/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_RESOURCES #include "androidfw/LoadedArsc.h" #include <cstddef> #include <limits> #include "android-base/logging.h" #include "android-base/stringprintf.h" #include "utils/ByteOrder.h" #include "utils/Trace.h" #ifdef _WIN32 #ifdef ERROR #undef ERROR #endif #endif #include "androidfw/ByteBucketArray.h" #include "androidfw/Chunk.h" #include "androidfw/ResourceUtils.h" #include "androidfw/Util.h" using android::base::StringPrintf; namespace android { constexpr const static int kAppPackageId = 0x7f; // Element of a TypeSpec array. See TypeSpec. struct Type { // The configuration for which this type defines entries. // This is already converted to host endianness. ResTable_config configuration; // Pointer to the mmapped data where entry definitions are kept. const ResTable_type* type; }; // TypeSpec is going to be immediately proceeded by // an array of Type structs, all in the same block of memory. struct TypeSpec { // Pointer to the mmapped data where flags are kept. // Flags denote whether the resource entry is public // and under which configurations it varies. const ResTable_typeSpec* type_spec; // The number of types that follow this struct. // There is a type for each configuration // that entries are defined for. size_t type_count; // Trick to easily access a variable number of Type structs // proceeding this struct, and to ensure their alignment. const Type types[0]; }; // TypeSpecPtr points to the block of memory that holds // a TypeSpec struct, followed by an array of Type structs. // TypeSpecPtr is a managed pointer that knows how to delete // itself. using TypeSpecPtr = util::unique_cptr<TypeSpec>; namespace { // Builder that helps accumulate Type structs and then create a single // contiguous block of memory to store both the TypeSpec struct and // the Type structs. class TypeSpecPtrBuilder { public: TypeSpecPtrBuilder(const ResTable_typeSpec* header) : header_(header) {} void AddType(const ResTable_type* type) { ResTable_config config; config.copyFromDtoH(type->config); types_.push_back(Type{config, type}); } TypeSpecPtr Build() { // Check for overflow. if ((std::numeric_limits<size_t>::max() - sizeof(TypeSpec)) / sizeof(Type) < types_.size()) { return {}; } TypeSpec* type_spec = (TypeSpec*)::malloc(sizeof(TypeSpec) + (types_.size() * sizeof(Type))); type_spec->type_spec = header_; type_spec->type_count = types_.size(); memcpy(type_spec + 1, types_.data(), types_.size() * sizeof(Type)); return TypeSpecPtr(type_spec); } private: DISALLOW_COPY_AND_ASSIGN(TypeSpecPtrBuilder); const ResTable_typeSpec* header_; std::vector<Type> types_; }; } // namespace bool LoadedPackage::FindEntry(uint8_t type_idx, uint16_t entry_idx, const ResTable_config& config, LoadedArscEntry* out_entry, ResTable_config* out_selected_config, uint32_t* out_flags) const { ATRACE_CALL(); // If the type IDs are offset in this package, we need to take that into account when searching // for a type. const TypeSpecPtr& ptr = type_specs_[type_idx - type_id_offset_]; if (ptr == nullptr) { return false; } // Don't bother checking if the entry ID is larger than // the number of entries. if (entry_idx >= dtohl(ptr->type_spec->entryCount)) { return false; } const ResTable_config* best_config = nullptr; const ResTable_type* best_type = nullptr; uint32_t best_offset = 0; for (uint32_t i = 0; i < ptr->type_count; i++) { const Type* type = &ptr->types[i]; if (type->configuration.match(config) && (best_config == nullptr || type->configuration.isBetterThan(*best_config, &config))) { // The configuration matches and is better than the previous selection. // Find the entry value if it exists for this configuration. size_t entry_count = dtohl(type->type->entryCount); if (entry_idx < entry_count) { const uint32_t* entry_offsets = reinterpret_cast<const uint32_t*>( reinterpret_cast<const uint8_t*>(type->type) + dtohs(type->type->header.headerSize)); const uint32_t offset = dtohl(entry_offsets[entry_idx]); if (offset != ResTable_type::NO_ENTRY) { // There is an entry for this resource, record it. best_config = &type->configuration; best_type = type->type; best_offset = offset + dtohl(type->type->entriesStart); } } } } if (best_type == nullptr) { return false; } const uint32_t* flags = reinterpret_cast<const uint32_t*>(ptr->type_spec + 1); *out_flags = dtohl(flags[entry_idx]); *out_selected_config = *best_config; const ResTable_entry* best_entry = reinterpret_cast<const ResTable_entry*>( reinterpret_cast<const uint8_t*>(best_type) + best_offset); out_entry->entry = best_entry; out_entry->type_string_ref = StringPoolRef(&type_string_pool_, best_type->id - 1); out_entry->entry_string_ref = StringPoolRef(&key_string_pool_, dtohl(best_entry->key.index)); return true; } // The destructor gets generated into arbitrary translation units // if left implicit, which causes the compiler to complain about // forward declarations and incomplete types. LoadedArsc::~LoadedArsc() {} bool LoadedArsc::FindEntry(uint32_t resid, const ResTable_config& config, LoadedArscEntry* out_entry, ResTable_config* out_selected_config, uint32_t* out_flags) const { ATRACE_CALL(); const uint8_t package_id = get_package_id(resid); const uint8_t type_id = get_type_id(resid); const uint16_t entry_id = get_entry_id(resid); if (type_id == 0) { LOG(ERROR) << "Invalid ID 0x" << std::hex << resid << std::dec << "."; return false; } for (const auto& loaded_package : packages_) { if (loaded_package->package_id_ == package_id) { return loaded_package->FindEntry(type_id - 1, entry_id, config, out_entry, out_selected_config, out_flags); } } return false; } const LoadedPackage* LoadedArsc::GetPackageForId(uint32_t resid) const { const uint8_t package_id = get_package_id(resid); for (const auto& loaded_package : packages_) { if (loaded_package->package_id_ == package_id) { return loaded_package.get(); } } return nullptr; } static bool VerifyType(const Chunk& chunk) { ATRACE_CALL(); const ResTable_type* header = chunk.header<ResTable_type, kResTableTypeMinSize>(); const size_t entry_count = dtohl(header->entryCount); if (entry_count > std::numeric_limits<uint16_t>::max()) { LOG(ERROR) << "Too many entries in RES_TABLE_TYPE_TYPE."; return false; } // Make sure that there is enough room for the entry offsets. const size_t offsets_offset = chunk.header_size(); const size_t entries_offset = dtohl(header->entriesStart); const size_t offsets_length = sizeof(uint32_t) * entry_count; if (offsets_offset + offsets_length > entries_offset) { LOG(ERROR) << "Entry offsets overlap actual entry data."; return false; } if (entries_offset > chunk.size()) { LOG(ERROR) << "Entry offsets extend beyond chunk."; return false; } if (entries_offset & 0x03) { LOG(ERROR) << "Entries start at unaligned address."; return false; } // Check each entry offset. const uint32_t* offsets = reinterpret_cast<const uint32_t*>(reinterpret_cast<const uint8_t*>(header) + offsets_offset); for (size_t i = 0; i < entry_count; i++) { uint32_t offset = dtohl(offsets[i]); if (offset != ResTable_type::NO_ENTRY) { // Check that the offset is aligned. if (offset & 0x03) { LOG(ERROR) << "Entry offset at index " << i << " is not 4-byte aligned."; return false; } // Check that the offset doesn't overflow. if (offset > std::numeric_limits<uint32_t>::max() - entries_offset) { // Overflow in offset. LOG(ERROR) << "Entry offset at index " << i << " is too large."; return false; } offset += entries_offset; if (offset > chunk.size() - sizeof(ResTable_entry)) { LOG(ERROR) << "Entry offset at index " << i << " is too large. No room for ResTable_entry."; return false; } const ResTable_entry* entry = reinterpret_cast<const ResTable_entry*>( reinterpret_cast<const uint8_t*>(header) + offset); const size_t entry_size = dtohs(entry->size); if (entry_size < sizeof(*entry)) { LOG(ERROR) << "ResTable_entry size " << entry_size << " is too small."; return false; } // Check the declared entrySize. if (entry_size > chunk.size() || offset > chunk.size() - entry_size) { LOG(ERROR) << "ResTable_entry size " << entry_size << " is too large."; return false; } // If this is a map entry, then keep validating. if (entry_size >= sizeof(ResTable_map_entry)) { const ResTable_map_entry* map = reinterpret_cast<const ResTable_map_entry*>(entry); const size_t map_entry_count = dtohl(map->count); size_t map_entries_start = offset + entry_size; if (map_entries_start & 0x03) { LOG(ERROR) << "Map entries start at unaligned offset."; return false; } // Each entry is sizeof(ResTable_map) big. if (map_entry_count > ((chunk.size() - map_entries_start) / sizeof(ResTable_map))) { LOG(ERROR) << "Too many map entries in ResTable_map_entry."; return false; } // Great, all the map entries fit!. } else { // There needs to be room for one Res_value struct. if (offset + entry_size > chunk.size() - sizeof(Res_value)) { LOG(ERROR) << "No room for Res_value after ResTable_entry."; return false; } const Res_value* value = reinterpret_cast<const Res_value*>( reinterpret_cast<const uint8_t*>(entry) + entry_size); const size_t value_size = dtohs(value->size); if (value_size < sizeof(Res_value)) { LOG(ERROR) << "Res_value is too small."; return false; } if (value_size > chunk.size() || offset + entry_size > chunk.size() - value_size) { LOG(ERROR) << "Res_value size is too large."; return false; } } } } return true; } void LoadedPackage::CollectConfigurations(bool exclude_mipmap, std::set<ResTable_config>* out_configs) const { const static std::u16string kMipMap = u"mipmap"; const size_t type_count = type_specs_.size(); for (size_t i = 0; i < type_count; i++) { const util::unique_cptr<TypeSpec>& type_spec = type_specs_[i]; if (type_spec != nullptr) { if (exclude_mipmap) { const int type_idx = type_spec->type_spec->id - 1; size_t type_name_len; const char16_t* type_name16 = type_string_pool_.stringAt(type_idx, &type_name_len); if (type_name16 != nullptr) { if (kMipMap.compare(0, std::u16string::npos, type_name16, type_name_len) == 0) { // This is a mipmap type, skip collection. continue; } } const char* type_name = type_string_pool_.string8At(type_idx, &type_name_len); if (type_name != nullptr) { if (strncmp(type_name, "mipmap", type_name_len) == 0) { // This is a mipmap type, skip collection. continue; } } } for (size_t j = 0; j < type_spec->type_count; j++) { out_configs->insert(type_spec->types[j].configuration); } } } } void LoadedPackage::CollectLocales(bool canonicalize, std::set<std::string>* out_locales) const { char temp_locale[RESTABLE_MAX_LOCALE_LEN]; const size_t type_count = type_specs_.size(); for (size_t i = 0; i < type_count; i++) { const util::unique_cptr<TypeSpec>& type_spec = type_specs_[i]; if (type_spec != nullptr) { for (size_t j = 0; j < type_spec->type_count; j++) { const ResTable_config& configuration = type_spec->types[j].configuration; if (configuration.locale != 0) { configuration.getBcp47Locale(temp_locale, canonicalize); std::string locale(temp_locale); out_locales->insert(std::move(locale)); } } } } } uint32_t LoadedPackage::FindEntryByName(const std::u16string& type_name, const std::u16string& entry_name) const { ssize_t type_idx = type_string_pool_.indexOfString(type_name.data(), type_name.size()); if (type_idx < 0) { return 0u; } ssize_t key_idx = key_string_pool_.indexOfString(entry_name.data(), entry_name.size()); if (key_idx < 0) { return 0u; } const TypeSpec* type_spec = type_specs_[type_idx].get(); if (type_spec == nullptr) { return 0u; } for (size_t ti = 0; ti < type_spec->type_count; ti++) { const Type* type = &type_spec->types[ti]; size_t entry_count = dtohl(type->type->entryCount); for (size_t entry_idx = 0; entry_idx < entry_count; entry_idx++) { const uint32_t* entry_offsets = reinterpret_cast<const uint32_t*>( reinterpret_cast<const uint8_t*>(type->type) + dtohs(type->type->header.headerSize)); const uint32_t offset = dtohl(entry_offsets[entry_idx]); if (offset != ResTable_type::NO_ENTRY) { const ResTable_entry* entry = reinterpret_cast<const ResTable_entry*>(reinterpret_cast<const uint8_t*>(type->type) + dtohl(type->type->entriesStart) + offset); if (dtohl(entry->key.index) == static_cast<uint32_t>(key_idx)) { // The package ID will be overridden by the caller (due to runtime assignment of package // IDs for shared libraries). return make_resid(0x00, type_idx + type_id_offset_ + 1, entry_idx); } } } } return 0u; } std::unique_ptr<LoadedPackage> LoadedPackage::Load(const Chunk& chunk) { ATRACE_CALL(); std::unique_ptr<LoadedPackage> loaded_package{new LoadedPackage()}; constexpr size_t kMinPackageSize = sizeof(ResTable_package) - sizeof(ResTable_package::typeIdOffset); const ResTable_package* header = chunk.header<ResTable_package, kMinPackageSize>(); if (header == nullptr) { LOG(ERROR) << "Chunk RES_TABLE_PACKAGE_TYPE is too small."; return {}; } loaded_package->package_id_ = dtohl(header->id); if (loaded_package->package_id_ == 0) { // Package ID of 0 means this is a shared library. loaded_package->dynamic_ = true; } if (header->header.headerSize >= sizeof(ResTable_package)) { uint32_t type_id_offset = dtohl(header->typeIdOffset); if (type_id_offset > std::numeric_limits<uint8_t>::max()) { LOG(ERROR) << "Type ID offset in RES_TABLE_PACKAGE_TYPE is too large."; return {}; } loaded_package->type_id_offset_ = static_cast<int>(type_id_offset); } util::ReadUtf16StringFromDevice(header->name, arraysize(header->name), &loaded_package->package_name_); // A TypeSpec builder. We use this to accumulate the set of Types // available for a TypeSpec, and later build a single, contiguous block // of memory that holds all the Types together with the TypeSpec. std::unique_ptr<TypeSpecPtrBuilder> types_builder; // Keep track of the last seen type index. Since type IDs are 1-based, // this records their index, which is 0-based (type ID - 1). uint8_t last_type_idx = 0; ChunkIterator iter(chunk.data_ptr(), chunk.data_size()); while (iter.HasNext()) { const Chunk child_chunk = iter.Next(); switch (child_chunk.type()) { case RES_STRING_POOL_TYPE: { const uintptr_t pool_address = reinterpret_cast<uintptr_t>(child_chunk.header<ResChunk_header>()); const uintptr_t header_address = reinterpret_cast<uintptr_t>(header); if (pool_address == header_address + dtohl(header->typeStrings)) { // This string pool is the type string pool. status_t err = loaded_package->type_string_pool_.setTo( child_chunk.header<ResStringPool_header>(), child_chunk.size()); if (err != NO_ERROR) { LOG(ERROR) << "Corrupt package type string pool."; return {}; } } else if (pool_address == header_address + dtohl(header->keyStrings)) { // This string pool is the key string pool. status_t err = loaded_package->key_string_pool_.setTo( child_chunk.header<ResStringPool_header>(), child_chunk.size()); if (err != NO_ERROR) { LOG(ERROR) << "Corrupt package key string pool."; return {}; } } else { LOG(WARNING) << "Too many string pool chunks found in package."; } } break; case RES_TABLE_TYPE_SPEC_TYPE: { ATRACE_NAME("LoadTableTypeSpec"); // Starting a new TypeSpec, so finish the old one if there was one. if (types_builder) { TypeSpecPtr type_spec_ptr = types_builder->Build(); if (type_spec_ptr == nullptr) { LOG(ERROR) << "Too many type configurations, overflow detected."; return {}; } loaded_package->type_specs_.editItemAt(last_type_idx) = std::move(type_spec_ptr); types_builder = {}; last_type_idx = 0; } const ResTable_typeSpec* type_spec = child_chunk.header<ResTable_typeSpec>(); if (type_spec == nullptr) { LOG(ERROR) << "Chunk RES_TABLE_TYPE_SPEC_TYPE is too small."; return {}; } if (type_spec->id == 0) { LOG(ERROR) << "Chunk RES_TABLE_TYPE_SPEC_TYPE has invalid ID 0."; return {}; } if (loaded_package->type_id_offset_ + static_cast<int>(type_spec->id) > std::numeric_limits<uint8_t>::max()) { LOG(ERROR) << "Chunk RES_TABLE_TYPE_SPEC_TYPE has out of range ID."; return {}; } // The data portion of this chunk contains entry_count 32bit entries, // each one representing a set of flags. // Here we only validate that the chunk is well formed. const size_t entry_count = dtohl(type_spec->entryCount); // There can only be 2^16 entries in a type, because that is the ID // space for entries (EEEE) in the resource ID 0xPPTTEEEE. if (entry_count > std::numeric_limits<uint16_t>::max()) { LOG(ERROR) << "Too many entries in RES_TABLE_TYPE_SPEC_TYPE: " << entry_count << "."; return {}; } if (entry_count * sizeof(uint32_t) > chunk.data_size()) { LOG(ERROR) << "Chunk too small to hold entries in RES_TABLE_TYPE_SPEC_TYPE."; return {}; } last_type_idx = type_spec->id - 1; types_builder = util::make_unique<TypeSpecPtrBuilder>(type_spec); } break; case RES_TABLE_TYPE_TYPE: { const ResTable_type* type = child_chunk.header<ResTable_type, kResTableTypeMinSize>(); if (type == nullptr) { LOG(ERROR) << "Chunk RES_TABLE_TYPE_TYPE is too small."; return {}; } if (type->id == 0) { LOG(ERROR) << "Chunk RES_TABLE_TYPE_TYPE has invalid ID 0."; return {}; } // Type chunks must be preceded by their TypeSpec chunks. if (!types_builder || type->id - 1 != last_type_idx) { LOG(ERROR) << "Found RES_TABLE_TYPE_TYPE chunk without " "RES_TABLE_TYPE_SPEC_TYPE."; return {}; } if (!VerifyType(child_chunk)) { return {}; } types_builder->AddType(type); } break; case RES_TABLE_LIBRARY_TYPE: { const ResTable_lib_header* lib = child_chunk.header<ResTable_lib_header>(); if (lib == nullptr) { LOG(ERROR) << "Chunk RES_TABLE_LIBRARY_TYPE is too small."; return {}; } if (child_chunk.data_size() / sizeof(ResTable_lib_entry) < dtohl(lib->count)) { LOG(ERROR) << "Chunk too small to hold entries in RES_TABLE_LIBRARY_TYPE."; return {}; } loaded_package->dynamic_package_map_.reserve(dtohl(lib->count)); const ResTable_lib_entry* const entry_begin = reinterpret_cast<const ResTable_lib_entry*>(child_chunk.data_ptr()); const ResTable_lib_entry* const entry_end = entry_begin + dtohl(lib->count); for (auto entry_iter = entry_begin; entry_iter != entry_end; ++entry_iter) { std::string package_name; util::ReadUtf16StringFromDevice(entry_iter->packageName, arraysize(entry_iter->packageName), &package_name); if (dtohl(entry_iter->packageId) >= std::numeric_limits<uint8_t>::max()) { LOG(ERROR) << base::StringPrintf( "Package ID %02x in RES_TABLE_LIBRARY_TYPE too large for package '%s'.", dtohl(entry_iter->packageId), package_name.c_str()); return {}; } loaded_package->dynamic_package_map_.emplace_back(std::move(package_name), dtohl(entry_iter->packageId)); } } break; default: LOG(WARNING) << base::StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } // Finish the last TypeSpec. if (types_builder) { TypeSpecPtr type_spec_ptr = types_builder->Build(); if (type_spec_ptr == nullptr) { LOG(ERROR) << "Too many type configurations, overflow detected."; return {}; } loaded_package->type_specs_.editItemAt(last_type_idx) = std::move(type_spec_ptr); } if (iter.HadError()) { LOG(ERROR) << iter.GetLastError(); return {}; } return loaded_package; } bool LoadedArsc::LoadTable(const Chunk& chunk, bool load_as_shared_library) { ATRACE_CALL(); const ResTable_header* header = chunk.header<ResTable_header>(); if (header == nullptr) { LOG(ERROR) << "Chunk RES_TABLE_TYPE is too small."; return false; } const size_t package_count = dtohl(header->packageCount); size_t packages_seen = 0; packages_.reserve(package_count); ChunkIterator iter(chunk.data_ptr(), chunk.data_size()); while (iter.HasNext()) { const Chunk child_chunk = iter.Next(); switch (child_chunk.type()) { case RES_STRING_POOL_TYPE: // Only use the first string pool. Ignore others. if (global_string_pool_.getError() == NO_INIT) { status_t err = global_string_pool_.setTo(child_chunk.header<ResStringPool_header>(), child_chunk.size()); if (err != NO_ERROR) { LOG(ERROR) << "Corrupt string pool."; return false; } } else { LOG(WARNING) << "Multiple string pool chunks found in resource table."; } break; case RES_TABLE_PACKAGE_TYPE: { if (packages_seen + 1 > package_count) { LOG(ERROR) << "More package chunks were found than the " << package_count << " declared in the " "header."; return false; } packages_seen++; std::unique_ptr<LoadedPackage> loaded_package = LoadedPackage::Load(child_chunk); if (!loaded_package) { return false; } // Mark the package as dynamic if we are forcefully loading the Apk as a shared library. if (loaded_package->package_id_ == kAppPackageId) { loaded_package->dynamic_ = load_as_shared_library; } loaded_package->system_ = system_; packages_.push_back(std::move(loaded_package)); } break; default: LOG(WARNING) << base::StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (iter.HadError()) { LOG(ERROR) << iter.GetLastError(); return false; } return true; } std::unique_ptr<const LoadedArsc> LoadedArsc::Load(const void* data, size_t len, bool system, bool load_as_shared_library) { ATRACE_CALL(); // Not using make_unique because the constructor is private. std::unique_ptr<LoadedArsc> loaded_arsc(new LoadedArsc()); loaded_arsc->system_ = system; ChunkIterator iter(data, len); while (iter.HasNext()) { const Chunk chunk = iter.Next(); switch (chunk.type()) { case RES_TABLE_TYPE: if (!loaded_arsc->LoadTable(chunk, load_as_shared_library)) { return {}; } break; default: LOG(WARNING) << base::StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (iter.HadError()) { LOG(ERROR) << iter.GetLastError(); return {}; } // Need to force a move for mingw32. return std::move(loaded_arsc); } } // namespace android