/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdio.h> #include <cctype> #include <cstdlib> #include <fstream> #include <functional> #include <iostream> #include <memory> #include <sstream> #include <strings.h> #include "Generator.h" #include "Scanner.h" #include "Specification.h" #include "Utilities.h" using namespace std; // API level when RenderScript was added. const unsigned int MIN_API_LEVEL = 9; const NumericalType TYPES[] = { {"f16", "FLOAT_16", "half", "short", FLOATING_POINT, 11, 5}, {"f32", "FLOAT_32", "float", "float", FLOATING_POINT, 24, 8}, {"f64", "FLOAT_64", "double", "double", FLOATING_POINT, 53, 11}, {"i8", "SIGNED_8", "char", "byte", SIGNED_INTEGER, 7, 0}, {"u8", "UNSIGNED_8", "uchar", "byte", UNSIGNED_INTEGER, 8, 0}, {"i16", "SIGNED_16", "short", "short", SIGNED_INTEGER, 15, 0}, {"u16", "UNSIGNED_16", "ushort", "short", UNSIGNED_INTEGER, 16, 0}, {"i32", "SIGNED_32", "int", "int", SIGNED_INTEGER, 31, 0}, {"u32", "UNSIGNED_32", "uint", "int", UNSIGNED_INTEGER, 32, 0}, {"i64", "SIGNED_64", "long", "long", SIGNED_INTEGER, 63, 0}, {"u64", "UNSIGNED_64", "ulong", "long", UNSIGNED_INTEGER, 64, 0}, }; const int NUM_TYPES = sizeof(TYPES) / sizeof(TYPES[0]); static const char kTagUnreleased[] = "UNRELEASED"; // Patterns that get substituted with C type or RS Data type names in function // names, arguments, return types, and inlines. static const string kCTypePatterns[] = {"#1", "#2", "#3", "#4"}; static const string kRSTypePatterns[] = {"#RST_1", "#RST_2", "#RST_3", "#RST_4"}; // The singleton of the collected information of all the spec files. SystemSpecification systemSpecification; // Returns the index in TYPES for the provided cType static int findCType(const string& cType) { for (int i = 0; i < NUM_TYPES; i++) { if (cType == TYPES[i].cType) { return i; } } return -1; } /* Converts a string like "u8, u16" to a vector of "ushort", "uint". * For non-numerical types, we don't need to convert the abbreviation. */ static vector<string> convertToTypeVector(const string& input) { // First convert the string to an array of strings. vector<string> entries; stringstream stream(input); string entry; while (getline(stream, entry, ',')) { trimSpaces(&entry); entries.push_back(entry); } /* Second, we look for present numerical types. We do it this way * so the order of numerical types is always the same, no matter * how specified in the spec file. */ vector<string> result; for (auto t : TYPES) { for (auto i = entries.begin(); i != entries.end(); ++i) { if (*i == t.specType) { result.push_back(t.cType); entries.erase(i); break; } } } // Add the remaining; they are not numerical types. for (auto s : entries) { result.push_back(s); } return result; } // Returns true if each entry in typeVector is an RS numerical type static bool isRSTValid(const vector<string> &typeVector) { for (auto type: typeVector) { if (findCType(type) == -1) return false; } return true; } void getVectorSizeAndBaseType(const string& type, string& vectorSize, string& baseType) { vectorSize = "1"; baseType = type; /* If it's a vector type, we need to split the base type from the size. * We know that's it's a vector type if the last character is a digit and * the rest is an actual base type. We used to only verify the first part, * which created a problem with rs_matrix2x2. */ const int last = type.size() - 1; const char lastChar = type[last]; if (lastChar >= '0' && lastChar <= '9') { const string trimmed = type.substr(0, last); int i = findCType(trimmed); if (i >= 0) { baseType = trimmed; vectorSize = lastChar; } } } void ParameterDefinition::parseParameterDefinition(const string& type, const string& name, const string& testOption, int lineNumber, bool isReturn, Scanner* scanner) { rsType = type; specName = name; // Determine if this is an output. isOutParameter = isReturn || charRemoved('*', &rsType); getVectorSizeAndBaseType(rsType, mVectorSize, rsBaseType); typeIndex = findCType(rsBaseType); if (mVectorSize == "3") { vectorWidth = "4"; } else { vectorWidth = mVectorSize; } /* Create variable names to be used in the java and .rs files. Because x and * y are reserved in .rs files, we prefix variable names with "in" or "out". */ if (isOutParameter) { variableName = "out"; if (!specName.empty()) { variableName += capitalize(specName); } else if (!isReturn) { scanner->error(lineNumber) << "Should have a name.\n"; } doubleVariableName = variableName + "Double"; } else { variableName = "in"; if (specName.empty()) { scanner->error(lineNumber) << "Should have a name.\n"; } variableName += capitalize(specName); doubleVariableName = variableName + "Double"; } rsAllocName = "gAlloc" + capitalize(variableName); javaAllocName = variableName; javaArrayName = "array" + capitalize(javaAllocName); // Process the option. undefinedIfOutIsNan = false; compatibleTypeIndex = -1; if (!testOption.empty()) { if (testOption.compare(0, 6, "range(") == 0) { size_t pComma = testOption.find(','); size_t pParen = testOption.find(')'); if (pComma == string::npos || pParen == string::npos) { scanner->error(lineNumber) << "Incorrect range " << testOption << "\n"; } else { minValue = testOption.substr(6, pComma - 6); maxValue = testOption.substr(pComma + 1, pParen - pComma - 1); } } else if (testOption.compare(0, 6, "above(") == 0) { size_t pParen = testOption.find(')'); if (pParen == string::npos) { scanner->error(lineNumber) << "Incorrect testOption " << testOption << "\n"; } else { smallerParameter = testOption.substr(6, pParen - 6); } } else if (testOption.compare(0, 11, "compatible(") == 0) { size_t pParen = testOption.find(')'); if (pParen == string::npos) { scanner->error(lineNumber) << "Incorrect testOption " << testOption << "\n"; } else { compatibleTypeIndex = findCType(testOption.substr(11, pParen - 11)); } } else if (testOption.compare(0, 11, "conditional") == 0) { undefinedIfOutIsNan = true; } else { scanner->error(lineNumber) << "Unrecognized testOption " << testOption << "\n"; } } isFloatType = false; if (typeIndex >= 0) { javaBaseType = TYPES[typeIndex].javaType; specType = TYPES[typeIndex].specType; isFloatType = TYPES[typeIndex].exponentBits > 0; } if (!minValue.empty()) { if (typeIndex < 0 || TYPES[typeIndex].kind != FLOATING_POINT) { scanner->error(lineNumber) << "range(,) is only supported for floating point\n"; } } } bool VersionInfo::scan(Scanner* scanner, unsigned int maxApiLevel) { if (scanner->findOptionalTag("version:")) { const string s = scanner->getValue(); if (s.compare(0, sizeof(kTagUnreleased), kTagUnreleased) == 0) { // The API is still under development and does not have // an official version number. minVersion = maxVersion = kUnreleasedVersion; } else { sscanf(s.c_str(), "%u %u", &minVersion, &maxVersion); if (minVersion && minVersion < MIN_API_LEVEL) { scanner->error() << "Minimum version must >= 9\n"; } if (minVersion == MIN_API_LEVEL) { minVersion = 0; } if (maxVersion && maxVersion < MIN_API_LEVEL) { scanner->error() << "Maximum version must >= 9\n"; } } } if (scanner->findOptionalTag("size:")) { sscanf(scanner->getValue().c_str(), "%i", &intSize); } if (maxVersion > maxApiLevel) { maxVersion = maxApiLevel; } return minVersion == 0 || minVersion <= maxApiLevel; } Definition::Definition(const std::string& name) : mName(name), mDeprecatedApiLevel(0), mHidden(false), mFinalVersion(-1) { } void Definition::updateFinalVersion(const VersionInfo& info) { /* We set it if: * - We have never set mFinalVersion before, or * - The max version is 0, which means we have not expired this API, or * - We have a max that's later than what we currently have. */ if (mFinalVersion < 0 || info.maxVersion == 0 || (mFinalVersion > 0 && info.maxVersion > mFinalVersion)) { mFinalVersion = info.maxVersion; } } void Definition::scanDocumentationTags(Scanner* scanner, bool firstOccurence, const SpecFile* specFile) { if (scanner->findOptionalTag("hidden:")) { scanner->checkNoValue(); mHidden = true; } if (scanner->findOptionalTag("deprecated:")) { string value = scanner->getValue(); size_t pComma = value.find(", "); if (pComma != string::npos) { mDeprecatedMessage = value.substr(pComma + 2); value.erase(pComma); } sscanf(value.c_str(), "%i", &mDeprecatedApiLevel); if (mDeprecatedApiLevel <= 0) { scanner->error() << "deprecated entries should have a level > 0\n"; } } if (firstOccurence) { if (scanner->findTag("summary:")) { mSummary = scanner->getValue(); } if (scanner->findTag("description:")) { scanner->checkNoValue(); while (scanner->findOptionalTag("")) { mDescription.push_back(scanner->getValue()); } } mUrl = specFile->getDetailedDocumentationUrl() + "#android_rs:" + mName; } else if (scanner->findOptionalTag("summary:")) { scanner->error() << "Only the first specification should have a summary.\n"; } } Constant::~Constant() { for (auto i : mSpecifications) { delete i; } } Type::~Type() { for (auto i : mSpecifications) { delete i; } } Function::Function(const string& name) : Definition(name) { mCapitalizedName = capitalize(mName); } Function::~Function() { for (auto i : mSpecifications) { delete i; } } bool Function::someParametersAreDocumented() const { for (auto p : mParameters) { if (!p->documentation.empty()) { return true; } } return false; } void Function::addParameter(ParameterEntry* entry, Scanner* scanner) { for (auto i : mParameters) { if (i->name == entry->name) { // It's a duplicate. if (!entry->documentation.empty()) { scanner->error(entry->lineNumber) << "Only the first occurence of an arg should have the " "documentation.\n"; } return; } } mParameters.push_back(entry); } void Function::addReturn(ParameterEntry* entry, Scanner* scanner) { if (entry->documentation.empty()) { return; } if (!mReturnDocumentation.empty()) { scanner->error() << "ret: should be documented only for the first variant\n"; } mReturnDocumentation = entry->documentation; } void ConstantSpecification::scanConstantSpecification(Scanner* scanner, SpecFile* specFile, unsigned int maxApiLevel) { string name = scanner->getValue(); VersionInfo info; if (!info.scan(scanner, maxApiLevel)) { cout << "Skipping some " << name << " definitions.\n"; scanner->skipUntilTag("end:"); return; } bool created = false; Constant* constant = systemSpecification.findOrCreateConstant(name, &created); ConstantSpecification* spec = new ConstantSpecification(constant); constant->addSpecification(spec); constant->updateFinalVersion(info); specFile->addConstantSpecification(spec, created); spec->mVersionInfo = info; if (scanner->findTag("value:")) { spec->mValue = scanner->getValue(); } if (scanner->findTag("type:")) { spec->mType = scanner->getValue(); } constant->scanDocumentationTags(scanner, created, specFile); scanner->findTag("end:"); } void TypeSpecification::scanTypeSpecification(Scanner* scanner, SpecFile* specFile, unsigned int maxApiLevel) { string name = scanner->getValue(); VersionInfo info; if (!info.scan(scanner, maxApiLevel)) { cout << "Skipping some " << name << " definitions.\n"; scanner->skipUntilTag("end:"); return; } bool created = false; Type* type = systemSpecification.findOrCreateType(name, &created); TypeSpecification* spec = new TypeSpecification(type); type->addSpecification(spec); type->updateFinalVersion(info); specFile->addTypeSpecification(spec, created); spec->mVersionInfo = info; if (scanner->findOptionalTag("simple:")) { spec->mKind = SIMPLE; spec->mSimpleType = scanner->getValue(); } if (scanner->findOptionalTag("rs_object:")) { spec->mKind = RS_OBJECT; } if (scanner->findOptionalTag("struct:")) { spec->mKind = STRUCT; spec->mStructName = scanner->getValue(); while (scanner->findOptionalTag("field:")) { string s = scanner->getValue(); string comment; scanner->parseDocumentation(&s, &comment); spec->mFields.push_back(s); spec->mFieldComments.push_back(comment); } } if (scanner->findOptionalTag("enum:")) { spec->mKind = ENUM; spec->mEnumName = scanner->getValue(); while (scanner->findOptionalTag("value:")) { string s = scanner->getValue(); string comment; scanner->parseDocumentation(&s, &comment); spec->mValues.push_back(s); spec->mValueComments.push_back(comment); } } if (scanner->findOptionalTag("attrib:")) { spec->mAttribute = scanner->getValue(); } type->scanDocumentationTags(scanner, created, specFile); scanner->findTag("end:"); } FunctionSpecification::~FunctionSpecification() { for (auto i : mParameters) { delete i; } delete mReturn; for (auto i : mPermutations) { delete i; } } string FunctionSpecification::expandRSTypeInString(const string &s, const string &pattern, const string &cTypeStr) const { // Find index of numerical type corresponding to cTypeStr. The case where // pattern is found in s but cTypeStr is not a numerical type is checked in // checkRSTPatternValidity. int typeIdx = findCType(cTypeStr); if (typeIdx == -1) { return s; } // If index exists, perform replacement. return stringReplace(s, pattern, TYPES[typeIdx].rsDataType); } string FunctionSpecification::expandString(string s, int replacementIndexes[MAX_REPLACEABLES]) const { for (unsigned idx = 0; idx < mReplaceables.size(); idx ++) { string toString = mReplaceables[idx][replacementIndexes[idx]]; // replace #RST_i patterns with RS datatype corresponding to toString s = expandRSTypeInString(s, kRSTypePatterns[idx], toString); // replace #i patterns with C type from mReplaceables s = stringReplace(s, kCTypePatterns[idx], toString); } return s; } void FunctionSpecification::expandStringVector(const vector<string>& in, int replacementIndexes[MAX_REPLACEABLES], vector<string>* out) const { out->clear(); for (vector<string>::const_iterator iter = in.begin(); iter != in.end(); iter++) { out->push_back(expandString(*iter, replacementIndexes)); } } void FunctionSpecification::createPermutations(Function* function, Scanner* scanner) { int start[MAX_REPLACEABLES]; int end[MAX_REPLACEABLES]; for (int i = 0; i < MAX_REPLACEABLES; i++) { if (i < (int)mReplaceables.size()) { start[i] = 0; end[i] = mReplaceables[i].size(); } else { start[i] = -1; end[i] = 0; } } int replacementIndexes[MAX_REPLACEABLES]; // TODO: These loops assume that MAX_REPLACEABLES is 4. for (replacementIndexes[3] = start[3]; replacementIndexes[3] < end[3]; replacementIndexes[3]++) { for (replacementIndexes[2] = start[2]; replacementIndexes[2] < end[2]; replacementIndexes[2]++) { for (replacementIndexes[1] = start[1]; replacementIndexes[1] < end[1]; replacementIndexes[1]++) { for (replacementIndexes[0] = start[0]; replacementIndexes[0] < end[0]; replacementIndexes[0]++) { auto p = new FunctionPermutation(function, this, replacementIndexes, scanner); mPermutations.push_back(p); } } } } } string FunctionSpecification::getName(int replacementIndexes[MAX_REPLACEABLES]) const { return expandString(mUnexpandedName, replacementIndexes); } void FunctionSpecification::getReturn(int replacementIndexes[MAX_REPLACEABLES], std::string* retType, int* lineNumber) const { *retType = expandString(mReturn->type, replacementIndexes); *lineNumber = mReturn->lineNumber; } void FunctionSpecification::getParam(size_t index, int replacementIndexes[MAX_REPLACEABLES], std::string* type, std::string* name, std::string* testOption, int* lineNumber) const { ParameterEntry* p = mParameters[index]; *type = expandString(p->type, replacementIndexes); *name = p->name; *testOption = expandString(p->testOption, replacementIndexes); *lineNumber = p->lineNumber; } void FunctionSpecification::getInlines(int replacementIndexes[MAX_REPLACEABLES], std::vector<std::string>* inlines) const { expandStringVector(mInline, replacementIndexes, inlines); } void FunctionSpecification::parseTest(Scanner* scanner) { const string value = scanner->getValue(); if (value == "scalar" || value == "vector" || value == "noverify" || value == "custom" || value == "none") { mTest = value; } else if (value.compare(0, 7, "limited") == 0) { mTest = "limited"; if (value.compare(7, 1, "(") == 0) { size_t pParen = value.find(')'); if (pParen == string::npos) { scanner->error() << "Incorrect test: \"" << value << "\"\n"; } else { mPrecisionLimit = value.substr(8, pParen - 8); } } } else { scanner->error() << "Unrecognized test option: \"" << value << "\"\n"; } } bool FunctionSpecification::hasTests(unsigned int versionOfTestFiles) const { if (mVersionInfo.maxVersion != 0 && mVersionInfo.maxVersion < versionOfTestFiles) { return false; } if (mTest == "none") { return false; } return true; } void FunctionSpecification::checkRSTPatternValidity(const string &inlineStr, bool allow, Scanner *scanner) { for (int i = 0; i < MAX_REPLACEABLES; i ++) { bool patternFound = inlineStr.find(kRSTypePatterns[i]) != string::npos; if (patternFound) { if (!allow) { scanner->error() << "RST_i pattern not allowed here\n"; } else if (mIsRSTAllowed[i] == false) { scanner->error() << "Found pattern \"" << kRSTypePatterns[i] << "\" in spec. But some entry in the corresponding" << " parameter list cannot be translated to an RS type\n"; } } } } void FunctionSpecification::scanFunctionSpecification(Scanner* scanner, SpecFile* specFile, unsigned int maxApiLevel) { // Some functions like convert have # part of the name. Truncate at that point. const string& unexpandedName = scanner->getValue(); string name = unexpandedName; size_t p = name.find('#'); if (p != string::npos) { if (p > 0 && name[p - 1] == '_') { p--; } name.erase(p); } VersionInfo info; if (!info.scan(scanner, maxApiLevel)) { cout << "Skipping some " << name << " definitions.\n"; scanner->skipUntilTag("end:"); return; } bool created = false; Function* function = systemSpecification.findOrCreateFunction(name, &created); FunctionSpecification* spec = new FunctionSpecification(function); function->addSpecification(spec); function->updateFinalVersion(info); specFile->addFunctionSpecification(spec, created); spec->mUnexpandedName = unexpandedName; spec->mTest = "scalar"; // default spec->mVersionInfo = info; if (scanner->findOptionalTag("internal:")) { spec->mInternal = (scanner->getValue() == "true"); } if (scanner->findOptionalTag("intrinsic:")) { spec->mIntrinsic = (scanner->getValue() == "true"); } if (scanner->findOptionalTag("attrib:")) { spec->mAttribute = scanner->getValue(); } if (scanner->findOptionalTag("w:")) { vector<string> t; if (scanner->getValue().find("1") != string::npos) { t.push_back(""); } if (scanner->getValue().find("2") != string::npos) { t.push_back("2"); } if (scanner->getValue().find("3") != string::npos) { t.push_back("3"); } if (scanner->getValue().find("4") != string::npos) { t.push_back("4"); } spec->mReplaceables.push_back(t); // RST_i pattern not applicable for width. spec->mIsRSTAllowed.push_back(false); } while (scanner->findOptionalTag("t:")) { spec->mReplaceables.push_back(convertToTypeVector(scanner->getValue())); spec->mIsRSTAllowed.push_back(isRSTValid(spec->mReplaceables.back())); } // Disallow RST_* pattern in function name // FIXME the line number for this error would be wrong spec->checkRSTPatternValidity(unexpandedName, false, scanner); if (scanner->findTag("ret:")) { ParameterEntry* p = scanner->parseArgString(true); function->addReturn(p, scanner); spec->mReturn = p; // Disallow RST_* pattern in return type spec->checkRSTPatternValidity(p->type, false, scanner); } while (scanner->findOptionalTag("arg:")) { ParameterEntry* p = scanner->parseArgString(false); function->addParameter(p, scanner); spec->mParameters.push_back(p); // Disallow RST_* pattern in parameter type or testOption spec->checkRSTPatternValidity(p->type, false, scanner); spec->checkRSTPatternValidity(p->testOption, false, scanner); } function->scanDocumentationTags(scanner, created, specFile); if (scanner->findOptionalTag("inline:")) { scanner->checkNoValue(); while (scanner->findOptionalTag("")) { spec->mInline.push_back(scanner->getValue()); // Allow RST_* pattern in inline definitions spec->checkRSTPatternValidity(spec->mInline.back(), true, scanner); } } if (scanner->findOptionalTag("test:")) { spec->parseTest(scanner); } scanner->findTag("end:"); spec->createPermutations(function, scanner); } FunctionPermutation::FunctionPermutation(Function* func, FunctionSpecification* spec, int replacementIndexes[MAX_REPLACEABLES], Scanner* scanner) : mReturn(nullptr), mInputCount(0), mOutputCount(0) { // We expand the strings now to make capitalization easier. The previous code preserved // the #n // markers just before emitting, which made capitalization difficult. mName = spec->getName(replacementIndexes); mNameTrunk = func->getName(); mTest = spec->getTest(); mPrecisionLimit = spec->getPrecisionLimit(); spec->getInlines(replacementIndexes, &mInline); mHasFloatAnswers = false; for (size_t i = 0; i < spec->getNumberOfParams(); i++) { string type, name, testOption; int lineNumber = 0; spec->getParam(i, replacementIndexes, &type, &name, &testOption, &lineNumber); ParameterDefinition* def = new ParameterDefinition(); def->parseParameterDefinition(type, name, testOption, lineNumber, false, scanner); if (def->isOutParameter) { mOutputCount++; } else { mInputCount++; } if (def->typeIndex < 0 && mTest != "none") { scanner->error(lineNumber) << "Could not find " << def->rsBaseType << " while generating automated tests. Use test: none if not needed.\n"; } if (def->isOutParameter && def->isFloatType) { mHasFloatAnswers = true; } mParams.push_back(def); } string retType; int lineNumber = 0; spec->getReturn(replacementIndexes, &retType, &lineNumber); if (!retType.empty()) { mReturn = new ParameterDefinition(); mReturn->parseParameterDefinition(retType, "", "", lineNumber, true, scanner); if (mReturn->isFloatType) { mHasFloatAnswers = true; } mOutputCount++; } } FunctionPermutation::~FunctionPermutation() { for (auto i : mParams) { delete i; } delete mReturn; } SpecFile::SpecFile(const string& specFileName) : mSpecFileName(specFileName) { string core = mSpecFileName; // Remove .spec size_t l = core.length(); const char SPEC[] = ".spec"; const int SPEC_SIZE = sizeof(SPEC) - 1; const int start = l - SPEC_SIZE; if (start >= 0 && core.compare(start, SPEC_SIZE, SPEC) == 0) { core.erase(start); } // The header file name should have the same base but with a ".rsh" extension. mHeaderFileName = core + ".rsh"; mDetailedDocumentationUrl = core + ".html"; } void SpecFile::addConstantSpecification(ConstantSpecification* spec, bool hasDocumentation) { mConstantSpecificationsList.push_back(spec); if (hasDocumentation) { Constant* constant = spec->getConstant(); mDocumentedConstants.insert(pair<string, Constant*>(constant->getName(), constant)); } } void SpecFile::addTypeSpecification(TypeSpecification* spec, bool hasDocumentation) { mTypeSpecificationsList.push_back(spec); if (hasDocumentation) { Type* type = spec->getType(); mDocumentedTypes.insert(pair<string, Type*>(type->getName(), type)); } } void SpecFile::addFunctionSpecification(FunctionSpecification* spec, bool hasDocumentation) { mFunctionSpecificationsList.push_back(spec); if (hasDocumentation) { Function* function = spec->getFunction(); mDocumentedFunctions.insert(pair<string, Function*>(function->getName(), function)); } } // Read the specification, adding the definitions to the global functions map. bool SpecFile::readSpecFile(unsigned int maxApiLevel) { FILE* specFile = fopen(mSpecFileName.c_str(), "rt"); if (!specFile) { cerr << "Error opening input file: " << mSpecFileName << "\n"; return false; } Scanner scanner(mSpecFileName, specFile); // Scan the header that should start the file. scanner.skipBlankEntries(); if (scanner.findTag("header:")) { if (scanner.findTag("summary:")) { mBriefDescription = scanner.getValue(); } if (scanner.findTag("description:")) { scanner.checkNoValue(); while (scanner.findOptionalTag("")) { mFullDescription.push_back(scanner.getValue()); } } if (scanner.findOptionalTag("include:")) { scanner.checkNoValue(); while (scanner.findOptionalTag("")) { mVerbatimInclude.push_back(scanner.getValue()); } } scanner.findTag("end:"); } while (1) { scanner.skipBlankEntries(); if (scanner.atEnd()) { break; } const string tag = scanner.getNextTag(); if (tag == "function:") { FunctionSpecification::scanFunctionSpecification(&scanner, this, maxApiLevel); } else if (tag == "type:") { TypeSpecification::scanTypeSpecification(&scanner, this, maxApiLevel); } else if (tag == "constant:") { ConstantSpecification::scanConstantSpecification(&scanner, this, maxApiLevel); } else { scanner.error() << "Expected function:, type:, or constant:. Found: " << tag << "\n"; return false; } } fclose(specFile); return scanner.getErrorCount() == 0; } SystemSpecification::~SystemSpecification() { for (auto i : mConstants) { delete i.second; } for (auto i : mTypes) { delete i.second; } for (auto i : mFunctions) { delete i.second; } for (auto i : mSpecFiles) { delete i; } } // Returns the named entry in the map. Creates it if it's not there. template <class T> T* findOrCreate(const string& name, map<string, T*>* map, bool* created) { auto iter = map->find(name); if (iter != map->end()) { *created = false; return iter->second; } *created = true; T* f = new T(name); map->insert(pair<string, T*>(name, f)); return f; } Constant* SystemSpecification::findOrCreateConstant(const string& name, bool* created) { return findOrCreate<Constant>(name, &mConstants, created); } Type* SystemSpecification::findOrCreateType(const string& name, bool* created) { return findOrCreate<Type>(name, &mTypes, created); } Function* SystemSpecification::findOrCreateFunction(const string& name, bool* created) { return findOrCreate<Function>(name, &mFunctions, created); } bool SystemSpecification::readSpecFile(const string& fileName, unsigned int maxApiLevel) { SpecFile* spec = new SpecFile(fileName); if (!spec->readSpecFile(maxApiLevel)) { cerr << fileName << ": Failed to parse.\n"; return false; } mSpecFiles.push_back(spec); return true; } static void updateMaxApiLevel(const VersionInfo& info, unsigned int* maxApiLevel) { if (info.minVersion == VersionInfo::kUnreleasedVersion) { // Ignore development API level in consideration of max API level. return; } *maxApiLevel = max(*maxApiLevel, max(info.minVersion, info.maxVersion)); } unsigned int SystemSpecification::getMaximumApiLevel() { unsigned int maxApiLevel = 0; for (auto i : mConstants) { for (auto j: i.second->getSpecifications()) { updateMaxApiLevel(j->getVersionInfo(), &maxApiLevel); } } for (auto i : mTypes) { for (auto j: i.second->getSpecifications()) { updateMaxApiLevel(j->getVersionInfo(), &maxApiLevel); } } for (auto i : mFunctions) { for (auto j: i.second->getSpecifications()) { updateMaxApiLevel(j->getVersionInfo(), &maxApiLevel); } } return maxApiLevel; } bool SystemSpecification::generateFiles(bool forVerification, unsigned int maxApiLevel) const { bool success = generateHeaderFiles("include") && generateDocumentation("docs", forVerification) && generateTestFiles("test", maxApiLevel) && generateStubsWhiteList("slangtest", maxApiLevel); if (success) { cout << "Successfully processed " << mTypes.size() << " types, " << mConstants.size() << " constants, and " << mFunctions.size() << " functions.\n"; } return success; } string SystemSpecification::getHtmlAnchor(const string& name) const { Definition* d = nullptr; auto c = mConstants.find(name); if (c != mConstants.end()) { d = c->second; } else { auto t = mTypes.find(name); if (t != mTypes.end()) { d = t->second; } else { auto f = mFunctions.find(name); if (f != mFunctions.end()) { d = f->second; } else { return string(); } } } ostringstream stream; stream << "<a href='" << d->getUrl() << "'>" << name << "</a>"; return stream.str(); }