#ifndef ANDROID_DVR_NUMERIC_H_ #define ANDROID_DVR_NUMERIC_H_ #include <cmath> #include <limits> #include <random> #include <type_traits> #include <private/dvr/eigen.h> #include <private/dvr/types.h> namespace android { namespace dvr { template <typename FT> static inline FT ToDeg(FT f) { return f * static_cast<FT>(180.0 / M_PI); } template <typename FT> static inline FT ToRad(FT f) { return f * static_cast<FT>(M_PI / 180.0); } // Adjusts `x` to the periodic range `[lo, hi]` (to normalize angle values // for example). template <typename T> T NormalizePeriodicRange(T x, T lo, T hi) { T range_size = hi - lo; while (x < lo) { x += range_size; } while (x > hi) { x -= range_size; } return x; } // Normalizes a measurement in radians. // @param x the angle to be normalized // @param centre the point around which to normalize the range // @return the value of x, normalized to the range [centre - 180, centre + 180] template <typename T> T NormalizeDegrees(T x, T centre = static_cast<T>(180.0)) { return NormalizePeriodicRange(x, centre - static_cast<T>(180.0), centre + static_cast<T>(180.0)); } // Normalizes a measurement in radians. // @param x the angle to be normalized // @param centre the point around which to normalize the range // @return the value of x, normalized to the range // [centre - M_PI, centre + M_PI] // @remark the centre parameter is to make it possible to specify a different // periodic range. This is useful if you are planning on comparing two // angles close to 0 or M_PI, so that one might not accidentally end // up on the other side of the range template <typename T> T NormalizeRadians(T x, T centre = static_cast<T>(M_PI)) { return NormalizePeriodicRange(x, centre - static_cast<T>(M_PI), centre + static_cast<T>(M_PI)); } static inline vec2i Round(const vec2& v) { return vec2i(roundf(v.x()), roundf(v.y())); } static inline vec2i Scale(const vec2i& v, float scale) { return vec2i(roundf(static_cast<float>(v.x()) * scale), roundf(static_cast<float>(v.y()) * scale)); } // Re-maps `x` from `[lba,uba]` to `[lbb,ubb]`. template <typename T> T ConvertRange(T x, T lba, T uba, T lbb, T ubb) { return (((x - lba) * (ubb - lbb)) / (uba - lba)) + lbb; } template <typename R1, typename R2> static inline vec2 MapPoint(const vec2& pt, const R1& from, const R2& to) { vec2 normalized((pt - vec2(from.p1)).array() / vec2(from.GetSize()).array()); return (normalized * vec2(to.GetSize())) + vec2(to.p1); } template <typename T> inline bool IsZero(const T& v, const T& tol = std::numeric_limits<T>::epsilon()) { return std::abs(v) <= tol; } template <typename T> inline bool IsEqual(const T& a, const T& b, const T& tol = std::numeric_limits<T>::epsilon()) { return std::abs(b - a) <= tol; } template <typename T> T Square(const T& x) { return x * x; } template <typename T> T RandomInRange(T lo, T hi, typename std::enable_if<std::is_floating_point<T>::value>::type* = 0) { std::random_device rd; std::mt19937 gen(rd()); std::uniform_real_distribution<T> distro(lo, hi); return distro(gen); } template <typename T> T RandomInRange(T lo, T hi, typename std::enable_if<std::is_integral<T>::value>::type* = 0) { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<T> distro(lo, hi); return distro(gen); } template <typename Derived1, typename Derived2> Derived1 RandomInRange( const Eigen::MatrixBase<Derived1>& lo, const Eigen::MatrixBase<Derived2>& hi) { EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived1, Derived2); Derived1 result = Eigen::MatrixBase<Derived1>::Zero(); for (int row = 0; row < result.rows(); ++row) { for (int col = 0; col < result.cols(); ++col) { result(row, col) = RandomInRange(lo(row, col), hi(row, col)); } } return result; } template <typename T> T RandomRange(T x) { return RandomInRange(-x, x); } template <typename T> T Clamp(T x, T lo, T hi) { return std::min(std::max(x, lo), hi); } inline mat3 ScaleMatrix(const vec2& scale_xy) { return mat3(Eigen::Scaling(scale_xy[0], scale_xy[1], 1.0f)); } inline mat3 TranslationMatrix(const vec2& translation) { return mat3(Eigen::Translation2f(translation)); } inline mat4 TranslationMatrix(const vec3& translation) { return mat4(Eigen::Translation3f(translation)); } inline vec2 TransformPoint(const mat3& m, const vec2& p) { return m.linear() * p + m.translation(); } inline vec2 TransformVector(const mat3& m, const vec2& p) { return m.linear() * p; } } // namespace dvr } // namespace android #endif // ANDROID_DVR_NUMERIC_H_