/* ** ** Copyright 2007, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "AudioMixer" //#define LOG_NDEBUG 0 #include <stdint.h> #include <string.h> #include <stdlib.h> #include <math.h> #include <sys/types.h> #include <utils/Errors.h> #include <utils/Log.h> #include <cutils/bitops.h> #include <cutils/compiler.h> #include <utils/Debug.h> #include <system/audio.h> #include <audio_utils/primitives.h> #include <audio_utils/format.h> #include <media/AudioMixer.h> #include "AudioMixerOps.h" // The FCC_2 macro refers to the Fixed Channel Count of 2 for the legacy integer mixer. #ifndef FCC_2 #define FCC_2 2 #endif // Look for MONO_HACK for any Mono hack involving legacy mono channel to // stereo channel conversion. /* VERY_VERY_VERBOSE_LOGGING will show exactly which process hook and track hook is * being used. This is a considerable amount of log spam, so don't enable unless you * are verifying the hook based code. */ //#define VERY_VERY_VERBOSE_LOGGING #ifdef VERY_VERY_VERBOSE_LOGGING #define ALOGVV ALOGV //define ALOGVV printf // for test-mixer.cpp #else #define ALOGVV(a...) do { } while (0) #endif #ifndef ARRAY_SIZE #define ARRAY_SIZE(x) (sizeof(x)/sizeof((x)[0])) #endif // TODO: Move these macro/inlines to a header file. template <typename T> static inline T max(const T& x, const T& y) { return x > y ? x : y; } // Set kUseNewMixer to true to use the new mixer engine always. Otherwise the // original code will be used for stereo sinks, the new mixer for multichannel. static const bool kUseNewMixer = true; // Set kUseFloat to true to allow floating input into the mixer engine. // If kUseNewMixer is false, this is ignored or may be overridden internally // because of downmix/upmix support. static const bool kUseFloat = true; // Set to default copy buffer size in frames for input processing. static const size_t kCopyBufferFrameCount = 256; namespace android { // ---------------------------------------------------------------------------- template <typename T> T min(const T& a, const T& b) { return a < b ? a : b; } // ---------------------------------------------------------------------------- // Ensure mConfiguredNames bitmask is initialized properly on all architectures. // The value of 1 << x is undefined in C when x >= 32. AudioMixer::AudioMixer(size_t frameCount, uint32_t sampleRate, uint32_t maxNumTracks) : mTrackNames(0), mConfiguredNames((maxNumTracks >= 32 ? 0 : 1 << maxNumTracks) - 1), mSampleRate(sampleRate) { ALOG_ASSERT(maxNumTracks <= MAX_NUM_TRACKS, "maxNumTracks %u > MAX_NUM_TRACKS %u", maxNumTracks, MAX_NUM_TRACKS); // AudioMixer is not yet capable of more than 32 active track inputs ALOG_ASSERT(32 >= MAX_NUM_TRACKS, "bad MAX_NUM_TRACKS %d", MAX_NUM_TRACKS); pthread_once(&sOnceControl, &sInitRoutine); mState.enabledTracks= 0; mState.needsChanged = 0; mState.frameCount = frameCount; mState.hook = process__nop; mState.outputTemp = NULL; mState.resampleTemp = NULL; mState.mLog = &mDummyLog; // mState.reserved // FIXME Most of the following initialization is probably redundant since // tracks[i] should only be referenced if (mTrackNames & (1 << i)) != 0 // and mTrackNames is initially 0. However, leave it here until that's verified. track_t* t = mState.tracks; for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) { t->resampler = NULL; t->downmixerBufferProvider = NULL; t->mReformatBufferProvider = NULL; t->mTimestretchBufferProvider = NULL; t++; } } AudioMixer::~AudioMixer() { track_t* t = mState.tracks; for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) { delete t->resampler; delete t->downmixerBufferProvider; delete t->mReformatBufferProvider; delete t->mTimestretchBufferProvider; t++; } delete [] mState.outputTemp; delete [] mState.resampleTemp; } void AudioMixer::setLog(NBLog::Writer *log) { mState.mLog = log; } static inline audio_format_t selectMixerInFormat(audio_format_t inputFormat __unused) { return kUseFloat && kUseNewMixer ? AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT; } int AudioMixer::getTrackName(audio_channel_mask_t channelMask, audio_format_t format, int sessionId) { if (!isValidPcmTrackFormat(format)) { ALOGE("AudioMixer::getTrackName invalid format (%#x)", format); return -1; } uint32_t names = (~mTrackNames) & mConfiguredNames; if (names != 0) { int n = __builtin_ctz(names); ALOGV("add track (%d)", n); // assume default parameters for the track, except where noted below track_t* t = &mState.tracks[n]; t->needs = 0; // Integer volume. // Currently integer volume is kept for the legacy integer mixer. // Will be removed when the legacy mixer path is removed. t->volume[0] = UNITY_GAIN_INT; t->volume[1] = UNITY_GAIN_INT; t->prevVolume[0] = UNITY_GAIN_INT << 16; t->prevVolume[1] = UNITY_GAIN_INT << 16; t->volumeInc[0] = 0; t->volumeInc[1] = 0; t->auxLevel = 0; t->auxInc = 0; t->prevAuxLevel = 0; // Floating point volume. t->mVolume[0] = UNITY_GAIN_FLOAT; t->mVolume[1] = UNITY_GAIN_FLOAT; t->mPrevVolume[0] = UNITY_GAIN_FLOAT; t->mPrevVolume[1] = UNITY_GAIN_FLOAT; t->mVolumeInc[0] = 0.; t->mVolumeInc[1] = 0.; t->mAuxLevel = 0.; t->mAuxInc = 0.; t->mPrevAuxLevel = 0.; // no initialization needed // t->frameCount t->channelCount = audio_channel_count_from_out_mask(channelMask); t->enabled = false; ALOGV_IF(audio_channel_mask_get_bits(channelMask) != AUDIO_CHANNEL_OUT_STEREO, "Non-stereo channel mask: %d\n", channelMask); t->channelMask = channelMask; t->sessionId = sessionId; // setBufferProvider(name, AudioBufferProvider *) is required before enable(name) t->bufferProvider = NULL; t->buffer.raw = NULL; // no initialization needed // t->buffer.frameCount t->hook = NULL; t->in = NULL; t->resampler = NULL; t->sampleRate = mSampleRate; // setParameter(name, TRACK, MAIN_BUFFER, mixBuffer) is required before enable(name) t->mainBuffer = NULL; t->auxBuffer = NULL; t->mInputBufferProvider = NULL; t->mReformatBufferProvider = NULL; t->downmixerBufferProvider = NULL; t->mPostDownmixReformatBufferProvider = NULL; t->mTimestretchBufferProvider = NULL; t->mMixerFormat = AUDIO_FORMAT_PCM_16_BIT; t->mFormat = format; t->mMixerInFormat = selectMixerInFormat(format); t->mDownmixRequiresFormat = AUDIO_FORMAT_INVALID; // no format required t->mMixerChannelMask = audio_channel_mask_from_representation_and_bits( AUDIO_CHANNEL_REPRESENTATION_POSITION, AUDIO_CHANNEL_OUT_STEREO); t->mMixerChannelCount = audio_channel_count_from_out_mask(t->mMixerChannelMask); t->mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT; // Check the downmixing (or upmixing) requirements. status_t status = t->prepareForDownmix(); if (status != OK) { ALOGE("AudioMixer::getTrackName invalid channelMask (%#x)", channelMask); return -1; } // prepareForDownmix() may change mDownmixRequiresFormat ALOGVV("mMixerFormat:%#x mMixerInFormat:%#x\n", t->mMixerFormat, t->mMixerInFormat); t->prepareForReformat(); mTrackNames |= 1 << n; return TRACK0 + n; } ALOGE("AudioMixer::getTrackName out of available tracks"); return -1; } void AudioMixer::invalidateState(uint32_t mask) { if (mask != 0) { mState.needsChanged |= mask; mState.hook = process__validate; } } // Called when channel masks have changed for a track name // TODO: Fix DownmixerBufferProvider not to (possibly) change mixer input format, // which will simplify this logic. bool AudioMixer::setChannelMasks(int name, audio_channel_mask_t trackChannelMask, audio_channel_mask_t mixerChannelMask) { track_t &track = mState.tracks[name]; if (trackChannelMask == track.channelMask && mixerChannelMask == track.mMixerChannelMask) { return false; // no need to change } // always recompute for both channel masks even if only one has changed. const uint32_t trackChannelCount = audio_channel_count_from_out_mask(trackChannelMask); const uint32_t mixerChannelCount = audio_channel_count_from_out_mask(mixerChannelMask); const bool mixerChannelCountChanged = track.mMixerChannelCount != mixerChannelCount; ALOG_ASSERT((trackChannelCount <= MAX_NUM_CHANNELS_TO_DOWNMIX) && trackChannelCount && mixerChannelCount); track.channelMask = trackChannelMask; track.channelCount = trackChannelCount; track.mMixerChannelMask = mixerChannelMask; track.mMixerChannelCount = mixerChannelCount; // channel masks have changed, does this track need a downmixer? // update to try using our desired format (if we aren't already using it) const audio_format_t prevDownmixerFormat = track.mDownmixRequiresFormat; const status_t status = mState.tracks[name].prepareForDownmix(); ALOGE_IF(status != OK, "prepareForDownmix error %d, track channel mask %#x, mixer channel mask %#x", status, track.channelMask, track.mMixerChannelMask); if (prevDownmixerFormat != track.mDownmixRequiresFormat) { track.prepareForReformat(); // because of downmixer, track format may change! } if (track.resampler && mixerChannelCountChanged) { // resampler channels may have changed. const uint32_t resetToSampleRate = track.sampleRate; delete track.resampler; track.resampler = NULL; track.sampleRate = mSampleRate; // without resampler, track rate is device sample rate. // recreate the resampler with updated format, channels, saved sampleRate. track.setResampler(resetToSampleRate /*trackSampleRate*/, mSampleRate /*devSampleRate*/); } return true; } void AudioMixer::track_t::unprepareForDownmix() { ALOGV("AudioMixer::unprepareForDownmix(%p)", this); if (mPostDownmixReformatBufferProvider != nullptr) { // release any buffers held by the mPostDownmixReformatBufferProvider // before deallocating the downmixerBufferProvider. mPostDownmixReformatBufferProvider->reset(); } mDownmixRequiresFormat = AUDIO_FORMAT_INVALID; if (downmixerBufferProvider != NULL) { // this track had previously been configured with a downmixer, delete it ALOGV(" deleting old downmixer"); delete downmixerBufferProvider; downmixerBufferProvider = NULL; reconfigureBufferProviders(); } else { ALOGV(" nothing to do, no downmixer to delete"); } } status_t AudioMixer::track_t::prepareForDownmix() { ALOGV("AudioMixer::prepareForDownmix(%p) with mask 0x%x", this, channelMask); // discard the previous downmixer if there was one unprepareForDownmix(); // MONO_HACK Only remix (upmix or downmix) if the track and mixer/device channel masks // are not the same and not handled internally, as mono -> stereo currently is. if (channelMask == mMixerChannelMask || (channelMask == AUDIO_CHANNEL_OUT_MONO && mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO)) { return NO_ERROR; } // DownmixerBufferProvider is only used for position masks. if (audio_channel_mask_get_representation(channelMask) == AUDIO_CHANNEL_REPRESENTATION_POSITION && DownmixerBufferProvider::isMultichannelCapable()) { DownmixerBufferProvider* pDbp = new DownmixerBufferProvider(channelMask, mMixerChannelMask, AUDIO_FORMAT_PCM_16_BIT /* TODO: use mMixerInFormat, now only PCM 16 */, sampleRate, sessionId, kCopyBufferFrameCount); if (pDbp->isValid()) { // if constructor completed properly mDownmixRequiresFormat = AUDIO_FORMAT_PCM_16_BIT; // PCM 16 bit required for downmix downmixerBufferProvider = pDbp; reconfigureBufferProviders(); return NO_ERROR; } delete pDbp; } // Effect downmixer does not accept the channel conversion. Let's use our remixer. RemixBufferProvider* pRbp = new RemixBufferProvider(channelMask, mMixerChannelMask, mMixerInFormat, kCopyBufferFrameCount); // Remix always finds a conversion whereas Downmixer effect above may fail. downmixerBufferProvider = pRbp; reconfigureBufferProviders(); return NO_ERROR; } void AudioMixer::track_t::unprepareForReformat() { ALOGV("AudioMixer::unprepareForReformat(%p)", this); bool requiresReconfigure = false; if (mReformatBufferProvider != NULL) { delete mReformatBufferProvider; mReformatBufferProvider = NULL; requiresReconfigure = true; } if (mPostDownmixReformatBufferProvider != NULL) { delete mPostDownmixReformatBufferProvider; mPostDownmixReformatBufferProvider = NULL; requiresReconfigure = true; } if (requiresReconfigure) { reconfigureBufferProviders(); } } status_t AudioMixer::track_t::prepareForReformat() { ALOGV("AudioMixer::prepareForReformat(%p) with format %#x", this, mFormat); // discard previous reformatters unprepareForReformat(); // only configure reformatters as needed const audio_format_t targetFormat = mDownmixRequiresFormat != AUDIO_FORMAT_INVALID ? mDownmixRequiresFormat : mMixerInFormat; bool requiresReconfigure = false; if (mFormat != targetFormat) { mReformatBufferProvider = new ReformatBufferProvider( audio_channel_count_from_out_mask(channelMask), mFormat, targetFormat, kCopyBufferFrameCount); requiresReconfigure = true; } if (targetFormat != mMixerInFormat) { mPostDownmixReformatBufferProvider = new ReformatBufferProvider( audio_channel_count_from_out_mask(mMixerChannelMask), targetFormat, mMixerInFormat, kCopyBufferFrameCount); requiresReconfigure = true; } if (requiresReconfigure) { reconfigureBufferProviders(); } return NO_ERROR; } void AudioMixer::track_t::reconfigureBufferProviders() { bufferProvider = mInputBufferProvider; if (mReformatBufferProvider) { mReformatBufferProvider->setBufferProvider(bufferProvider); bufferProvider = mReformatBufferProvider; } if (downmixerBufferProvider) { downmixerBufferProvider->setBufferProvider(bufferProvider); bufferProvider = downmixerBufferProvider; } if (mPostDownmixReformatBufferProvider) { mPostDownmixReformatBufferProvider->setBufferProvider(bufferProvider); bufferProvider = mPostDownmixReformatBufferProvider; } if (mTimestretchBufferProvider) { mTimestretchBufferProvider->setBufferProvider(bufferProvider); bufferProvider = mTimestretchBufferProvider; } } void AudioMixer::deleteTrackName(int name) { ALOGV("AudioMixer::deleteTrackName(%d)", name); name -= TRACK0; LOG_ALWAYS_FATAL_IF(name < 0 || name >= (int)MAX_NUM_TRACKS, "bad track name %d", name); ALOGV("deleteTrackName(%d)", name); track_t& track(mState.tracks[ name ]); if (track.enabled) { track.enabled = false; invalidateState(1<<name); } // delete the resampler delete track.resampler; track.resampler = NULL; // delete the downmixer mState.tracks[name].unprepareForDownmix(); // delete the reformatter mState.tracks[name].unprepareForReformat(); // delete the timestretch provider delete track.mTimestretchBufferProvider; track.mTimestretchBufferProvider = NULL; mTrackNames &= ~(1<<name); } void AudioMixer::enable(int name) { name -= TRACK0; ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name); track_t& track = mState.tracks[name]; if (!track.enabled) { track.enabled = true; ALOGV("enable(%d)", name); invalidateState(1 << name); } } void AudioMixer::disable(int name) { name -= TRACK0; ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name); track_t& track = mState.tracks[name]; if (track.enabled) { track.enabled = false; ALOGV("disable(%d)", name); invalidateState(1 << name); } } /* Sets the volume ramp variables for the AudioMixer. * * The volume ramp variables are used to transition from the previous * volume to the set volume. ramp controls the duration of the transition. * Its value is typically one state framecount period, but may also be 0, * meaning "immediate." * * FIXME: 1) Volume ramp is enabled only if there is a nonzero integer increment * even if there is a nonzero floating point increment (in that case, the volume * change is immediate). This restriction should be changed when the legacy mixer * is removed (see #2). * FIXME: 2) Integer volume variables are used for Legacy mixing and should be removed * when no longer needed. * * @param newVolume set volume target in floating point [0.0, 1.0]. * @param ramp number of frames to increment over. if ramp is 0, the volume * should be set immediately. Currently ramp should not exceed 65535 (frames). * @param pIntSetVolume pointer to the U4.12 integer target volume, set on return. * @param pIntPrevVolume pointer to the U4.28 integer previous volume, set on return. * @param pIntVolumeInc pointer to the U4.28 increment per output audio frame, set on return. * @param pSetVolume pointer to the float target volume, set on return. * @param pPrevVolume pointer to the float previous volume, set on return. * @param pVolumeInc pointer to the float increment per output audio frame, set on return. * @return true if the volume has changed, false if volume is same. */ static inline bool setVolumeRampVariables(float newVolume, int32_t ramp, int16_t *pIntSetVolume, int32_t *pIntPrevVolume, int32_t *pIntVolumeInc, float *pSetVolume, float *pPrevVolume, float *pVolumeInc) { // check floating point volume to see if it is identical to the previously // set volume. // We do not use a tolerance here (and reject changes too small) // as it may be confusing to use a different value than the one set. // If the resulting volume is too small to ramp, it is a direct set of the volume. if (newVolume == *pSetVolume) { return false; } if (newVolume < 0) { newVolume = 0; // should not have negative volumes } else { switch (fpclassify(newVolume)) { case FP_SUBNORMAL: case FP_NAN: newVolume = 0; break; case FP_ZERO: break; // zero volume is fine case FP_INFINITE: // Infinite volume could be handled consistently since // floating point math saturates at infinities, // but we limit volume to unity gain float. // ramp = 0; break; // newVolume = AudioMixer::UNITY_GAIN_FLOAT; break; case FP_NORMAL: default: // Floating point does not have problems with overflow wrap // that integer has. However, we limit the volume to // unity gain here. // TODO: Revisit the volume limitation and perhaps parameterize. if (newVolume > AudioMixer::UNITY_GAIN_FLOAT) { newVolume = AudioMixer::UNITY_GAIN_FLOAT; } break; } } // set floating point volume ramp if (ramp != 0) { // when the ramp completes, *pPrevVolume is set to *pSetVolume, so there // is no computational mismatch; hence equality is checked here. ALOGD_IF(*pPrevVolume != *pSetVolume, "previous float ramp hasn't finished," " prev:%f set_to:%f", *pPrevVolume, *pSetVolume); const float inc = (newVolume - *pPrevVolume) / ramp; // could be inf, nan, subnormal const float maxv = max(newVolume, *pPrevVolume); // could be inf, cannot be nan, subnormal if (isnormal(inc) // inc must be a normal number (no subnormals, infinite, nan) && maxv + inc != maxv) { // inc must make forward progress *pVolumeInc = inc; // ramp is set now. // Note: if newVolume is 0, then near the end of the ramp, // it may be possible that the ramped volume may be subnormal or // temporarily negative by a small amount or subnormal due to floating // point inaccuracies. } else { ramp = 0; // ramp not allowed } } // compute and check integer volume, no need to check negative values // The integer volume is limited to "unity_gain" to avoid wrapping and other // audio artifacts, so it never reaches the range limit of U4.28. // We safely use signed 16 and 32 bit integers here. const float scaledVolume = newVolume * AudioMixer::UNITY_GAIN_INT; // not neg, subnormal, nan const int32_t intVolume = (scaledVolume >= (float)AudioMixer::UNITY_GAIN_INT) ? AudioMixer::UNITY_GAIN_INT : (int32_t)scaledVolume; // set integer volume ramp if (ramp != 0) { // integer volume is U4.12 (to use 16 bit multiplies), but ramping uses U4.28. // when the ramp completes, *pIntPrevVolume is set to *pIntSetVolume << 16, so there // is no computational mismatch; hence equality is checked here. ALOGD_IF(*pIntPrevVolume != *pIntSetVolume << 16, "previous int ramp hasn't finished," " prev:%d set_to:%d", *pIntPrevVolume, *pIntSetVolume << 16); const int32_t inc = ((intVolume << 16) - *pIntPrevVolume) / ramp; if (inc != 0) { // inc must make forward progress *pIntVolumeInc = inc; } else { ramp = 0; // ramp not allowed } } // if no ramp, or ramp not allowed, then clear float and integer increments if (ramp == 0) { *pVolumeInc = 0; *pPrevVolume = newVolume; *pIntVolumeInc = 0; *pIntPrevVolume = intVolume << 16; } *pSetVolume = newVolume; *pIntSetVolume = intVolume; return true; } void AudioMixer::setParameter(int name, int target, int param, void *value) { name -= TRACK0; ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name); track_t& track = mState.tracks[name]; int valueInt = static_cast<int>(reinterpret_cast<uintptr_t>(value)); int32_t *valueBuf = reinterpret_cast<int32_t*>(value); switch (target) { case TRACK: switch (param) { case CHANNEL_MASK: { const audio_channel_mask_t trackChannelMask = static_cast<audio_channel_mask_t>(valueInt); if (setChannelMasks(name, trackChannelMask, track.mMixerChannelMask)) { ALOGV("setParameter(TRACK, CHANNEL_MASK, %x)", trackChannelMask); invalidateState(1 << name); } } break; case MAIN_BUFFER: if (track.mainBuffer != valueBuf) { track.mainBuffer = valueBuf; ALOGV("setParameter(TRACK, MAIN_BUFFER, %p)", valueBuf); invalidateState(1 << name); } break; case AUX_BUFFER: if (track.auxBuffer != valueBuf) { track.auxBuffer = valueBuf; ALOGV("setParameter(TRACK, AUX_BUFFER, %p)", valueBuf); invalidateState(1 << name); } break; case FORMAT: { audio_format_t format = static_cast<audio_format_t>(valueInt); if (track.mFormat != format) { ALOG_ASSERT(audio_is_linear_pcm(format), "Invalid format %#x", format); track.mFormat = format; ALOGV("setParameter(TRACK, FORMAT, %#x)", format); track.prepareForReformat(); invalidateState(1 << name); } } break; // FIXME do we want to support setting the downmix type from AudioFlinger? // for a specific track? or per mixer? /* case DOWNMIX_TYPE: break */ case MIXER_FORMAT: { audio_format_t format = static_cast<audio_format_t>(valueInt); if (track.mMixerFormat != format) { track.mMixerFormat = format; ALOGV("setParameter(TRACK, MIXER_FORMAT, %#x)", format); } } break; case MIXER_CHANNEL_MASK: { const audio_channel_mask_t mixerChannelMask = static_cast<audio_channel_mask_t>(valueInt); if (setChannelMasks(name, track.channelMask, mixerChannelMask)) { ALOGV("setParameter(TRACK, MIXER_CHANNEL_MASK, %#x)", mixerChannelMask); invalidateState(1 << name); } } break; default: LOG_ALWAYS_FATAL("setParameter track: bad param %d", param); } break; case RESAMPLE: switch (param) { case SAMPLE_RATE: ALOG_ASSERT(valueInt > 0, "bad sample rate %d", valueInt); if (track.setResampler(uint32_t(valueInt), mSampleRate)) { ALOGV("setParameter(RESAMPLE, SAMPLE_RATE, %u)", uint32_t(valueInt)); invalidateState(1 << name); } break; case RESET: track.resetResampler(); invalidateState(1 << name); break; case REMOVE: delete track.resampler; track.resampler = NULL; track.sampleRate = mSampleRate; invalidateState(1 << name); break; default: LOG_ALWAYS_FATAL("setParameter resample: bad param %d", param); } break; case RAMP_VOLUME: case VOLUME: switch (param) { case AUXLEVEL: if (setVolumeRampVariables(*reinterpret_cast<float*>(value), target == RAMP_VOLUME ? mState.frameCount : 0, &track.auxLevel, &track.prevAuxLevel, &track.auxInc, &track.mAuxLevel, &track.mPrevAuxLevel, &track.mAuxInc)) { ALOGV("setParameter(%s, AUXLEVEL: %04x)", target == VOLUME ? "VOLUME" : "RAMP_VOLUME", track.auxLevel); invalidateState(1 << name); } break; default: if ((unsigned)param >= VOLUME0 && (unsigned)param < VOLUME0 + MAX_NUM_VOLUMES) { if (setVolumeRampVariables(*reinterpret_cast<float*>(value), target == RAMP_VOLUME ? mState.frameCount : 0, &track.volume[param - VOLUME0], &track.prevVolume[param - VOLUME0], &track.volumeInc[param - VOLUME0], &track.mVolume[param - VOLUME0], &track.mPrevVolume[param - VOLUME0], &track.mVolumeInc[param - VOLUME0])) { ALOGV("setParameter(%s, VOLUME%d: %04x)", target == VOLUME ? "VOLUME" : "RAMP_VOLUME", param - VOLUME0, track.volume[param - VOLUME0]); invalidateState(1 << name); } } else { LOG_ALWAYS_FATAL("setParameter volume: bad param %d", param); } } break; case TIMESTRETCH: switch (param) { case PLAYBACK_RATE: { const AudioPlaybackRate *playbackRate = reinterpret_cast<AudioPlaybackRate*>(value); ALOGW_IF(!isAudioPlaybackRateValid(*playbackRate), "bad parameters speed %f, pitch %f",playbackRate->mSpeed, playbackRate->mPitch); if (track.setPlaybackRate(*playbackRate)) { ALOGV("setParameter(TIMESTRETCH, PLAYBACK_RATE, STRETCH_MODE, FALLBACK_MODE " "%f %f %d %d", playbackRate->mSpeed, playbackRate->mPitch, playbackRate->mStretchMode, playbackRate->mFallbackMode); // invalidateState(1 << name); } } break; default: LOG_ALWAYS_FATAL("setParameter timestretch: bad param %d", param); } break; default: LOG_ALWAYS_FATAL("setParameter: bad target %d", target); } } bool AudioMixer::track_t::setResampler(uint32_t trackSampleRate, uint32_t devSampleRate) { if (trackSampleRate != devSampleRate || resampler != NULL) { if (sampleRate != trackSampleRate) { sampleRate = trackSampleRate; if (resampler == NULL) { ALOGV("Creating resampler from track %d Hz to device %d Hz", trackSampleRate, devSampleRate); AudioResampler::src_quality quality; // force lowest quality level resampler if use case isn't music or video // FIXME this is flawed for dynamic sample rates, as we choose the resampler // quality level based on the initial ratio, but that could change later. // Should have a way to distinguish tracks with static ratios vs. dynamic ratios. if (isMusicRate(trackSampleRate)) { quality = AudioResampler::DEFAULT_QUALITY; } else { quality = AudioResampler::DYN_LOW_QUALITY; } // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer // but if none exists, it is the channel count (1 for mono). const int resamplerChannelCount = downmixerBufferProvider != NULL ? mMixerChannelCount : channelCount; ALOGVV("Creating resampler:" " format(%#x) channels(%d) devSampleRate(%u) quality(%d)\n", mMixerInFormat, resamplerChannelCount, devSampleRate, quality); resampler = AudioResampler::create( mMixerInFormat, resamplerChannelCount, devSampleRate, quality); } return true; } } return false; } bool AudioMixer::track_t::setPlaybackRate(const AudioPlaybackRate &playbackRate) { if ((mTimestretchBufferProvider == NULL && fabs(playbackRate.mSpeed - mPlaybackRate.mSpeed) < AUDIO_TIMESTRETCH_SPEED_MIN_DELTA && fabs(playbackRate.mPitch - mPlaybackRate.mPitch) < AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) || isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) { return false; } mPlaybackRate = playbackRate; if (mTimestretchBufferProvider == NULL) { // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer // but if none exists, it is the channel count (1 for mono). const int timestretchChannelCount = downmixerBufferProvider != NULL ? mMixerChannelCount : channelCount; mTimestretchBufferProvider = new TimestretchBufferProvider(timestretchChannelCount, mMixerInFormat, sampleRate, playbackRate); reconfigureBufferProviders(); } else { reinterpret_cast<TimestretchBufferProvider*>(mTimestretchBufferProvider) ->setPlaybackRate(playbackRate); } return true; } /* Checks to see if the volume ramp has completed and clears the increment * variables appropriately. * * FIXME: There is code to handle int/float ramp variable switchover should it not * complete within a mixer buffer processing call, but it is preferred to avoid switchover * due to precision issues. The switchover code is included for legacy code purposes * and can be removed once the integer volume is removed. * * It is not sufficient to clear only the volumeInc integer variable because * if one channel requires ramping, all channels are ramped. * * There is a bit of duplicated code here, but it keeps backward compatibility. */ inline void AudioMixer::track_t::adjustVolumeRamp(bool aux, bool useFloat) { if (useFloat) { for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) { if ((mVolumeInc[i] > 0 && mPrevVolume[i] + mVolumeInc[i] >= mVolume[i]) || (mVolumeInc[i] < 0 && mPrevVolume[i] + mVolumeInc[i] <= mVolume[i])) { volumeInc[i] = 0; prevVolume[i] = volume[i] << 16; mVolumeInc[i] = 0.; mPrevVolume[i] = mVolume[i]; } else { //ALOGV("ramp: %f %f %f", mVolume[i], mPrevVolume[i], mVolumeInc[i]); prevVolume[i] = u4_28_from_float(mPrevVolume[i]); } } } else { for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) { if (((volumeInc[i]>0) && (((prevVolume[i]+volumeInc[i])>>16) >= volume[i])) || ((volumeInc[i]<0) && (((prevVolume[i]+volumeInc[i])>>16) <= volume[i]))) { volumeInc[i] = 0; prevVolume[i] = volume[i] << 16; mVolumeInc[i] = 0.; mPrevVolume[i] = mVolume[i]; } else { //ALOGV("ramp: %d %d %d", volume[i] << 16, prevVolume[i], volumeInc[i]); mPrevVolume[i] = float_from_u4_28(prevVolume[i]); } } } /* TODO: aux is always integer regardless of output buffer type */ if (aux) { if (((auxInc>0) && (((prevAuxLevel+auxInc)>>16) >= auxLevel)) || ((auxInc<0) && (((prevAuxLevel+auxInc)>>16) <= auxLevel))) { auxInc = 0; prevAuxLevel = auxLevel << 16; mAuxInc = 0.; mPrevAuxLevel = mAuxLevel; } else { //ALOGV("aux ramp: %d %d %d", auxLevel << 16, prevAuxLevel, auxInc); } } } size_t AudioMixer::getUnreleasedFrames(int name) const { name -= TRACK0; if (uint32_t(name) < MAX_NUM_TRACKS) { return mState.tracks[name].getUnreleasedFrames(); } return 0; } void AudioMixer::setBufferProvider(int name, AudioBufferProvider* bufferProvider) { name -= TRACK0; ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name); if (mState.tracks[name].mInputBufferProvider == bufferProvider) { return; // don't reset any buffer providers if identical. } if (mState.tracks[name].mReformatBufferProvider != NULL) { mState.tracks[name].mReformatBufferProvider->reset(); } else if (mState.tracks[name].downmixerBufferProvider != NULL) { mState.tracks[name].downmixerBufferProvider->reset(); } else if (mState.tracks[name].mPostDownmixReformatBufferProvider != NULL) { mState.tracks[name].mPostDownmixReformatBufferProvider->reset(); } else if (mState.tracks[name].mTimestretchBufferProvider != NULL) { mState.tracks[name].mTimestretchBufferProvider->reset(); } mState.tracks[name].mInputBufferProvider = bufferProvider; mState.tracks[name].reconfigureBufferProviders(); } void AudioMixer::process() { mState.hook(&mState); } void AudioMixer::process__validate(state_t* state) { ALOGW_IF(!state->needsChanged, "in process__validate() but nothing's invalid"); uint32_t changed = state->needsChanged; state->needsChanged = 0; // clear the validation flag // recompute which tracks are enabled / disabled uint32_t enabled = 0; uint32_t disabled = 0; while (changed) { const int i = 31 - __builtin_clz(changed); const uint32_t mask = 1<<i; changed &= ~mask; track_t& t = state->tracks[i]; (t.enabled ? enabled : disabled) |= mask; } state->enabledTracks &= ~disabled; state->enabledTracks |= enabled; // compute everything we need... int countActiveTracks = 0; // TODO: fix all16BitsStereNoResample logic to // either properly handle muted tracks (it should ignore them) // or remove altogether as an obsolete optimization. bool all16BitsStereoNoResample = true; bool resampling = false; bool volumeRamp = false; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<<i); countActiveTracks++; track_t& t = state->tracks[i]; uint32_t n = 0; // FIXME can overflow (mask is only 3 bits) n |= NEEDS_CHANNEL_1 + t.channelCount - 1; if (t.doesResample()) { n |= NEEDS_RESAMPLE; } if (t.auxLevel != 0 && t.auxBuffer != NULL) { n |= NEEDS_AUX; } if (t.volumeInc[0]|t.volumeInc[1]) { volumeRamp = true; } else if (!t.doesResample() && t.volumeRL == 0) { n |= NEEDS_MUTE; } t.needs = n; if (n & NEEDS_MUTE) { t.hook = track__nop; } else { if (n & NEEDS_AUX) { all16BitsStereoNoResample = false; } if (n & NEEDS_RESAMPLE) { all16BitsStereoNoResample = false; resampling = true; t.hook = getTrackHook(TRACKTYPE_RESAMPLE, t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat); ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2, "Track %d needs downmix + resample", i); } else { if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){ t.hook = getTrackHook( (t.mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO // TODO: MONO_HACK && t.channelMask == AUDIO_CHANNEL_OUT_MONO) ? TRACKTYPE_NORESAMPLEMONO : TRACKTYPE_NORESAMPLE, t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat); all16BitsStereoNoResample = false; } if ((n & NEEDS_CHANNEL_COUNT__MASK) >= NEEDS_CHANNEL_2){ t.hook = getTrackHook(TRACKTYPE_NORESAMPLE, t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat); ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2, "Track %d needs downmix", i); } } } } // select the processing hooks state->hook = process__nop; if (countActiveTracks > 0) { if (resampling) { if (!state->outputTemp) { state->outputTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } if (!state->resampleTemp) { state->resampleTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } state->hook = process__genericResampling; } else { if (state->outputTemp) { delete [] state->outputTemp; state->outputTemp = NULL; } if (state->resampleTemp) { delete [] state->resampleTemp; state->resampleTemp = NULL; } state->hook = process__genericNoResampling; if (all16BitsStereoNoResample && !volumeRamp) { if (countActiveTracks == 1) { const int i = 31 - __builtin_clz(state->enabledTracks); track_t& t = state->tracks[i]; if ((t.needs & NEEDS_MUTE) == 0) { // The check prevents a muted track from acquiring a process hook. // // This is dangerous if the track is MONO as that requires // special case handling due to implicit channel duplication. // Stereo or Multichannel should actually be fine here. state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK, t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat); } } } } } ALOGV("mixer configuration change: %d activeTracks (%08x) " "all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d", countActiveTracks, state->enabledTracks, all16BitsStereoNoResample, resampling, volumeRamp); state->hook(state); // Now that the volume ramp has been done, set optimal state and // track hooks for subsequent mixer process if (countActiveTracks > 0) { bool allMuted = true; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<<i); track_t& t = state->tracks[i]; if (!t.doesResample() && t.volumeRL == 0) { t.needs |= NEEDS_MUTE; t.hook = track__nop; } else { allMuted = false; } } if (allMuted) { state->hook = process__nop; } else if (all16BitsStereoNoResample) { if (countActiveTracks == 1) { const int i = 31 - __builtin_clz(state->enabledTracks); track_t& t = state->tracks[i]; // Muted single tracks handled by allMuted above. state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK, t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat); } } } } void AudioMixer::track__genericResample(track_t* t, int32_t* out, size_t outFrameCount, int32_t* temp, int32_t* aux) { ALOGVV("track__genericResample\n"); t->resampler->setSampleRate(t->sampleRate); // ramp gain - resample to temp buffer and scale/mix in 2nd step if (aux != NULL) { // always resample with unity gain when sending to auxiliary buffer to be able // to apply send level after resampling t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT); memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(int32_t)); t->resampler->resample(temp, outFrameCount, t->bufferProvider); if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) { volumeRampStereo(t, out, outFrameCount, temp, aux); } else { volumeStereo(t, out, outFrameCount, temp, aux); } } else { if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) { t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT); memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t)); t->resampler->resample(temp, outFrameCount, t->bufferProvider); volumeRampStereo(t, out, outFrameCount, temp, aux); } // constant gain else { t->resampler->setVolume(t->mVolume[0], t->mVolume[1]); t->resampler->resample(out, outFrameCount, t->bufferProvider); } } } void AudioMixer::track__nop(track_t* t __unused, int32_t* out __unused, size_t outFrameCount __unused, int32_t* temp __unused, int32_t* aux __unused) { } void AudioMixer::volumeRampStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; //ALOGD("[0] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); // ramp volume if (CC_UNLIKELY(aux != NULL)) { int32_t va = t->prevAuxLevel; const int32_t vaInc = t->auxInc; int32_t l; int32_t r; do { l = (*temp++ >> 12); r = (*temp++ >> 12); *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * r; *aux++ += (va >> 17) * (l + r); vl += vlInc; vr += vrInc; va += vaInc; } while (--frameCount); t->prevAuxLevel = va; } else { do { *out++ += (vl >> 16) * (*temp++ >> 12); *out++ += (vr >> 16) * (*temp++ >> 12); vl += vlInc; vr += vrInc; } while (--frameCount); } t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(aux != NULL); } void AudioMixer::volumeStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; if (CC_UNLIKELY(aux != NULL)) { const int16_t va = t->auxLevel; do { int16_t l = (int16_t)(*temp++ >> 12); int16_t r = (int16_t)(*temp++ >> 12); out[0] = mulAdd(l, vl, out[0]); int16_t a = (int16_t)(((int32_t)l + r) >> 1); out[1] = mulAdd(r, vr, out[1]); out += 2; aux[0] = mulAdd(a, va, aux[0]); aux++; } while (--frameCount); } else { do { int16_t l = (int16_t)(*temp++ >> 12); int16_t r = (int16_t)(*temp++ >> 12); out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(r, vr, out[1]); out += 2; } while (--frameCount); } } void AudioMixer::track__16BitsStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp __unused, int32_t* aux) { ALOGVV("track__16BitsStereo\n"); const int16_t *in = static_cast<const int16_t *>(t->in); if (CC_UNLIKELY(aux != NULL)) { int32_t l; int32_t r; // ramp gain if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; int32_t va = t->prevAuxLevel; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; const int32_t vaInc = t->auxInc; // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { l = (int32_t)*in++; r = (int32_t)*in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * r; *aux++ += (va >> 17) * (l + r); vl += vlInc; vr += vrInc; va += vaInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->prevAuxLevel = va; t->adjustVolumeRamp(true); } // constant gain else { const uint32_t vrl = t->volumeRL; const int16_t va = (int16_t)t->auxLevel; do { uint32_t rl = *reinterpret_cast<const uint32_t *>(in); int16_t a = (int16_t)(((int32_t)in[0] + in[1]) >> 1); in += 2; out[0] = mulAddRL(1, rl, vrl, out[0]); out[1] = mulAddRL(0, rl, vrl, out[1]); out += 2; aux[0] = mulAdd(a, va, aux[0]); aux++; } while (--frameCount); } } else { // ramp gain if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { *out++ += (vl >> 16) * (int32_t) *in++; *out++ += (vr >> 16) * (int32_t) *in++; vl += vlInc; vr += vrInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(false); } // constant gain else { const uint32_t vrl = t->volumeRL; do { uint32_t rl = *reinterpret_cast<const uint32_t *>(in); in += 2; out[0] = mulAddRL(1, rl, vrl, out[0]); out[1] = mulAddRL(0, rl, vrl, out[1]); out += 2; } while (--frameCount); } } t->in = in; } void AudioMixer::track__16BitsMono(track_t* t, int32_t* out, size_t frameCount, int32_t* temp __unused, int32_t* aux) { ALOGVV("track__16BitsMono\n"); const int16_t *in = static_cast<int16_t const *>(t->in); if (CC_UNLIKELY(aux != NULL)) { // ramp gain if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; int32_t va = t->prevAuxLevel; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; const int32_t vaInc = t->auxInc; // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { int32_t l = *in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * l; *aux++ += (va >> 16) * l; vl += vlInc; vr += vrInc; va += vaInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->prevAuxLevel = va; t->adjustVolumeRamp(true); } // constant gain else { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; const int16_t va = (int16_t)t->auxLevel; do { int16_t l = *in++; out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(l, vr, out[1]); out += 2; aux[0] = mulAdd(l, va, aux[0]); aux++; } while (--frameCount); } } else { // ramp gain if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { int32_t l = *in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * l; vl += vlInc; vr += vrInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(false); } // constant gain else { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; do { int16_t l = *in++; out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(l, vr, out[1]); out += 2; } while (--frameCount); } } t->in = in; } // no-op case void AudioMixer::process__nop(state_t* state) { ALOGVV("process__nop\n"); uint32_t e0 = state->enabledTracks; while (e0) { // process by group of tracks with same output buffer to // avoid multiple memset() on same buffer uint32_t e1 = e0, e2 = e0; int i = 31 - __builtin_clz(e1); { track_t& t1 = state->tracks[i]; e2 &= ~(1<<i); while (e2) { i = 31 - __builtin_clz(e2); e2 &= ~(1<<i); track_t& t2 = state->tracks[i]; if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) { e1 &= ~(1<<i); } } e0 &= ~(e1); memset(t1.mainBuffer, 0, state->frameCount * t1.mMixerChannelCount * audio_bytes_per_sample(t1.mMixerFormat)); } while (e1) { i = 31 - __builtin_clz(e1); e1 &= ~(1<<i); { track_t& t3 = state->tracks[i]; size_t outFrames = state->frameCount; while (outFrames) { t3.buffer.frameCount = outFrames; t3.bufferProvider->getNextBuffer(&t3.buffer); if (t3.buffer.raw == NULL) break; outFrames -= t3.buffer.frameCount; t3.bufferProvider->releaseBuffer(&t3.buffer); } } } } } // generic code without resampling void AudioMixer::process__genericNoResampling(state_t* state) { ALOGVV("process__genericNoResampling\n"); int32_t outTemp[BLOCKSIZE * MAX_NUM_CHANNELS] __attribute__((aligned(32))); // acquire each track's buffer uint32_t enabledTracks = state->enabledTracks; uint32_t e0 = enabledTracks; while (e0) { const int i = 31 - __builtin_clz(e0); e0 &= ~(1<<i); track_t& t = state->tracks[i]; t.buffer.frameCount = state->frameCount; t.bufferProvider->getNextBuffer(&t.buffer); t.frameCount = t.buffer.frameCount; t.in = t.buffer.raw; } e0 = enabledTracks; while (e0) { // process by group of tracks with same output buffer to // optimize cache use uint32_t e1 = e0, e2 = e0; int j = 31 - __builtin_clz(e1); track_t& t1 = state->tracks[j]; e2 &= ~(1<<j); while (e2) { j = 31 - __builtin_clz(e2); e2 &= ~(1<<j); track_t& t2 = state->tracks[j]; if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) { e1 &= ~(1<<j); } } e0 &= ~(e1); // this assumes output 16 bits stereo, no resampling int32_t *out = t1.mainBuffer; size_t numFrames = 0; do { memset(outTemp, 0, sizeof(outTemp)); e2 = e1; while (e2) { const int i = 31 - __builtin_clz(e2); e2 &= ~(1<<i); track_t& t = state->tracks[i]; size_t outFrames = BLOCKSIZE; int32_t *aux = NULL; if (CC_UNLIKELY(t.needs & NEEDS_AUX)) { aux = t.auxBuffer + numFrames; } while (outFrames) { // t.in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t.in == NULL) { enabledTracks &= ~(1<<i); e1 &= ~(1<<i); break; } size_t inFrames = (t.frameCount > outFrames)?outFrames:t.frameCount; if (inFrames > 0) { t.hook(&t, outTemp + (BLOCKSIZE - outFrames) * t.mMixerChannelCount, inFrames, state->resampleTemp, aux); t.frameCount -= inFrames; outFrames -= inFrames; if (CC_UNLIKELY(aux != NULL)) { aux += inFrames; } } if (t.frameCount == 0 && outFrames) { t.bufferProvider->releaseBuffer(&t.buffer); t.buffer.frameCount = (state->frameCount - numFrames) - (BLOCKSIZE - outFrames); t.bufferProvider->getNextBuffer(&t.buffer); t.in = t.buffer.raw; if (t.in == NULL) { enabledTracks &= ~(1<<i); e1 &= ~(1<<i); break; } t.frameCount = t.buffer.frameCount; } } } convertMixerFormat(out, t1.mMixerFormat, outTemp, t1.mMixerInFormat, BLOCKSIZE * t1.mMixerChannelCount); // TODO: fix ugly casting due to choice of out pointer type out = reinterpret_cast<int32_t*>((uint8_t*)out + BLOCKSIZE * t1.mMixerChannelCount * audio_bytes_per_sample(t1.mMixerFormat)); numFrames += BLOCKSIZE; } while (numFrames < state->frameCount); } // release each track's buffer e0 = enabledTracks; while (e0) { const int i = 31 - __builtin_clz(e0); e0 &= ~(1<<i); track_t& t = state->tracks[i]; t.bufferProvider->releaseBuffer(&t.buffer); } } // generic code with resampling void AudioMixer::process__genericResampling(state_t* state) { ALOGVV("process__genericResampling\n"); // this const just means that local variable outTemp doesn't change int32_t* const outTemp = state->outputTemp; size_t numFrames = state->frameCount; uint32_t e0 = state->enabledTracks; while (e0) { // process by group of tracks with same output buffer // to optimize cache use uint32_t e1 = e0, e2 = e0; int j = 31 - __builtin_clz(e1); track_t& t1 = state->tracks[j]; e2 &= ~(1<<j); while (e2) { j = 31 - __builtin_clz(e2); e2 &= ~(1<<j); track_t& t2 = state->tracks[j]; if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) { e1 &= ~(1<<j); } } e0 &= ~(e1); int32_t *out = t1.mainBuffer; memset(outTemp, 0, sizeof(*outTemp) * t1.mMixerChannelCount * state->frameCount); while (e1) { const int i = 31 - __builtin_clz(e1); e1 &= ~(1<<i); track_t& t = state->tracks[i]; int32_t *aux = NULL; if (CC_UNLIKELY(t.needs & NEEDS_AUX)) { aux = t.auxBuffer; } // this is a little goofy, on the resampling case we don't // acquire/release the buffers because it's done by // the resampler. if (t.needs & NEEDS_RESAMPLE) { t.hook(&t, outTemp, numFrames, state->resampleTemp, aux); } else { size_t outFrames = 0; while (outFrames < numFrames) { t.buffer.frameCount = numFrames - outFrames; t.bufferProvider->getNextBuffer(&t.buffer); t.in = t.buffer.raw; // t.in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t.in == NULL) break; if (CC_UNLIKELY(aux != NULL)) { aux += outFrames; } t.hook(&t, outTemp + outFrames * t.mMixerChannelCount, t.buffer.frameCount, state->resampleTemp, aux); outFrames += t.buffer.frameCount; t.bufferProvider->releaseBuffer(&t.buffer); } } } convertMixerFormat(out, t1.mMixerFormat, outTemp, t1.mMixerInFormat, numFrames * t1.mMixerChannelCount); } } // one track, 16 bits stereo without resampling is the most common case void AudioMixer::process__OneTrack16BitsStereoNoResampling(state_t* state) { ALOGVV("process__OneTrack16BitsStereoNoResampling\n"); // This method is only called when state->enabledTracks has exactly // one bit set. The asserts below would verify this, but are commented out // since the whole point of this method is to optimize performance. //ALOG_ASSERT(0 != state->enabledTracks, "no tracks enabled"); const int i = 31 - __builtin_clz(state->enabledTracks); //ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled"); const track_t& t = state->tracks[i]; AudioBufferProvider::Buffer& b(t.buffer); int32_t* out = t.mainBuffer; float *fout = reinterpret_cast<float*>(out); size_t numFrames = state->frameCount; const int16_t vl = t.volume[0]; const int16_t vr = t.volume[1]; const uint32_t vrl = t.volumeRL; while (numFrames) { b.frameCount = numFrames; t.bufferProvider->getNextBuffer(&b); const int16_t *in = b.i16; // in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (in == NULL || (((uintptr_t)in) & 3)) { if ( AUDIO_FORMAT_PCM_FLOAT == t.mMixerFormat ) { memset((char*)fout, 0, numFrames * t.mMixerChannelCount * audio_bytes_per_sample(t.mMixerFormat)); } else { memset((char*)out, 0, numFrames * t.mMixerChannelCount * audio_bytes_per_sample(t.mMixerFormat)); } ALOGE_IF((((uintptr_t)in) & 3), "process__OneTrack16BitsStereoNoResampling: misaligned buffer" " %p track %d, channels %d, needs %08x, volume %08x vfl %f vfr %f", in, i, t.channelCount, t.needs, vrl, t.mVolume[0], t.mVolume[1]); return; } size_t outFrames = b.frameCount; switch (t.mMixerFormat) { case AUDIO_FORMAT_PCM_FLOAT: do { uint32_t rl = *reinterpret_cast<const uint32_t *>(in); in += 2; int32_t l = mulRL(1, rl, vrl); int32_t r = mulRL(0, rl, vrl); *fout++ = float_from_q4_27(l); *fout++ = float_from_q4_27(r); // Note: In case of later int16_t sink output, // conversion and clamping is done by memcpy_to_i16_from_float(). } while (--outFrames); break; case AUDIO_FORMAT_PCM_16_BIT: if (CC_UNLIKELY(uint32_t(vl) > UNITY_GAIN_INT || uint32_t(vr) > UNITY_GAIN_INT)) { // volume is boosted, so we might need to clamp even though // we process only one track. do { uint32_t rl = *reinterpret_cast<const uint32_t *>(in); in += 2; int32_t l = mulRL(1, rl, vrl) >> 12; int32_t r = mulRL(0, rl, vrl) >> 12; // clamping... l = clamp16(l); r = clamp16(r); *out++ = (r<<16) | (l & 0xFFFF); } while (--outFrames); } else { do { uint32_t rl = *reinterpret_cast<const uint32_t *>(in); in += 2; int32_t l = mulRL(1, rl, vrl) >> 12; int32_t r = mulRL(0, rl, vrl) >> 12; *out++ = (r<<16) | (l & 0xFFFF); } while (--outFrames); } break; default: LOG_ALWAYS_FATAL("bad mixer format: %d", t.mMixerFormat); } numFrames -= b.frameCount; t.bufferProvider->releaseBuffer(&b); } } /*static*/ pthread_once_t AudioMixer::sOnceControl = PTHREAD_ONCE_INIT; /*static*/ void AudioMixer::sInitRoutine() { DownmixerBufferProvider::init(); // for the downmixer } /* TODO: consider whether this level of optimization is necessary. * Perhaps just stick with a single for loop. */ // Needs to derive a compile time constant (constexpr). Could be targeted to go // to a MONOVOL mixtype based on MAX_NUM_VOLUMES, but that's an unnecessary complication. #define MIXTYPE_MONOVOL(mixtype) ((mixtype) == MIXTYPE_MULTI ? MIXTYPE_MULTI_MONOVOL : \ (mixtype) == MIXTYPE_MULTI_SAVEONLY ? MIXTYPE_MULTI_SAVEONLY_MONOVOL : (mixtype)) /* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration) * TO: int32_t (Q4.27) or float * TI: int32_t (Q4.27) or int16_t (Q0.15) or float * TA: int32_t (Q4.27) */ template <int MIXTYPE, typename TO, typename TI, typename TV, typename TA, typename TAV> static void volumeRampMulti(uint32_t channels, TO* out, size_t frameCount, const TI* in, TA* aux, TV *vol, const TV *volinc, TAV *vola, TAV volainc) { switch (channels) { case 1: volumeRampMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, volinc, vola, volainc); break; case 2: volumeRampMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, volinc, vola, volainc); break; case 3: volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out, frameCount, in, aux, vol, volinc, vola, volainc); break; case 4: volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out, frameCount, in, aux, vol, volinc, vola, volainc); break; case 5: volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out, frameCount, in, aux, vol, volinc, vola, volainc); break; case 6: volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out, frameCount, in, aux, vol, volinc, vola, volainc); break; case 7: volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out, frameCount, in, aux, vol, volinc, vola, volainc); break; case 8: volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out, frameCount, in, aux, vol, volinc, vola, volainc); break; } } /* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration) * TO: int32_t (Q4.27) or float * TI: int32_t (Q4.27) or int16_t (Q0.15) or float * TA: int32_t (Q4.27) */ template <int MIXTYPE, typename TO, typename TI, typename TV, typename TA, typename TAV> static void volumeMulti(uint32_t channels, TO* out, size_t frameCount, const TI* in, TA* aux, const TV *vol, TAV vola) { switch (channels) { case 1: volumeMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, vola); break; case 2: volumeMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, vola); break; case 3: volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out, frameCount, in, aux, vol, vola); break; case 4: volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out, frameCount, in, aux, vol, vola); break; case 5: volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out, frameCount, in, aux, vol, vola); break; case 6: volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out, frameCount, in, aux, vol, vola); break; case 7: volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out, frameCount, in, aux, vol, vola); break; case 8: volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out, frameCount, in, aux, vol, vola); break; } } /* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration) * USEFLOATVOL (set to true if float volume is used) * ADJUSTVOL (set to true if volume ramp parameters needs adjustment afterwards) * TO: int32_t (Q4.27) or float * TI: int32_t (Q4.27) or int16_t (Q0.15) or float * TA: int32_t (Q4.27) */ template <int MIXTYPE, bool USEFLOATVOL, bool ADJUSTVOL, typename TO, typename TI, typename TA> void AudioMixer::volumeMix(TO *out, size_t outFrames, const TI *in, TA *aux, bool ramp, AudioMixer::track_t *t) { if (USEFLOATVOL) { if (ramp) { volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux, t->mPrevVolume, t->mVolumeInc, &t->prevAuxLevel, t->auxInc); if (ADJUSTVOL) { t->adjustVolumeRamp(aux != NULL, true); } } else { volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux, t->mVolume, t->auxLevel); } } else { if (ramp) { volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux, t->prevVolume, t->volumeInc, &t->prevAuxLevel, t->auxInc); if (ADJUSTVOL) { t->adjustVolumeRamp(aux != NULL); } } else { volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux, t->volume, t->auxLevel); } } } /* This process hook is called when there is a single track without * aux buffer, volume ramp, or resampling. * TODO: Update the hook selection: this can properly handle aux and ramp. * * MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration) * TO: int32_t (Q4.27) or float * TI: int32_t (Q4.27) or int16_t (Q0.15) or float * TA: int32_t (Q4.27) */ template <int MIXTYPE, typename TO, typename TI, typename TA> void AudioMixer::process_NoResampleOneTrack(state_t* state) { ALOGVV("process_NoResampleOneTrack\n"); // CLZ is faster than CTZ on ARM, though really not sure if true after 31 - clz. const int i = 31 - __builtin_clz(state->enabledTracks); ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled"); track_t *t = &state->tracks[i]; const uint32_t channels = t->mMixerChannelCount; TO* out = reinterpret_cast<TO*>(t->mainBuffer); TA* aux = reinterpret_cast<TA*>(t->auxBuffer); const bool ramp = t->needsRamp(); for (size_t numFrames = state->frameCount; numFrames; ) { AudioBufferProvider::Buffer& b(t->buffer); // get input buffer b.frameCount = numFrames; t->bufferProvider->getNextBuffer(&b); const TI *in = reinterpret_cast<TI*>(b.raw); // in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (in == NULL || (((uintptr_t)in) & 3)) { memset(out, 0, numFrames * channels * audio_bytes_per_sample(t->mMixerFormat)); ALOGE_IF((((uintptr_t)in) & 3), "process_NoResampleOneTrack: bus error: " "buffer %p track %p, channels %d, needs %#x", in, t, t->channelCount, t->needs); return; } const size_t outFrames = b.frameCount; volumeMix<MIXTYPE, is_same<TI, float>::value, false> ( out, outFrames, in, aux, ramp, t); out += outFrames * channels; if (aux != NULL) { aux += channels; } numFrames -= b.frameCount; // release buffer t->bufferProvider->releaseBuffer(&b); } if (ramp) { t->adjustVolumeRamp(aux != NULL, is_same<TI, float>::value); } } /* This track hook is called to do resampling then mixing, * pulling from the track's upstream AudioBufferProvider. * * MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration) * TO: int32_t (Q4.27) or float * TI: int32_t (Q4.27) or int16_t (Q0.15) or float * TA: int32_t (Q4.27) */ template <int MIXTYPE, typename TO, typename TI, typename TA> void AudioMixer::track__Resample(track_t* t, TO* out, size_t outFrameCount, TO* temp, TA* aux) { ALOGVV("track__Resample\n"); t->resampler->setSampleRate(t->sampleRate); const bool ramp = t->needsRamp(); if (ramp || aux != NULL) { // if ramp: resample with unity gain to temp buffer and scale/mix in 2nd step. // if aux != NULL: resample with unity gain to temp buffer then apply send level. t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT); memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(TO)); t->resampler->resample((int32_t*)temp, outFrameCount, t->bufferProvider); volumeMix<MIXTYPE, is_same<TI, float>::value, true>( out, outFrameCount, temp, aux, ramp, t); } else { // constant volume gain t->resampler->setVolume(t->mVolume[0], t->mVolume[1]); t->resampler->resample((int32_t*)out, outFrameCount, t->bufferProvider); } } /* This track hook is called to mix a track, when no resampling is required. * The input buffer should be present in t->in. * * MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration) * TO: int32_t (Q4.27) or float * TI: int32_t (Q4.27) or int16_t (Q0.15) or float * TA: int32_t (Q4.27) */ template <int MIXTYPE, typename TO, typename TI, typename TA> void AudioMixer::track__NoResample(track_t* t, TO* out, size_t frameCount, TO* temp __unused, TA* aux) { ALOGVV("track__NoResample\n"); const TI *in = static_cast<const TI *>(t->in); volumeMix<MIXTYPE, is_same<TI, float>::value, true>( out, frameCount, in, aux, t->needsRamp(), t); // MIXTYPE_MONOEXPAND reads a single input channel and expands to NCHAN output channels. // MIXTYPE_MULTI reads NCHAN input channels and places to NCHAN output channels. in += (MIXTYPE == MIXTYPE_MONOEXPAND) ? frameCount : frameCount * t->mMixerChannelCount; t->in = in; } /* The Mixer engine generates either int32_t (Q4_27) or float data. * We use this function to convert the engine buffers * to the desired mixer output format, either int16_t (Q.15) or float. */ void AudioMixer::convertMixerFormat(void *out, audio_format_t mixerOutFormat, void *in, audio_format_t mixerInFormat, size_t sampleCount) { switch (mixerInFormat) { case AUDIO_FORMAT_PCM_FLOAT: switch (mixerOutFormat) { case AUDIO_FORMAT_PCM_FLOAT: memcpy(out, in, sampleCount * sizeof(float)); // MEMCPY. TODO optimize out break; case AUDIO_FORMAT_PCM_16_BIT: memcpy_to_i16_from_float((int16_t*)out, (float*)in, sampleCount); break; default: LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat); break; } break; case AUDIO_FORMAT_PCM_16_BIT: switch (mixerOutFormat) { case AUDIO_FORMAT_PCM_FLOAT: memcpy_to_float_from_q4_27((float*)out, (int32_t*)in, sampleCount); break; case AUDIO_FORMAT_PCM_16_BIT: // two int16_t are produced per iteration ditherAndClamp((int32_t*)out, (int32_t*)in, sampleCount >> 1); break; default: LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat); break; } break; default: LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat); break; } } /* Returns the proper track hook to use for mixing the track into the output buffer. */ AudioMixer::hook_t AudioMixer::getTrackHook(int trackType, uint32_t channelCount, audio_format_t mixerInFormat, audio_format_t mixerOutFormat __unused) { if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) { switch (trackType) { case TRACKTYPE_NOP: return track__nop; case TRACKTYPE_RESAMPLE: return track__genericResample; case TRACKTYPE_NORESAMPLEMONO: return track__16BitsMono; case TRACKTYPE_NORESAMPLE: return track__16BitsStereo; default: LOG_ALWAYS_FATAL("bad trackType: %d", trackType); break; } } LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS); switch (trackType) { case TRACKTYPE_NOP: return track__nop; case TRACKTYPE_RESAMPLE: switch (mixerInFormat) { case AUDIO_FORMAT_PCM_FLOAT: return (AudioMixer::hook_t) track__Resample<MIXTYPE_MULTI, float /*TO*/, float /*TI*/, int32_t /*TA*/>; case AUDIO_FORMAT_PCM_16_BIT: return (AudioMixer::hook_t)\ track__Resample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>; default: LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat); break; } break; case TRACKTYPE_NORESAMPLEMONO: switch (mixerInFormat) { case AUDIO_FORMAT_PCM_FLOAT: return (AudioMixer::hook_t) track__NoResample<MIXTYPE_MONOEXPAND, float, float, int32_t>; case AUDIO_FORMAT_PCM_16_BIT: return (AudioMixer::hook_t) track__NoResample<MIXTYPE_MONOEXPAND, int32_t, int16_t, int32_t>; default: LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat); break; } break; case TRACKTYPE_NORESAMPLE: switch (mixerInFormat) { case AUDIO_FORMAT_PCM_FLOAT: return (AudioMixer::hook_t) track__NoResample<MIXTYPE_MULTI, float, float, int32_t>; case AUDIO_FORMAT_PCM_16_BIT: return (AudioMixer::hook_t) track__NoResample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>; default: LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat); break; } break; default: LOG_ALWAYS_FATAL("bad trackType: %d", trackType); break; } return NULL; } /* Returns the proper process hook for mixing tracks. Currently works only for * PROCESSTYPE_NORESAMPLEONETRACK, a mix involving one track, no resampling. * * TODO: Due to the special mixing considerations of duplicating to * a stereo output track, the input track cannot be MONO. This should be * prevented by the caller. */ AudioMixer::process_hook_t AudioMixer::getProcessHook(int processType, uint32_t channelCount, audio_format_t mixerInFormat, audio_format_t mixerOutFormat) { if (processType != PROCESSTYPE_NORESAMPLEONETRACK) { // Only NORESAMPLEONETRACK LOG_ALWAYS_FATAL("bad processType: %d", processType); return NULL; } if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) { return process__OneTrack16BitsStereoNoResampling; } LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS); switch (mixerInFormat) { case AUDIO_FORMAT_PCM_FLOAT: switch (mixerOutFormat) { case AUDIO_FORMAT_PCM_FLOAT: return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY, float /*TO*/, float /*TI*/, int32_t /*TA*/>; case AUDIO_FORMAT_PCM_16_BIT: return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY, int16_t, float, int32_t>; default: LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat); break; } break; case AUDIO_FORMAT_PCM_16_BIT: switch (mixerOutFormat) { case AUDIO_FORMAT_PCM_FLOAT: return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY, float, int16_t, int32_t>; case AUDIO_FORMAT_PCM_16_BIT: return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY, int16_t, int16_t, int32_t>; default: LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat); break; } break; default: LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat); break; } return NULL; } // ---------------------------------------------------------------------------- } // namespace android