent, '', 0, create_func, destroy_func, destroy_array, True) param_post_code += create_ndo_code if destroy_ndo_code: if destroy_array == True: param_post_code += destroy_ndo_code else: param_pre_code += destroy_ndo_code if param_pre_code: if (not destroy_func) or (destroy_array): param_pre_code = '%s{\n%s%s%s%s}\n' % (' ', indent, self.lock_guard(indent), param_pre_code, indent) return paramdecl, param_pre_code, param_post_code # # Capture command parameter info needed to wrap NDOs as well as handling some boilerplate code def genCmd(self, cmdinfo, cmdname): if cmdname in self.interface_functions: return if cmdname in self.no_autogen_list: decls = self.makeCDecls(cmdinfo.elem) self.appendSection('command', '') self.appendSection('command', '// Declare only') self.appendSection('command', decls[0]) self.intercepts += [ ' {"%s", reinterpret_cast<PFN_vkVoidFunction>(%s)},' % (cmdname,cmdname[2:]) ] return # Add struct-member type information to command parameter information OutputGenerator.genCmd(self, cmdinfo, cmdname) members = cmdinfo.elem.findall('.//param') # Iterate over members once to get length parameters for arrays lens = set() for member in members: len = self.getLen(member) if len: lens.add(len) struct_member_dict = dict(self.structMembers) # Generate member info membersInfo = [] for member in members: # Get type and name of member info = self.getTypeNameTuple(member) type = info[0] name = info[1] cdecl = self.makeCParamDecl(member, 0) # Check for parameter name in lens set iscount = True if name in lens else False len = self.getLen(member) isconst = True if 'const' in cdecl else False ispointer = self.paramIsPointer(member) # Mark param as local if it is an array of NDOs islocal = False; if self.isHandleTypeNonDispatchable(type) == True: if (len is not None) and (isconst == True): islocal = True # Or if it's a struct that contains an NDO elif type in struct_member_dict: if self.struct_contains_ndo(type) == True: islocal = True isdestroy = True if True in [destroy_txt in cmdname for destroy_txt in ['Destroy', 'Free']] else False iscreate = True if True in [create_txt in cmdname for create_txt in ['Create', 'Allocate']] else False membersInfo.append(self.CommandParam(type=type, name=name, ispointer=ispointer, isconst=isconst, iscount=iscount, len=len, extstructs=member.attrib.get('validextensionstructs') if name == 'pNext' else None, cdecl=cdecl, islocal=islocal, iscreate=iscreate, isdestroy=isdestroy)) self.cmdMembers.append(self.CmdMemberData(name=cmdname, members=membersInfo)) # Generate NDO wrapping/unwrapping code for all parameters (api_decls, api_pre, api_post) = self.generate_wrapping_code(cmdinfo.elem) # If API doesn't contain an NDO's, don't fool with it if not api_decls and not api_pre and not api_post: return # Record that the function will be intercepted if (self.featureExtraProtect != None): self.intercepts += [ '#ifdef %s' % self.featureExtraProtect ] self.intercepts += [ ' {"%s", reinterpret_cast<PFN_vkVoidFunction>(%s)},' % (cmdname,cmdname[2:]) ] if (self.featureExtraProtect != None): self.intercepts += [ '#endif' ] decls = self.makeCDecls(cmdinfo.elem) self.appendSection('command', '') self.appendSection('command', decls[0][:-1]) self.appendSection('command', '{') # Setup common to call wrappers, first parameter is always dispatchable dispatchable_type = cmdinfo.elem.find('param/type').text dispatchable_name = cmdinfo.elem.find('param/name').text # Generate local instance/pdev/device data lookup self.appendSection('command', ' layer_data *dev_data = get_my_data_ptr(get_dispatch_key('+dispatchable_name+'), layer_data_map);') # Handle return values, if any resulttype = cmdinfo.elem.find('proto/type') if (resulttype != None and resulttype.text == 'void'): resulttype = None if (resulttype != None): assignresult = resulttype.text + ' result = ' else: assignresult = '' # Pre-pend declarations and pre-api-call codegen if api_decls: self.appendSection('command', "\n".join(str(api_decls).rstrip().split("\n"))) if api_pre: self.appendSection('command', "\n".join(str(api_pre).rstrip().split("\n"))) # Generate the API call itself # Gather the parameter items params = cmdinfo.elem.findall('param/name') # Pull out the text for each of the parameters, separate them by commas in a list paramstext = ', '.join([str(param.text) for param in params]) # If any of these paramters has been replaced by a local var, fix up the list cmd_member_dict = dict(self.cmdMembers) params = cmd_member_dict[cmdname] for param in params: if param.islocal == True: if param.ispointer == True: paramstext = paramstext.replace(param.name, '(%s %s*)local_%s' % ('const', param.type, param.name)) else: paramstext = paramstext.replace(param.name, '(%s %s)local_%s' % ('const', param.type, param.name)) # Use correct dispatch table if dispatchable_type in ["VkPhysicalDevice", "VkInstance"]: API = cmdinfo.elem.attrib.get('name').replace('vk','dev_data->instance_dispatch_table->',1) else: API = cmdinfo.elem.attrib.get('name').replace('vk','dev_data->device_dispatch_table->',1) # Put all this together for the final down-chain call self.appendSection('command', ' ' + assignresult + API + '(' + paramstext + ');') # And add the post-API-call codegen self.appendSection('command', "\n".join(str(api_post).rstrip().split("\n"))) # Handle the return result variable, if any if (resulttype != None): self.appendSection('command', ' return result;') self.appendSection('command', '}')