/* * WPA Supplicant - Basic AP mode support routines * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi> * Copyright (c) 2009, Atheros Communications * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "utils/includes.h" #include "utils/common.h" #include "utils/eloop.h" #include "utils/uuid.h" #include "common/ieee802_11_defs.h" #include "common/wpa_ctrl.h" #include "eapol_supp/eapol_supp_sm.h" #include "crypto/dh_group5.h" #include "ap/hostapd.h" #include "ap/ap_config.h" #include "ap/ap_drv_ops.h" #ifdef NEED_AP_MLME #include "ap/ieee802_11.h" #endif /* NEED_AP_MLME */ #include "ap/beacon.h" #include "ap/ieee802_1x.h" #include "ap/wps_hostapd.h" #include "ap/ctrl_iface_ap.h" #include "ap/dfs.h" #include "wps/wps.h" #include "common/ieee802_11_defs.h" #include "config_ssid.h" #include "config.h" #include "wpa_supplicant_i.h" #include "driver_i.h" #include "p2p_supplicant.h" #include "ap.h" #include "ap/sta_info.h" #include "notify.h" #ifdef CONFIG_WPS static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx); #endif /* CONFIG_WPS */ #ifdef CONFIG_IEEE80211N static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s, struct hostapd_config *conf, struct hostapd_hw_modes *mode) { #ifdef CONFIG_P2P u8 center_chan = 0; u8 channel = conf->channel; if (!conf->secondary_channel) goto no_vht; switch (conf->vht_oper_chwidth) { case VHT_CHANWIDTH_80MHZ: case VHT_CHANWIDTH_80P80MHZ: center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel); break; case VHT_CHANWIDTH_160MHZ: center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel); break; default: /* * conf->vht_oper_chwidth might not be set for non-P2P GO cases, * try oper_cwidth 160 MHz first then VHT 80 MHz, if 160 MHz is * not supported. */ conf->vht_oper_chwidth = VHT_CHANWIDTH_160MHZ; center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel); if (!center_chan) { conf->vht_oper_chwidth = VHT_CHANWIDTH_80MHZ; center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel); } break; } if (!center_chan) goto no_vht; conf->vht_oper_centr_freq_seg0_idx = center_chan; return; no_vht: conf->vht_oper_centr_freq_seg0_idx = channel + conf->secondary_channel * 2; #else /* CONFIG_P2P */ conf->vht_oper_centr_freq_seg0_idx = conf->channel + conf->secondary_channel * 2; #endif /* CONFIG_P2P */ conf->vht_oper_chwidth = VHT_CHANWIDTH_USE_HT; } #endif /* CONFIG_IEEE80211N */ int wpa_supplicant_conf_ap_ht(struct wpa_supplicant *wpa_s, struct wpa_ssid *ssid, struct hostapd_config *conf) { conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency, &conf->channel); if (conf->hw_mode == NUM_HOSTAPD_MODES) { wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz", ssid->frequency); return -1; } /* TODO: enable HT40 if driver supports it; * drop to 11b if driver does not support 11g */ #ifdef CONFIG_IEEE80211N /* * Enable HT20 if the driver supports it, by setting conf->ieee80211n * and a mask of allowed capabilities within conf->ht_capab. * Using default config settings for: conf->ht_op_mode_fixed, * conf->secondary_channel, conf->require_ht */ if (wpa_s->hw.modes) { struct hostapd_hw_modes *mode = NULL; int i, no_ht = 0; for (i = 0; i < wpa_s->hw.num_modes; i++) { if (wpa_s->hw.modes[i].mode == conf->hw_mode) { mode = &wpa_s->hw.modes[i]; break; } } #ifdef CONFIG_HT_OVERRIDES if (ssid->disable_ht) { conf->ieee80211n = 0; conf->ht_capab = 0; no_ht = 1; } #endif /* CONFIG_HT_OVERRIDES */ if (!no_ht && mode && mode->ht_capab) { conf->ieee80211n = 1; #ifdef CONFIG_P2P if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A && (mode->ht_capab & HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) && ssid->ht40) conf->secondary_channel = wpas_p2p_get_ht40_mode(wpa_s, mode, conf->channel); if (conf->secondary_channel) conf->ht_capab |= HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET; #endif /* CONFIG_P2P */ /* * white-list capabilities that won't cause issues * to connecting stations, while leaving the current * capabilities intact (currently disabled SMPS). */ conf->ht_capab |= mode->ht_capab & (HT_CAP_INFO_GREEN_FIELD | HT_CAP_INFO_SHORT_GI20MHZ | HT_CAP_INFO_SHORT_GI40MHZ | HT_CAP_INFO_RX_STBC_MASK | HT_CAP_INFO_TX_STBC | HT_CAP_INFO_MAX_AMSDU_SIZE); if (mode->vht_capab && ssid->vht) { conf->ieee80211ac = 1; conf->vht_capab |= mode->vht_capab; wpas_conf_ap_vht(wpa_s, conf, mode); } } } if (conf->secondary_channel) { struct wpa_supplicant *iface; for (iface = wpa_s->global->ifaces; iface; iface = iface->next) { if (iface == wpa_s || iface->wpa_state < WPA_AUTHENTICATING || (int) iface->assoc_freq != ssid->frequency) continue; /* * Do not allow 40 MHz co-ex PRI/SEC switch to force us * to change our PRI channel since we have an existing, * concurrent connection on that channel and doing * multi-channel concurrency is likely to cause more * harm than using different PRI/SEC selection in * environment with multiple BSSes on these two channels * with mixed 20 MHz or PRI channel selection. */ conf->no_pri_sec_switch = 1; } } #endif /* CONFIG_IEEE80211N */ return 0; } static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s, struct wpa_ssid *ssid, struct hostapd_config *conf) { struct hostapd_bss_config *bss = conf->bss[0]; conf->driver = wpa_s->driver; os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface)); if (wpa_supplicant_conf_ap_ht(wpa_s, ssid, conf)) return -1; if (ssid->pbss > 1) { wpa_printf(MSG_ERROR, "Invalid pbss value(%d) for AP mode", ssid->pbss); return -1; } bss->pbss = ssid->pbss; #ifdef CONFIG_ACS if (ssid->acs) { /* Setting channel to 0 in order to enable ACS */ conf->channel = 0; wpa_printf(MSG_DEBUG, "Use automatic channel selection"); } #endif /* CONFIG_ACS */ if (ieee80211_is_dfs(ssid->frequency) && wpa_s->conf->country[0]) { conf->ieee80211h = 1; conf->ieee80211d = 1; conf->country[0] = wpa_s->conf->country[0]; conf->country[1] = wpa_s->conf->country[1]; conf->country[2] = ' '; } #ifdef CONFIG_P2P if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G && (ssid->mode == WPAS_MODE_P2P_GO || ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) { /* Remove 802.11b rates from supported and basic rate sets */ int *list = os_malloc(4 * sizeof(int)); if (list) { list[0] = 60; list[1] = 120; list[2] = 240; list[3] = -1; } conf->basic_rates = list; list = os_malloc(9 * sizeof(int)); if (list) { list[0] = 60; list[1] = 90; list[2] = 120; list[3] = 180; list[4] = 240; list[5] = 360; list[6] = 480; list[7] = 540; list[8] = -1; } conf->supported_rates = list; } bss->isolate = !wpa_s->conf->p2p_intra_bss; bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk; if (ssid->p2p_group) { os_memcpy(bss->ip_addr_go, wpa_s->p2pdev->conf->ip_addr_go, 4); os_memcpy(bss->ip_addr_mask, wpa_s->p2pdev->conf->ip_addr_mask, 4); os_memcpy(bss->ip_addr_start, wpa_s->p2pdev->conf->ip_addr_start, 4); os_memcpy(bss->ip_addr_end, wpa_s->p2pdev->conf->ip_addr_end, 4); } #endif /* CONFIG_P2P */ if (ssid->ssid_len == 0) { wpa_printf(MSG_ERROR, "No SSID configured for AP mode"); return -1; } os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len); bss->ssid.ssid_len = ssid->ssid_len; bss->ssid.ssid_set = 1; bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid; if (ssid->auth_alg) bss->auth_algs = ssid->auth_alg; if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt)) bss->wpa = ssid->proto; if (ssid->key_mgmt == DEFAULT_KEY_MGMT) bss->wpa_key_mgmt = WPA_KEY_MGMT_PSK; else bss->wpa_key_mgmt = ssid->key_mgmt; bss->wpa_pairwise = ssid->pairwise_cipher; if (ssid->psk_set) { bin_clear_free(bss->ssid.wpa_psk, sizeof(*bss->ssid.wpa_psk)); bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk)); if (bss->ssid.wpa_psk == NULL) return -1; os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN); bss->ssid.wpa_psk->group = 1; bss->ssid.wpa_psk_set = 1; } else if (ssid->passphrase) { bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase); } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] || ssid->wep_key_len[2] || ssid->wep_key_len[3]) { struct hostapd_wep_keys *wep = &bss->ssid.wep; int i; for (i = 0; i < NUM_WEP_KEYS; i++) { if (ssid->wep_key_len[i] == 0) continue; wep->key[i] = os_malloc(ssid->wep_key_len[i]); if (wep->key[i] == NULL) return -1; os_memcpy(wep->key[i], ssid->wep_key[i], ssid->wep_key_len[i]); wep->len[i] = ssid->wep_key_len[i]; } wep->idx = ssid->wep_tx_keyidx; wep->keys_set = 1; } if (ssid->ap_max_inactivity) bss->ap_max_inactivity = ssid->ap_max_inactivity; if (ssid->dtim_period) bss->dtim_period = ssid->dtim_period; else if (wpa_s->conf->dtim_period) bss->dtim_period = wpa_s->conf->dtim_period; if (ssid->beacon_int) conf->beacon_int = ssid->beacon_int; else if (wpa_s->conf->beacon_int) conf->beacon_int = wpa_s->conf->beacon_int; #ifdef CONFIG_P2P if (ssid->mode == WPAS_MODE_P2P_GO || ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION) { if (wpa_s->conf->p2p_go_ctwindow > conf->beacon_int) { wpa_printf(MSG_INFO, "CTWindow (%d) is bigger than beacon interval (%d) - avoid configuring it", wpa_s->conf->p2p_go_ctwindow, conf->beacon_int); conf->p2p_go_ctwindow = 0; } else { conf->p2p_go_ctwindow = wpa_s->conf->p2p_go_ctwindow; } } #endif /* CONFIG_P2P */ if ((bss->wpa & 2) && bss->rsn_pairwise == 0) bss->rsn_pairwise = bss->wpa_pairwise; bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise, bss->rsn_pairwise); if (bss->wpa && bss->ieee802_1x) bss->ssid.security_policy = SECURITY_WPA; else if (bss->wpa) bss->ssid.security_policy = SECURITY_WPA_PSK; else if (bss->ieee802_1x) { int cipher = WPA_CIPHER_NONE; bss->ssid.security_policy = SECURITY_IEEE_802_1X; bss->ssid.wep.default_len = bss->default_wep_key_len; if (bss->default_wep_key_len) cipher = bss->default_wep_key_len >= 13 ? WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40; bss->wpa_group = cipher; bss->wpa_pairwise = cipher; bss->rsn_pairwise = cipher; } else if (bss->ssid.wep.keys_set) { int cipher = WPA_CIPHER_WEP40; if (bss->ssid.wep.len[0] >= 13) cipher = WPA_CIPHER_WEP104; bss->ssid.security_policy = SECURITY_STATIC_WEP; bss->wpa_group = cipher; bss->wpa_pairwise = cipher; bss->rsn_pairwise = cipher; } else { bss->ssid.security_policy = SECURITY_PLAINTEXT; bss->wpa_group = WPA_CIPHER_NONE; bss->wpa_pairwise = WPA_CIPHER_NONE; bss->rsn_pairwise = WPA_CIPHER_NONE; } if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) && (bss->wpa_group == WPA_CIPHER_CCMP || bss->wpa_group == WPA_CIPHER_GCMP || bss->wpa_group == WPA_CIPHER_CCMP_256 || bss->wpa_group == WPA_CIPHER_GCMP_256)) { /* * Strong ciphers do not need frequent rekeying, so increase * the default GTK rekeying period to 24 hours. */ bss->wpa_group_rekey = 86400; } #ifdef CONFIG_IEEE80211W if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT) bss->ieee80211w = ssid->ieee80211w; #endif /* CONFIG_IEEE80211W */ #ifdef CONFIG_WPS /* * Enable WPS by default for open and WPA/WPA2-Personal network, but * require user interaction to actually use it. Only the internal * Registrar is supported. */ if (bss->ssid.security_policy != SECURITY_WPA_PSK && bss->ssid.security_policy != SECURITY_PLAINTEXT) goto no_wps; if (bss->ssid.security_policy == SECURITY_WPA_PSK && (!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) || !(bss->wpa & 2))) goto no_wps; /* WPS2 does not allow WPA/TKIP-only * configuration */ if (ssid->wps_disabled) goto no_wps; bss->eap_server = 1; if (!ssid->ignore_broadcast_ssid) bss->wps_state = 2; bss->ap_setup_locked = 2; if (wpa_s->conf->config_methods) bss->config_methods = os_strdup(wpa_s->conf->config_methods); os_memcpy(bss->device_type, wpa_s->conf->device_type, WPS_DEV_TYPE_LEN); if (wpa_s->conf->device_name) { bss->device_name = os_strdup(wpa_s->conf->device_name); bss->friendly_name = os_strdup(wpa_s->conf->device_name); } if (wpa_s->conf->manufacturer) bss->manufacturer = os_strdup(wpa_s->conf->manufacturer); if (wpa_s->conf->model_name) bss->model_name = os_strdup(wpa_s->conf->model_name); if (wpa_s->conf->model_number) bss->model_number = os_strdup(wpa_s->conf->model_number); if (wpa_s->conf->serial_number) bss->serial_number = os_strdup(wpa_s->conf->serial_number); if (is_nil_uuid(wpa_s->conf->uuid)) os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN); else os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN); os_memcpy(bss->os_version, wpa_s->conf->os_version, 4); bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1; if (ssid->eap.fragment_size != DEFAULT_FRAGMENT_SIZE) bss->fragment_size = ssid->eap.fragment_size; no_wps: #endif /* CONFIG_WPS */ if (wpa_s->max_stations && wpa_s->max_stations < wpa_s->conf->max_num_sta) bss->max_num_sta = wpa_s->max_stations; else bss->max_num_sta = wpa_s->conf->max_num_sta; bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack; if (wpa_s->conf->ap_vendor_elements) { bss->vendor_elements = wpabuf_dup(wpa_s->conf->ap_vendor_elements); } bss->ftm_responder = wpa_s->conf->ftm_responder; bss->ftm_initiator = wpa_s->conf->ftm_initiator; return 0; } static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq) { #ifdef CONFIG_P2P struct wpa_supplicant *wpa_s = ctx; const struct ieee80211_mgmt *mgmt; mgmt = (const struct ieee80211_mgmt *) buf; if (len < IEEE80211_HDRLEN + 1) return; if (mgmt->u.action.category != WLAN_ACTION_PUBLIC) return; wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid, mgmt->u.action.category, buf + IEEE80211_HDRLEN + 1, len - IEEE80211_HDRLEN - 1, freq); #endif /* CONFIG_P2P */ } static void ap_wps_event_cb(void *ctx, enum wps_event event, union wps_event_data *data) { #ifdef CONFIG_P2P struct wpa_supplicant *wpa_s = ctx; if (event == WPS_EV_FAIL) { struct wps_event_fail *fail = &data->fail; if (wpa_s->p2pdev && wpa_s->p2pdev != wpa_s && wpa_s == wpa_s->global->p2p_group_formation) { /* * src/ap/wps_hostapd.c has already sent this on the * main interface, so only send on the parent interface * here if needed. */ wpa_msg(wpa_s->p2pdev, MSG_INFO, WPS_EVENT_FAIL "msg=%d config_error=%d", fail->msg, fail->config_error); } wpas_p2p_wps_failed(wpa_s, fail); } #endif /* CONFIG_P2P */ } static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr, int authorized, const u8 *p2p_dev_addr) { wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr); } #ifdef CONFIG_P2P static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr, const u8 *psk, size_t psk_len) { struct wpa_supplicant *wpa_s = ctx; if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL) return; wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len); } #endif /* CONFIG_P2P */ static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq) { #ifdef CONFIG_P2P struct wpa_supplicant *wpa_s = ctx; const struct ieee80211_mgmt *mgmt; mgmt = (const struct ieee80211_mgmt *) buf; if (len < IEEE80211_HDRLEN + 1) return -1; wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid, mgmt->u.action.category, buf + IEEE80211_HDRLEN + 1, len - IEEE80211_HDRLEN - 1, freq); #endif /* CONFIG_P2P */ return 0; } static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da, const u8 *bssid, const u8 *ie, size_t ie_len, int ssi_signal) { struct wpa_supplicant *wpa_s = ctx; unsigned int freq = 0; if (wpa_s->ap_iface) freq = wpa_s->ap_iface->freq; return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len, freq, ssi_signal); } static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr, const u8 *uuid_e) { struct wpa_supplicant *wpa_s = ctx; wpas_p2p_wps_success(wpa_s, mac_addr, 1); } static void wpas_ap_configured_cb(void *ctx) { struct wpa_supplicant *wpa_s = ctx; #ifdef CONFIG_ACS if (wpa_s->current_ssid && wpa_s->current_ssid->acs) wpa_s->assoc_freq = wpa_s->ap_iface->freq; #endif /* CONFIG_ACS */ wpa_supplicant_set_state(wpa_s, WPA_COMPLETED); if (wpa_s->ap_configured_cb) wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx, wpa_s->ap_configured_cb_data); } int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s, struct wpa_ssid *ssid) { struct wpa_driver_associate_params params; struct hostapd_iface *hapd_iface; struct hostapd_config *conf; size_t i; if (ssid->ssid == NULL || ssid->ssid_len == 0) { wpa_printf(MSG_ERROR, "No SSID configured for AP mode"); return -1; } wpa_supplicant_ap_deinit(wpa_s); wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')", wpa_ssid_txt(ssid->ssid, ssid->ssid_len)); os_memset(¶ms, 0, sizeof(params)); params.ssid = ssid->ssid; params.ssid_len = ssid->ssid_len; switch (ssid->mode) { case WPAS_MODE_AP: case WPAS_MODE_P2P_GO: case WPAS_MODE_P2P_GROUP_FORMATION: params.mode = IEEE80211_MODE_AP; break; default: return -1; } if (ssid->frequency == 0) ssid->frequency = 2462; /* default channel 11 */ params.freq.freq = ssid->frequency; params.wpa_proto = ssid->proto; if (ssid->key_mgmt & WPA_KEY_MGMT_PSK) wpa_s->key_mgmt = WPA_KEY_MGMT_PSK; else wpa_s->key_mgmt = WPA_KEY_MGMT_NONE; params.key_mgmt_suite = wpa_s->key_mgmt; wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher, 1); if (wpa_s->pairwise_cipher < 0) { wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise " "cipher."); return -1; } params.pairwise_suite = wpa_s->pairwise_cipher; params.group_suite = params.pairwise_suite; #ifdef CONFIG_P2P if (ssid->mode == WPAS_MODE_P2P_GO || ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION) params.p2p = 1; #endif /* CONFIG_P2P */ if (wpa_s->p2pdev->set_ap_uapsd) params.uapsd = wpa_s->p2pdev->ap_uapsd; else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD)) params.uapsd = 1; /* mandatory for P2P GO */ else params.uapsd = -1; if (ieee80211_is_dfs(params.freq.freq)) params.freq.freq = 0; /* set channel after CAC */ if (params.p2p) wpa_drv_get_ext_capa(wpa_s, WPA_IF_P2P_GO); else wpa_drv_get_ext_capa(wpa_s, WPA_IF_AP_BSS); if (wpa_drv_associate(wpa_s, ¶ms) < 0) { wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality"); return -1; } wpa_s->ap_iface = hapd_iface = hostapd_alloc_iface(); if (hapd_iface == NULL) return -1; hapd_iface->owner = wpa_s; hapd_iface->drv_flags = wpa_s->drv_flags; hapd_iface->smps_modes = wpa_s->drv_smps_modes; hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads; hapd_iface->extended_capa = wpa_s->extended_capa; hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask; hapd_iface->extended_capa_len = wpa_s->extended_capa_len; wpa_s->ap_iface->conf = conf = hostapd_config_defaults(); if (conf == NULL) { wpa_supplicant_ap_deinit(wpa_s); return -1; } /* Use the maximum oper channel width if it's given. */ if (ssid->max_oper_chwidth) conf->vht_oper_chwidth = ssid->max_oper_chwidth; ieee80211_freq_to_chan(ssid->vht_center_freq2, &conf->vht_oper_centr_freq_seg1_idx); os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params, wpa_s->conf->wmm_ac_params, sizeof(wpa_s->conf->wmm_ac_params)); if (params.uapsd > 0) { conf->bss[0]->wmm_enabled = 1; conf->bss[0]->wmm_uapsd = 1; } if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) { wpa_printf(MSG_ERROR, "Failed to create AP configuration"); wpa_supplicant_ap_deinit(wpa_s); return -1; } #ifdef CONFIG_P2P if (ssid->mode == WPAS_MODE_P2P_GO) conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER; else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION) conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER | P2P_GROUP_FORMATION; #endif /* CONFIG_P2P */ hapd_iface->num_bss = conf->num_bss; hapd_iface->bss = os_calloc(conf->num_bss, sizeof(struct hostapd_data *)); if (hapd_iface->bss == NULL) { wpa_supplicant_ap_deinit(wpa_s); return -1; } for (i = 0; i < conf->num_bss; i++) { hapd_iface->bss[i] = hostapd_alloc_bss_data(hapd_iface, conf, conf->bss[i]); if (hapd_iface->bss[i] == NULL) { wpa_supplicant_ap_deinit(wpa_s); return -1; } hapd_iface->bss[i]->msg_ctx = wpa_s; hapd_iface->bss[i]->msg_ctx_parent = wpa_s->p2pdev; hapd_iface->bss[i]->public_action_cb = ap_public_action_rx; hapd_iface->bss[i]->public_action_cb_ctx = wpa_s; hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx; hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s; hostapd_register_probereq_cb(hapd_iface->bss[i], ap_probe_req_rx, wpa_s); hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb; hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s; hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb; hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s; hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb; hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s; #ifdef CONFIG_P2P hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb; hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s; hapd_iface->bss[i]->p2p = wpa_s->global->p2p; hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s, ssid); #endif /* CONFIG_P2P */ hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb; hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s; #ifdef CONFIG_TESTING_OPTIONS hapd_iface->bss[i]->ext_eapol_frame_io = wpa_s->ext_eapol_frame_io; #endif /* CONFIG_TESTING_OPTIONS */ } os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN); hapd_iface->bss[0]->driver = wpa_s->driver; hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv; wpa_s->current_ssid = ssid; eapol_sm_notify_config(wpa_s->eapol, NULL, NULL); os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN); wpa_s->assoc_freq = ssid->frequency; if (hostapd_setup_interface(wpa_s->ap_iface)) { wpa_printf(MSG_ERROR, "Failed to initialize AP interface"); wpa_supplicant_ap_deinit(wpa_s); return -1; } return 0; } void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s) { #ifdef CONFIG_WPS eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL); #endif /* CONFIG_WPS */ if (wpa_s->ap_iface == NULL) return; wpa_s->current_ssid = NULL; eapol_sm_notify_config(wpa_s->eapol, NULL, NULL); wpa_s->assoc_freq = 0; wpas_p2p_ap_deinit(wpa_s); wpa_s->ap_iface->driver_ap_teardown = !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT); hostapd_interface_deinit(wpa_s->ap_iface); hostapd_interface_free(wpa_s->ap_iface); wpa_s->ap_iface = NULL; wpa_drv_deinit_ap(wpa_s); wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_DISCONNECTED "bssid=" MACSTR " reason=%d locally_generated=1", MAC2STR(wpa_s->own_addr), WLAN_REASON_DEAUTH_LEAVING); } void ap_tx_status(void *ctx, const u8 *addr, const u8 *buf, size_t len, int ack) { #ifdef NEED_AP_MLME struct wpa_supplicant *wpa_s = ctx; hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack); #endif /* NEED_AP_MLME */ } void ap_eapol_tx_status(void *ctx, const u8 *dst, const u8 *data, size_t len, int ack) { #ifdef NEED_AP_MLME struct wpa_supplicant *wpa_s = ctx; if (!wpa_s->ap_iface) return; hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack); #endif /* NEED_AP_MLME */ } void ap_client_poll_ok(void *ctx, const u8 *addr) { #ifdef NEED_AP_MLME struct wpa_supplicant *wpa_s = ctx; if (wpa_s->ap_iface) hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr); #endif /* NEED_AP_MLME */ } void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds) { #ifdef NEED_AP_MLME struct wpa_supplicant *wpa_s = ctx; ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds); #endif /* NEED_AP_MLME */ } void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt) { #ifdef NEED_AP_MLME struct wpa_supplicant *wpa_s = ctx; struct hostapd_frame_info fi; os_memset(&fi, 0, sizeof(fi)); fi.datarate = rx_mgmt->datarate; fi.ssi_signal = rx_mgmt->ssi_signal; ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame, rx_mgmt->frame_len, &fi); #endif /* NEED_AP_MLME */ } void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok) { #ifdef NEED_AP_MLME struct wpa_supplicant *wpa_s = ctx; ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok); #endif /* NEED_AP_MLME */ } void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s, const u8 *src_addr, const u8 *buf, size_t len) { ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len); } #ifdef CONFIG_WPS int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid, const u8 *p2p_dev_addr) { if (!wpa_s->ap_iface) return -1; return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0], p2p_dev_addr); } int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s) { struct wps_registrar *reg; int reg_sel = 0, wps_sta = 0; if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps) return -1; reg = wpa_s->ap_iface->bss[0]->wps->registrar; reg_sel = wps_registrar_wps_cancel(reg); wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0], ap_sta_wps_cancel, NULL); if (!reg_sel && !wps_sta) { wpa_printf(MSG_DEBUG, "No WPS operation in progress at this " "time"); return -1; } /* * There are 2 cases to return wps cancel as success: * 1. When wps cancel was initiated but no connection has been * established with client yet. * 2. Client is in the middle of exchanging WPS messages. */ return 0; } int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid, const char *pin, char *buf, size_t buflen, int timeout) { int ret, ret_len = 0; if (!wpa_s->ap_iface) return -1; if (pin == NULL) { unsigned int rpin; if (wps_generate_pin(&rpin) < 0) return -1; ret_len = os_snprintf(buf, buflen, "%08d", rpin); if (os_snprintf_error(buflen, ret_len)) return -1; pin = buf; } else if (buf) { ret_len = os_snprintf(buf, buflen, "%s", pin); if (os_snprintf_error(buflen, ret_len)) return -1; } ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin, timeout); if (ret) return -1; return ret_len; } static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx) { struct wpa_supplicant *wpa_s = eloop_data; wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out"); wpas_wps_ap_pin_disable(wpa_s); } static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout) { struct hostapd_data *hapd; if (wpa_s->ap_iface == NULL) return; hapd = wpa_s->ap_iface->bss[0]; wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout); hapd->ap_pin_failures = 0; eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL); if (timeout > 0) eloop_register_timeout(timeout, 0, wpas_wps_ap_pin_timeout, wpa_s, NULL); } void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s) { struct hostapd_data *hapd; if (wpa_s->ap_iface == NULL) return; wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN"); hapd = wpa_s->ap_iface->bss[0]; os_free(hapd->conf->ap_pin); hapd->conf->ap_pin = NULL; eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL); } const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout) { struct hostapd_data *hapd; unsigned int pin; char pin_txt[9]; if (wpa_s->ap_iface == NULL) return NULL; hapd = wpa_s->ap_iface->bss[0]; if (wps_generate_pin(&pin) < 0) return NULL; os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin); os_free(hapd->conf->ap_pin); hapd->conf->ap_pin = os_strdup(pin_txt); if (hapd->conf->ap_pin == NULL) return NULL; wpas_wps_ap_pin_enable(wpa_s, timeout); return hapd->conf->ap_pin; } const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s) { struct hostapd_data *hapd; if (wpa_s->ap_iface == NULL) return NULL; hapd = wpa_s->ap_iface->bss[0]; return hapd->conf->ap_pin; } int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin, int timeout) { struct hostapd_data *hapd; char pin_txt[9]; int ret; if (wpa_s->ap_iface == NULL) return -1; hapd = wpa_s->ap_iface->bss[0]; ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin); if (os_snprintf_error(sizeof(pin_txt), ret)) return -1; os_free(hapd->conf->ap_pin); hapd->conf->ap_pin = os_strdup(pin_txt); if (hapd->conf->ap_pin == NULL) return -1; wpas_wps_ap_pin_enable(wpa_s, timeout); return 0; } void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s) { struct hostapd_data *hapd; if (wpa_s->ap_iface == NULL) return; hapd = wpa_s->ap_iface->bss[0]; /* * Registrar failed to prove its knowledge of the AP PIN. Disable AP * PIN if this happens multiple times to slow down brute force attacks. */ hapd->ap_pin_failures++; wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u", hapd->ap_pin_failures); if (hapd->ap_pin_failures < 3) return; wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN"); hapd->ap_pin_failures = 0; os_free(hapd->conf->ap_pin); hapd->conf->ap_pin = NULL; } #ifdef CONFIG_WPS_NFC struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s, int ndef) { struct hostapd_data *hapd; if (wpa_s->ap_iface == NULL) return NULL; hapd = wpa_s->ap_iface->bss[0]; return hostapd_wps_nfc_config_token(hapd, ndef); } struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s, int ndef) { struct hostapd_data *hapd; if (wpa_s->ap_iface == NULL) return NULL; hapd = wpa_s->ap_iface->bss[0]; return hostapd_wps_nfc_hs_cr(hapd, ndef); } int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s, const struct wpabuf *req, const struct wpabuf *sel) { struct hostapd_data *hapd; if (wpa_s->ap_iface == NULL) return -1; hapd = wpa_s->ap_iface->bss[0]; return hostapd_wps_nfc_report_handover(hapd, req, sel); } #endif /* CONFIG_WPS_NFC */ #endif /* CONFIG_WPS */ #ifdef CONFIG_CTRL_IFACE int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s, char *buf, size_t buflen) { struct hostapd_data *hapd; if (wpa_s->ap_iface) hapd = wpa_s->ap_iface->bss[0]; else if (wpa_s->ifmsh) hapd = wpa_s->ifmsh->bss[0]; else return -1; return hostapd_ctrl_iface_sta_first(hapd, buf, buflen); } int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr, char *buf, size_t buflen) { struct hostapd_data *hapd; if (wpa_s->ap_iface) hapd = wpa_s->ap_iface->bss[0]; else if (wpa_s->ifmsh) hapd = wpa_s->ifmsh->bss[0]; else return -1; return hostapd_ctrl_iface_sta(hapd, txtaddr, buf, buflen); } int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr, char *buf, size_t buflen) { struct hostapd_data *hapd; if (wpa_s->ap_iface) hapd = wpa_s->ap_iface->bss[0]; else if (wpa_s->ifmsh) hapd = wpa_s->ifmsh->bss[0]; else return -1; return hostapd_ctrl_iface_sta_next(hapd, txtaddr, buf, buflen); } int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s, const char *txtaddr) { if (wpa_s->ap_iface == NULL) return -1; return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0], txtaddr); } int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s, const char *txtaddr) { if (wpa_s->ap_iface == NULL) return -1; return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0], txtaddr); } int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf, size_t buflen, int verbose) { char *pos = buf, *end = buf + buflen; int ret; struct hostapd_bss_config *conf; if (wpa_s->ap_iface == NULL) return -1; conf = wpa_s->ap_iface->bss[0]->conf; if (conf->wpa == 0) return 0; ret = os_snprintf(pos, end - pos, "pairwise_cipher=%s\n" "group_cipher=%s\n" "key_mgmt=%s\n", wpa_cipher_txt(conf->rsn_pairwise), wpa_cipher_txt(conf->wpa_group), wpa_key_mgmt_txt(conf->wpa_key_mgmt, conf->wpa)); if (os_snprintf_error(end - pos, ret)) return pos - buf; pos += ret; return pos - buf; } #endif /* CONFIG_CTRL_IFACE */ int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s) { struct hostapd_iface *iface = wpa_s->ap_iface; struct wpa_ssid *ssid = wpa_s->current_ssid; struct hostapd_data *hapd; if (ssid == NULL || wpa_s->ap_iface == NULL || ssid->mode == WPAS_MODE_INFRA || ssid->mode == WPAS_MODE_IBSS) return -1; #ifdef CONFIG_P2P if (ssid->mode == WPAS_MODE_P2P_GO) iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER; else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION) iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER | P2P_GROUP_FORMATION; #endif /* CONFIG_P2P */ hapd = iface->bss[0]; if (hapd->drv_priv == NULL) return -1; ieee802_11_set_beacons(iface); hostapd_set_ap_wps_ie(hapd); return 0; } int ap_switch_channel(struct wpa_supplicant *wpa_s, struct csa_settings *settings) { #ifdef NEED_AP_MLME if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]) return -1; return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings); #else /* NEED_AP_MLME */ return -1; #endif /* NEED_AP_MLME */ } #ifdef CONFIG_CTRL_IFACE int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos) { struct csa_settings settings; int ret = hostapd_parse_csa_settings(pos, &settings); if (ret) return ret; return ap_switch_channel(wpa_s, &settings); } #endif /* CONFIG_CTRL_IFACE */ void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht, int offset, int width, int cf1, int cf2) { if (!wpa_s->ap_iface) return; wpa_s->assoc_freq = freq; if (wpa_s->current_ssid) wpa_s->current_ssid->frequency = freq; hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset, width, cf1, cf2); } int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s, const u8 *addr) { struct hostapd_data *hapd; struct hostapd_bss_config *conf; if (!wpa_s->ap_iface) return -1; if (addr) wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR, MAC2STR(addr)); else wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter"); hapd = wpa_s->ap_iface->bss[0]; conf = hapd->conf; os_free(conf->accept_mac); conf->accept_mac = NULL; conf->num_accept_mac = 0; os_free(conf->deny_mac); conf->deny_mac = NULL; conf->num_deny_mac = 0; if (addr == NULL) { conf->macaddr_acl = ACCEPT_UNLESS_DENIED; return 0; } conf->macaddr_acl = DENY_UNLESS_ACCEPTED; conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry)); if (conf->accept_mac == NULL) return -1; os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN); conf->num_accept_mac = 1; return 0; } #ifdef CONFIG_WPS_NFC int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id, const struct wpabuf *pw, const u8 *pubkey_hash) { struct hostapd_data *hapd; struct wps_context *wps; if (!wpa_s->ap_iface) return -1; hapd = wpa_s->ap_iface->bss[0]; wps = hapd->wps; if (wpa_s->p2pdev->conf->wps_nfc_dh_pubkey == NULL || wpa_s->p2pdev->conf->wps_nfc_dh_privkey == NULL) { wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known"); return -1; } dh5_free(wps->dh_ctx); wpabuf_free(wps->dh_pubkey); wpabuf_free(wps->dh_privkey); wps->dh_privkey = wpabuf_dup( wpa_s->p2pdev->conf->wps_nfc_dh_privkey); wps->dh_pubkey = wpabuf_dup( wpa_s->p2pdev->conf->wps_nfc_dh_pubkey); if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) { wps->dh_ctx = NULL; wpabuf_free(wps->dh_pubkey); wps->dh_pubkey = NULL; wpabuf_free(wps->dh_privkey); wps->dh_privkey = NULL; return -1; } wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey); if (wps->dh_ctx == NULL) return -1; return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash, pw_id, pw ? wpabuf_head(pw) : NULL, pw ? wpabuf_len(pw) : 0, 1); } #endif /* CONFIG_WPS_NFC */ #ifdef CONFIG_CTRL_IFACE int wpas_ap_stop_ap(struct wpa_supplicant *wpa_s) { struct hostapd_data *hapd; if (!wpa_s->ap_iface) return -1; hapd = wpa_s->ap_iface->bss[0]; return hostapd_ctrl_iface_stop_ap(hapd); } int wpas_ap_pmksa_cache_list(struct wpa_supplicant *wpa_s, char *buf, size_t len) { size_t reply_len = 0, i; char ap_delimiter[] = "---- AP ----\n"; char mesh_delimiter[] = "---- mesh ----\n"; size_t dlen; if (wpa_s->ap_iface) { dlen = os_strlen(ap_delimiter); if (dlen > len - reply_len) return reply_len; os_memcpy(&buf[reply_len], ap_delimiter, dlen); reply_len += dlen; for (i = 0; i < wpa_s->ap_iface->num_bss; i++) { reply_len += hostapd_ctrl_iface_pmksa_list( wpa_s->ap_iface->bss[i], &buf[reply_len], len - reply_len); } } if (wpa_s->ifmsh) { dlen = os_strlen(mesh_delimiter); if (dlen > len - reply_len) return reply_len; os_memcpy(&buf[reply_len], mesh_delimiter, dlen); reply_len += dlen; reply_len += hostapd_ctrl_iface_pmksa_list( wpa_s->ifmsh->bss[0], &buf[reply_len], len - reply_len); } return reply_len; } void wpas_ap_pmksa_cache_flush(struct wpa_supplicant *wpa_s) { size_t i; if (wpa_s->ap_iface) { for (i = 0; i < wpa_s->ap_iface->num_bss; i++) hostapd_ctrl_iface_pmksa_flush(wpa_s->ap_iface->bss[i]); } if (wpa_s->ifmsh) hostapd_ctrl_iface_pmksa_flush(wpa_s->ifmsh->bss[0]); } #ifdef CONFIG_PMKSA_CACHE_EXTERNAL #ifdef CONFIG_MESH int wpas_ap_pmksa_cache_list_mesh(struct wpa_supplicant *wpa_s, const u8 *addr, char *buf, size_t len) { return hostapd_ctrl_iface_pmksa_list_mesh(wpa_s->ifmsh->bss[0], addr, &buf[0], len); } int wpas_ap_pmksa_cache_add_external(struct wpa_supplicant *wpa_s, char *cmd) { struct external_pmksa_cache *entry; void *pmksa_cache; pmksa_cache = hostapd_ctrl_iface_pmksa_create_entry(wpa_s->own_addr, cmd); if (!pmksa_cache) return -1; entry = os_zalloc(sizeof(struct external_pmksa_cache)); if (!entry) return -1; entry->pmksa_cache = pmksa_cache; dl_list_add(&wpa_s->mesh_external_pmksa_cache, &entry->list); return 0; } #endif /* CONFIG_MESH */ #endif /* CONFIG_PMKSA_CACHE_EXTERNAL */ #endif /* CONFIG_CTRL_IFACE */ #ifdef NEED_AP_MLME void wpas_event_dfs_radar_detected(struct wpa_supplicant *wpa_s, struct dfs_event *radar) { if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]) return; wpa_printf(MSG_DEBUG, "DFS radar detected on %d MHz", radar->freq); hostapd_dfs_radar_detected(wpa_s->ap_iface, radar->freq, radar->ht_enabled, radar->chan_offset, radar->chan_width, radar->cf1, radar->cf2); } void wpas_event_dfs_cac_started(struct wpa_supplicant *wpa_s, struct dfs_event *radar) { if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]) return; wpa_printf(MSG_DEBUG, "DFS CAC started on %d MHz", radar->freq); hostapd_dfs_start_cac(wpa_s->ap_iface, radar->freq, radar->ht_enabled, radar->chan_offset, radar->chan_width, radar->cf1, radar->cf2); } void wpas_event_dfs_cac_finished(struct wpa_supplicant *wpa_s, struct dfs_event *radar) { if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]) return; wpa_printf(MSG_DEBUG, "DFS CAC finished on %d MHz", radar->freq); hostapd_dfs_complete_cac(wpa_s->ap_iface, 1, radar->freq, radar->ht_enabled, radar->chan_offset, radar->chan_width, radar->cf1, radar->cf2); } void wpas_event_dfs_cac_aborted(struct wpa_supplicant *wpa_s, struct dfs_event *radar) { if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]) return; wpa_printf(MSG_DEBUG, "DFS CAC aborted on %d MHz", radar->freq); hostapd_dfs_complete_cac(wpa_s->ap_iface, 0, radar->freq, radar->ht_enabled, radar->chan_offset, radar->chan_width, radar->cf1, radar->cf2); } void wpas_event_dfs_cac_nop_finished(struct wpa_supplicant *wpa_s, struct dfs_event *radar) { if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]) return; wpa_printf(MSG_DEBUG, "DFS NOP finished on %d MHz", radar->freq); hostapd_dfs_nop_finished(wpa_s->ap_iface, radar->freq, radar->ht_enabled, radar->chan_offset, radar->chan_width, radar->cf1, radar->cf2); } #endif /* NEED_AP_MLME */ void ap_periodic(struct wpa_supplicant *wpa_s) { if (wpa_s->ap_iface) hostapd_periodic_iface(wpa_s->ap_iface); }