This is mpfr.info, produced by makeinfo version 4.13 from mpfr.texi.

This manual documents how to install and use the Multiple Precision
Floating-Point Reliable Library, version 3.1.1.

   Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
Free Software Foundation, Inc.

   Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts.  A copy of the license is included in *note GNU Free
Documentation License::.

INFO-DIR-SECTION Software libraries
START-INFO-DIR-ENTRY
* mpfr: (mpfr).                 Multiple Precision Floating-Point Reliable Library.
END-INFO-DIR-ENTRY


File: mpfr.info,  Node: Top,  Next: Copying,  Prev: (dir),  Up: (dir)

GNU MPFR
********

   This manual documents how to install and use the Multiple Precision
Floating-Point Reliable Library, version 3.1.1.

   Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
Free Software Foundation, Inc.

   Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts.  A copy of the license is included in *note GNU Free
Documentation License::.


* Menu:

* Copying::                     MPFR Copying Conditions (LGPL).
* Introduction to MPFR::        Brief introduction to GNU MPFR.
* Installing MPFR::             How to configure and compile the MPFR library.
* Reporting Bugs::              How to usefully report bugs.
* MPFR Basics::                 What every MPFR user should now.
* MPFR Interface::              MPFR functions and macros.
* API Compatibility::           API compatibility with previous MPFR versions.
* Contributors::
* References::
* GNU Free Documentation License::
* Concept Index::
* Function and Type Index::


File: mpfr.info,  Node: Copying,  Next: Introduction to MPFR,  Prev: Top,  Up: Top

MPFR Copying Conditions
***********************

The GNU MPFR library (or MPFR for short) is "free"; this means that
everyone is free to use it and free to redistribute it on a free basis.
The library is not in the public domain; it is copyrighted and there
are restrictions on its distribution, but these restrictions are
designed to permit everything that a good cooperating citizen would
want to do.  What is not allowed is to try to prevent others from
further sharing any version of this library that they might get from
you.

   Specifically, we want to make sure that you have the right to give
away copies of the library, that you receive source code or else can
get it if you want it, that you can change this library or use pieces
of it in new free programs, and that you know you can do these things.

   To make sure that everyone has such rights, we have to forbid you to
deprive anyone else of these rights.  For example, if you distribute
copies of the GNU MPFR library, you must give the recipients all the
rights that you have.  You must make sure that they, too, receive or
can get the source code.  And you must tell them their rights.

   Also, for our own protection, we must make certain that everyone
finds out that there is no warranty for the GNU MPFR library.  If it is
modified by someone else and passed on, we want their recipients to
know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

   The precise conditions of the license for the GNU MPFR library are
found in the Lesser General Public License that accompanies the source
code.  See the file COPYING.LESSER.


File: mpfr.info,  Node: Introduction to MPFR,  Next: Installing MPFR,  Prev: Copying,  Up: Top

1 Introduction to MPFR
**********************

MPFR is a portable library written in C for arbitrary precision
arithmetic on floating-point numbers. It is based on the GNU MP library.
It aims to provide a class of floating-point numbers with precise
semantics. The main characteristics of MPFR, which make it differ from
most arbitrary precision floating-point software tools, are:

   * the MPFR code is portable, i.e., the result of any operation does
     not depend on the machine word size `mp_bits_per_limb' (64 on most
     current processors);

   * the precision in bits can be set _exactly_ to any valid value for
     each variable (including very small precision);

   * MPFR provides the four rounding modes from the IEEE 754-1985
     standard, plus away-from-zero, as well as for basic operations as
     for other mathematical functions.

   In particular, with a precision of 53 bits, MPFR is able to exactly
reproduce all computations with double-precision machine floating-point
numbers (e.g., `double' type in C, with a C implementation that
rigorously follows Annex F of the ISO C99 standard and `FP_CONTRACT'
pragma set to `OFF') on the four arithmetic operations and the square
root, except the default exponent range is much wider and subnormal
numbers are not implemented (but can be emulated).

   This version of MPFR is released under the GNU Lesser General Public
License, version 3 or any later version.  It is permitted to link MPFR
to most non-free programs, as long as when distributing them the MPFR
source code and a means to re-link with a modified MPFR library is
provided.

1.1 How to Use This Manual
==========================

Everyone should read *note MPFR Basics::.  If you need to install the
library yourself, you need to read *note Installing MPFR::, too.  To
use the library you will need to refer to *note MPFR Interface::.

   The rest of the manual can be used for later reference, although it
is probably a good idea to glance through it.


File: mpfr.info,  Node: Installing MPFR,  Next: Reporting Bugs,  Prev: Introduction to MPFR,  Up: Top

2 Installing MPFR
*****************

The MPFR library is already installed on some GNU/Linux distributions,
but the development files necessary to the compilation such as `mpfr.h'
are not always present. To check that MPFR is fully installed on your
computer, you can check the presence of the file `mpfr.h' in
`/usr/include', or try to compile a small program having `#include
<mpfr.h>' (since `mpfr.h' may be installed somewhere else). For
instance, you can try to compile:

     #include <stdio.h>
     #include <mpfr.h>
     int main (void)
     {
       printf ("MPFR library: %-12s\nMPFR header:  %s (based on %d.%d.%d)\n",
               mpfr_get_version (), MPFR_VERSION_STRING, MPFR_VERSION_MAJOR,
               MPFR_VERSION_MINOR, MPFR_VERSION_PATCHLEVEL);
       return 0;
     }

with

     cc -o version version.c -lmpfr -lgmp

and if you get errors whose first line looks like

     version.c:2:19: error: mpfr.h: No such file or directory

then MPFR is probably not installed. Running this program will give you
the MPFR version.

   If MPFR is not installed on your computer, or if you want to install
a different version, please follow the steps below.

2.1 How to Install
==================

Here are the steps needed to install the library on Unix systems (more
details are provided in the `INSTALL' file):

  1. To build MPFR, you first have to install GNU MP (version 4.1 or
     higher) on your computer.  You need a C compiler, preferably GCC,
     but any reasonable compiler should work.  And you need the
     standard Unix `make' command, plus some other standard Unix
     utility commands.

     Then, in the MPFR build directory, type the following commands.

  2. `./configure'

     This will prepare the build and setup the options according to
     your system.  You can give options to specify the install
     directories (instead of the default `/usr/local'), threading
     support, and so on. See the `INSTALL' file and/or the output of
     `./configure --help' for more information, in particular if you
     get error messages.

  3. `make'

     This will compile MPFR, and create a library archive file
     `libmpfr.a'.  On most platforms, a dynamic library will be
     produced too.

  4. `make check'

     This will make sure MPFR was built correctly.  If you get error
     messages, please report this to the MPFR mailing-list
     `mpfr@inria.fr'.  (*Note Reporting Bugs::, for information on what
     to include in useful bug reports.)

  5. `make install'

     This will copy the files `mpfr.h' and `mpf2mpfr.h' to the directory
     `/usr/local/include', the library files (`libmpfr.a' and possibly
     others) to the directory `/usr/local/lib', the file `mpfr.info' to
     the directory `/usr/local/share/info', and some other documentation
     files to the directory `/usr/local/share/doc/mpfr' (or if you
     passed the `--prefix' option to `configure', using the prefix
     directory given as argument to `--prefix' instead of `/usr/local').

2.2 Other `make' Targets
========================

There are some other useful make targets:

   * `mpfr.info' or `info'

     Create or update an info version of the manual, in `mpfr.info'.

     This file is already provided in the MPFR archives.

   * `mpfr.pdf' or `pdf'

     Create a PDF version of the manual, in `mpfr.pdf'.

   * `mpfr.dvi' or `dvi'

     Create a DVI version of the manual, in `mpfr.dvi'.

   * `mpfr.ps' or `ps'

     Create a Postscript version of the manual, in `mpfr.ps'.

   * `mpfr.html' or `html'

     Create a HTML version of the manual, in several pages in the
     directory `doc/mpfr.html'; if you want only one output HTML file,
     then type `makeinfo --html --no-split mpfr.texi' from the `doc'
     directory instead.

   * `clean'

     Delete all object files and archive files, but not the
     configuration files.

   * `distclean'

     Delete all generated files not included in the distribution.

   * `uninstall'

     Delete all files copied by `make install'.

2.3 Build Problems
==================

In case of problem, please read the `INSTALL' file carefully before
reporting a bug, in particular section "In case of problem".  Some
problems are due to bad configuration on the user side (not specific to
MPFR). Problems are also mentioned in the FAQ
`http://www.mpfr.org/faq.html'.

   Please report problems to the MPFR mailing-list `mpfr@inria.fr'.
*Note Reporting Bugs::.  Some bug fixes are available on the MPFR 3.1.1
web page `http://www.mpfr.org/mpfr-3.1.1/'.

2.4 Getting the Latest Version of MPFR
======================================

The latest version of MPFR is available from
`ftp://ftp.gnu.org/gnu/mpfr/' or `http://www.mpfr.org/'.


File: mpfr.info,  Node: Reporting Bugs,  Next: MPFR Basics,  Prev: Installing MPFR,  Up: Top

3 Reporting Bugs
****************

If you think you have found a bug in the MPFR library, first have a look
on the MPFR 3.1.1 web page `http://www.mpfr.org/mpfr-3.1.1/' and the
FAQ `http://www.mpfr.org/faq.html': perhaps this bug is already known,
in which case you may find there a workaround for it.  You might also
look in the archives of the MPFR mailing-list:
`https://sympa.inria.fr/sympa/arc/mpfr'.  Otherwise, please investigate
and report it.  We have made this library available to you, and it is
not to ask too much from you, to ask you to report the bugs that you
find.

   There are a few things you should think about when you put your bug
report together.

   You have to send us a test case that makes it possible for us to
reproduce the bug, i.e., a small self-content program, using no other
library than MPFR.  Include instructions on how to run the test case.

   You also have to explain what is wrong; if you get a crash, or if
the results you get are incorrect and in that case, in what way.

   Please include compiler version information in your bug report. This
can be extracted using `cc -V' on some machines, or, if you're using
GCC, `gcc -v'. Also, include the output from `uname -a' and the MPFR
version (the GMP version may be useful too).  If you get a failure
while running `make' or `make check', please include the `config.log'
file in your bug report.

   If your bug report is good, we will do our best to help you to get a
corrected version of the library; if the bug report is poor, we will
not do anything about it (aside of chiding you to send better bug
reports).

   Send your bug report to the MPFR mailing-list `mpfr@inria.fr'.

   If you think something in this manual is unclear, or downright
incorrect, or if the language needs to be improved, please send a note
to the same address.


File: mpfr.info,  Node: MPFR Basics,  Next: MPFR Interface,  Prev: Reporting Bugs,  Up: Top

4 MPFR Basics
*************

* Menu:

* Headers and Libraries::
* Nomenclature and Types::
* MPFR Variable Conventions::
* Rounding Modes::
* Floating-Point Values on Special Numbers::
* Exceptions::
* Memory Handling::


File: mpfr.info,  Node: Headers and Libraries,  Next: Nomenclature and Types,  Prev: MPFR Basics,  Up: MPFR Basics

4.1 Headers and Libraries
=========================

All declarations needed to use MPFR are collected in the include file
`mpfr.h'.  It is designed to work with both C and C++ compilers.  You
should include that file in any program using the MPFR library:

     #include <mpfr.h>

   Note however that prototypes for MPFR functions with `FILE *'
parameters are provided only if `<stdio.h>' is included too (before
`mpfr.h'):

     #include <stdio.h>
     #include <mpfr.h>

   Likewise `<stdarg.h>' (or `<varargs.h>') is required for prototypes
with `va_list' parameters, such as `mpfr_vprintf'.

   And for any functions using `intmax_t', you must include
`<stdint.h>' or `<inttypes.h>' before `mpfr.h', to allow `mpfr.h' to
define prototypes for these functions. Moreover, users of C++ compilers
under some platforms may need to define `MPFR_USE_INTMAX_T' (and should
do it for portability) before `mpfr.h' has been included; of course, it
is possible to do that on the command line, e.g., with
`-DMPFR_USE_INTMAX_T'.

   Note: If `mpfr.h' and/or `gmp.h' (used by `mpfr.h') are included
several times (possibly from another header file), `<stdio.h>' and/or
`<stdarg.h>' (or `<varargs.h>') should be included *before the first
inclusion* of `mpfr.h' or `gmp.h'.  Alternatively, you can define
`MPFR_USE_FILE' (for MPFR I/O functions) and/or `MPFR_USE_VA_LIST' (for
MPFR functions with `va_list' parameters) anywhere before the last
inclusion of `mpfr.h'.  As a consequence, if your file is a public
header that includes `mpfr.h', you need to use the latter method.

   When calling a MPFR macro, it is not allowed to have previously
defined a macro with the same name as some keywords (currently `do',
`while' and `sizeof').

   You can avoid the use of MPFR macros encapsulating functions by
defining the `MPFR_USE_NO_MACRO' macro before `mpfr.h' is included.  In
general this should not be necessary, but this can be useful when
debugging user code: with some macros, the compiler may emit spurious
warnings with some warning options, and macros can prevent some
prototype checking.

   All programs using MPFR must link against both `libmpfr' and
`libgmp' libraries.  On a typical Unix-like system this can be done
with `-lmpfr -lgmp' (in that order), for example:

     gcc myprogram.c -lmpfr -lgmp

   MPFR is built using Libtool and an application can use that to link
if desired, *note GNU Libtool: (libtool.info)Top.

   If MPFR has been installed to a non-standard location, then it may be
necessary to set up environment variables such as `C_INCLUDE_PATH' and
`LIBRARY_PATH', or use `-I' and `-L' compiler options, in order to
point to the right directories. For a shared library, it may also be
necessary to set up some sort of run-time library path (e.g.,
`LD_LIBRARY_PATH') on some systems. Please read the `INSTALL' file for
additional information.


File: mpfr.info,  Node: Nomenclature and Types,  Next: MPFR Variable Conventions,  Prev: Headers and Libraries,  Up: MPFR Basics

4.2 Nomenclature and Types
==========================

A "floating-point number", or "float" for short, is an arbitrary
precision significand (also called mantissa) with a limited precision
exponent. The C data type for such objects is `mpfr_t' (internally
defined as a one-element array of a structure, and `mpfr_ptr' is the C
data type representing a pointer to this structure). A floating-point
number can have three special values: Not-a-Number (NaN) or plus or
minus Infinity. NaN represents an uninitialized object, the result of
an invalid operation (like 0 divided by 0), or a value that cannot be
determined (like +Infinity minus +Infinity). Moreover, like in the IEEE
754 standard, zero is signed, i.e., there are both +0 and -0; the
behavior is the same as in the IEEE 754 standard and it is generalized
to the other functions supported by MPFR. Unless documented otherwise,
the sign bit of a NaN is unspecified.

The "precision" is the number of bits used to represent the significand
of a floating-point number; the corresponding C data type is
`mpfr_prec_t'.  The precision can be any integer between
`MPFR_PREC_MIN' and `MPFR_PREC_MAX'. In the current implementation,
`MPFR_PREC_MIN' is equal to 2.

   Warning! MPFR needs to increase the precision internally, in order to
provide accurate results (and in particular, correct rounding). Do not
attempt to set the precision to any value near `MPFR_PREC_MAX',
otherwise MPFR will abort due to an assertion failure. Moreover, you
may reach some memory limit on your platform, in which case the program
may abort, crash or have undefined behavior (depending on your C
implementation).

The "rounding mode" specifies the way to round the result of a
floating-point operation, in case the exact result can not be
represented exactly in the destination significand; the corresponding C
data type is `mpfr_rnd_t'.


File: mpfr.info,  Node: MPFR Variable Conventions,  Next: Rounding Modes,  Prev: Nomenclature and Types,  Up: MPFR Basics

4.3 MPFR Variable Conventions
=============================

Before you can assign to an MPFR variable, you need to initialize it by
calling one of the special initialization functions.  When you're done
with a variable, you need to clear it out, using one of the functions
for that purpose.  A variable should only be initialized once, or at
least cleared out between each initialization.  After a variable has
been initialized, it may be assigned to any number of times.  For
efficiency reasons, avoid to initialize and clear out a variable in
loops.  Instead, initialize it before entering the loop, and clear it
out after the loop has exited.  You do not need to be concerned about
allocating additional space for MPFR variables, since any variable has
a significand of fixed size.  Hence unless you change its precision, or
clear and reinitialize it, a floating-point variable will have the same
allocated space during all its life.

   As a general rule, all MPFR functions expect output arguments before
input arguments.  This notation is based on an analogy with the
assignment operator.  MPFR allows you to use the same variable for both
input and output in the same expression.  For example, the main
function for floating-point multiplication, `mpfr_mul', can be used
like this: `mpfr_mul (x, x, x, rnd)'.  This computes the square of X
with rounding mode `rnd' and puts the result back in X.


File: mpfr.info,  Node: Rounding Modes,  Next: Floating-Point Values on Special Numbers,  Prev: MPFR Variable Conventions,  Up: MPFR Basics

4.4 Rounding Modes
==================

The following five rounding modes are supported:

   * `MPFR_RNDN': round to nearest (roundTiesToEven in IEEE 754-2008),

   * `MPFR_RNDZ': round toward zero (roundTowardZero in IEEE 754-2008),

   * `MPFR_RNDU': round toward plus infinity (roundTowardPositive in
     IEEE 754-2008),

   * `MPFR_RNDD': round toward minus infinity (roundTowardNegative in
     IEEE 754-2008),

   * `MPFR_RNDA': round away from zero.

   The `round to nearest' mode works as in the IEEE 754 standard: in
case the number to be rounded lies exactly in the middle of two
representable numbers, it is rounded to the one with the least
significant bit set to zero.  For example, the number 2.5, which is
represented by (10.1) in binary, is rounded to (10.0)=2 with a
precision of two bits, and not to (11.0)=3.  This rule avoids the
"drift" phenomenon mentioned by Knuth in volume 2 of The Art of
Computer Programming (Section 4.2.2).

   Most MPFR functions take as first argument the destination variable,
as second and following arguments the input variables, as last argument
a rounding mode, and have a return value of type `int', called the
"ternary value". The value stored in the destination variable is
correctly rounded, i.e., MPFR behaves as if it computed the result with
an infinite precision, then rounded it to the precision of this
variable.  The input variables are regarded as exact (in particular,
their precision does not affect the result).

   As a consequence, in case of a non-zero real rounded result, the
error on the result is less or equal to 1/2 ulp (unit in the last
place) of that result in the rounding to nearest mode, and less than 1
ulp of that result in the directed rounding modes (a ulp is the weight
of the least significant represented bit of the result after rounding).

   Unless documented otherwise, functions returning an `int' return a
ternary value.  If the ternary value is zero, it means that the value
stored in the destination variable is the exact result of the
corresponding mathematical function. If the ternary value is positive
(resp. negative), it means the value stored in the destination variable
is greater (resp. lower) than the exact result. For example with the
`MPFR_RNDU' rounding mode, the ternary value is usually positive,
except when the result is exact, in which case it is zero. In the case
of an infinite result, it is considered as inexact when it was obtained
by overflow, and exact otherwise. A NaN result (Not-a-Number) always
corresponds to an exact return value.  The opposite of a returned
ternary value is guaranteed to be representable in an `int'.

   Unless documented otherwise, functions returning as result the value
`1' (or any other value specified in this manual) for special cases
(like `acos(0)') yield an overflow or an underflow if that value is not
representable in the current exponent range.


File: mpfr.info,  Node: Floating-Point Values on Special Numbers,  Next: Exceptions,  Prev: Rounding Modes,  Up: MPFR Basics

4.5 Floating-Point Values on Special Numbers
============================================

This section specifies the floating-point values (of type `mpfr_t')
returned by MPFR functions (where by "returned" we mean here the
modified value of the destination object, which should not be mixed
with the ternary return value of type `int' of those functions).  For
functions returning several values (like `mpfr_sin_cos'), the rules
apply to each result separately.

   Functions can have one or several input arguments. An input point is
a mapping from these input arguments to the set of the MPFR numbers.
When none of its components are NaN, an input point can also be seen as
a tuple in the extended real numbers (the set of the real numbers with
both infinities).

   When the input point is in the domain of the mathematical function,
the result is rounded as described in Section "Rounding Modes" (but see
below for the specification of the sign of an exact zero). Otherwise
the general rules from this section apply unless stated otherwise in
the description of the MPFR function (*note MPFR Interface::).

   When the input point is not in the domain of the mathematical
function but is in its closure in the extended real numbers and the
function can be extended by continuity, the result is the obtained
limit.  Examples: `mpfr_hypot' on (+Inf,0) gives +Inf. But `mpfr_pow'
cannot be defined on (1,+Inf) using this rule, as one can find
sequences (X_N,Y_N) such that X_N goes to 1, Y_N goes to +Inf and X_N
to the Y_N goes to any positive value when N goes to the infinity.

   When the input point is in the closure of the domain of the
mathematical function and an input argument is +0 (resp. -0), one
considers the limit when the corresponding argument approaches 0 from
above (resp. below). If the limit is not defined (e.g., `mpfr_log' on
-0), the behavior is specified in the description of the MPFR function.

   When the result is equal to 0, its sign is determined by considering
the limit as if the input point were not in the domain: If one
approaches 0 from above (resp. below), the result is +0 (resp. -0); for
example, `mpfr_sin' on +0 gives +0.  In the other cases, the sign is
specified in the description of the MPFR function; for example
`mpfr_max' on -0 and +0 gives +0.

   When the input point is not in the closure of the domain of the
function, the result is NaN. Example: `mpfr_sqrt' on -17 gives NaN.

   When an input argument is NaN, the result is NaN, possibly except
when a partial function is constant on the finite floating-point
numbers; such a case is always explicitly specified in *note MPFR
Interface::.  Example: `mpfr_hypot' on (NaN,0) gives NaN, but
`mpfr_hypot' on (NaN,+Inf) gives +Inf (as specified in *note Special
Functions::), since for any finite input X, `mpfr_hypot' on (X,+Inf)
gives +Inf.


File: mpfr.info,  Node: Exceptions,  Next: Memory Handling,  Prev: Floating-Point Values on Special Numbers,  Up: MPFR Basics

4.6 Exceptions
==============

MPFR supports 6 exception types:

   * Underflow: An underflow occurs when the exact result of a function
     is a non-zero real number and the result obtained after the
     rounding, assuming an unbounded exponent range (for the rounding),
     has an exponent smaller than the minimum value of the current
     exponent range. (In the round-to-nearest mode, the halfway case is
     rounded toward zero.)

     Note: This is not the single possible definition of the underflow.
     MPFR chooses to consider the underflow _after_ rounding. The
     underflow before rounding can also be defined. For instance,
     consider a function that has the exact result 7 multiplied by two
     to the power E-4, where E is the smallest exponent (for a
     significand between 1/2 and 1), with a 2-bit target precision and
     rounding toward plus infinity.  The exact result has the exponent
     E-1. With the underflow before rounding, such a function call
     would yield an underflow, as E-1 is outside the current exponent
     range. However, MPFR first considers the rounded result assuming
     an unbounded exponent range.  The exact result cannot be
     represented exactly in precision 2, and here, it is rounded to 0.5
     times 2 to E, which is representable in the current exponent
     range. As a consequence, this will not yield an underflow in MPFR.

   * Overflow: An overflow occurs when the exact result of a function
     is a non-zero real number and the result obtained after the
     rounding, assuming an unbounded exponent range (for the rounding),
     has an exponent larger than the maximum value of the current
     exponent range. In the round-to-nearest mode, the result is
     infinite.  Note: unlike the underflow case, there is only one
     possible definition of overflow here.

   * Divide-by-zero: An exact infinite result is obtained from finite
     inputs.

   * NaN: A NaN exception occurs when the result of a function is NaN.

   * Inexact: An inexact exception occurs when the result of a function
     cannot be represented exactly and must be rounded.

   * Range error: A range exception occurs when a function that does
     not return a MPFR number (such as comparisons and conversions to
     an integer) has an invalid result (e.g., an argument is NaN in
     `mpfr_cmp', or a conversion to an integer cannot be represented in
     the target type).


   MPFR has a global flag for each exception, which can be cleared, set
or tested by functions described in *note Exception Related Functions::.

   Differences with the ISO C99 standard:

   * In C, only quiet NaNs are specified, and a NaN propagation does not
     raise an invalid exception. Unless explicitly stated otherwise,
     MPFR sets the NaN flag whenever a NaN is generated, even when a
     NaN is propagated (e.g., in NaN + NaN), as if all NaNs were
     signaling.

   * An invalid exception in C corresponds to either a NaN exception or
     a range error in MPFR.



File: mpfr.info,  Node: Memory Handling,  Prev: Exceptions,  Up: MPFR Basics

4.7 Memory Handling
===================

MPFR functions may create caches, e.g., when computing constants such
as Pi, either because the user has called a function like
`mpfr_const_pi' directly or because such a function was called
internally by the MPFR library itself to compute some other function.

   At any time, the user can free the various caches with
`mpfr_free_cache'. It is strongly advised to do that before terminating
a thread, or before exiting when using tools like `valgrind' (to avoid
memory leaks being reported).

   MPFR internal data such as flags, the exponent range, the default
precision and rounding mode, and caches (i.e., data that are not
accessed via parameters) are either global (if MPFR has not been
compiled as thread safe) or per-thread (thread local storage, TLS).
The initial values of TLS data after a thread is created entirely
depend on the compiler and thread implementation (MPFR simply does a
conventional variable initialization, the variables being declared with
an implementation-defined TLS specifier).


File: mpfr.info,  Node: MPFR Interface,  Next: API Compatibility,  Prev: MPFR Basics,  Up: Top

5 MPFR Interface
****************

The floating-point functions expect arguments of type `mpfr_t'.

   The MPFR floating-point functions have an interface that is similar
to the GNU MP functions.  The function prefix for floating-point
operations is `mpfr_'.

   The user has to specify the precision of each variable.  A
computation that assigns a variable will take place with the precision
of the assigned variable; the cost of that computation should not
depend on the precision of variables used as input (on average).

   The semantics of a calculation in MPFR is specified as follows:
Compute the requested operation exactly (with "infinite accuracy"), and
round the result to the precision of the destination variable, with the
given rounding mode.  The MPFR floating-point functions are intended to
be a smooth extension of the IEEE 754 arithmetic. The results obtained
on a given computer are identical to those obtained on a computer with
a different word size, or with a different compiler or operating system.

   MPFR _does not keep track_ of the accuracy of a computation. This is
left to the user or to a higher layer (for example the MPFI library for
interval arithmetic).  As a consequence, if two variables are used to
store only a few significant bits, and their product is stored in a
variable with large precision, then MPFR will still compute the result
with full precision.

   The value of the standard C macro `errno' may be set to non-zero by
any MPFR function or macro, whether or not there is an error.

* Menu:

* Initialization Functions::
* Assignment Functions::
* Combined Initialization and Assignment Functions::
* Conversion Functions::
* Basic Arithmetic Functions::
* Comparison Functions::
* Special Functions::
* Input and Output Functions::
* Formatted Output Functions::
* Integer Related Functions::
* Rounding Related Functions::
* Miscellaneous Functions::
* Exception Related Functions::
* Compatibility with MPF::
* Custom Interface::
* Internals::


File: mpfr.info,  Node: Initialization Functions,  Next: Assignment Functions,  Prev: MPFR Interface,  Up: MPFR Interface

5.1 Initialization Functions
============================

An `mpfr_t' object must be initialized before storing the first value in
it.  The functions `mpfr_init' and `mpfr_init2' are used for that
purpose.

 -- Function: void mpfr_init2 (mpfr_t X, mpfr_prec_t PREC)
     Initialize X, set its precision to be *exactly* PREC bits and its
     value to NaN. (Warning: the corresponding MPF function initializes
     to zero instead.)

     Normally, a variable should be initialized once only or at least
     be cleared, using `mpfr_clear', between initializations.  To
     change the precision of a variable which has already been
     initialized, use `mpfr_set_prec'.  The precision PREC must be an
     integer between `MPFR_PREC_MIN' and `MPFR_PREC_MAX' (otherwise the
     behavior is undefined).

 -- Function: void mpfr_inits2 (mpfr_prec_t PREC, mpfr_t X, ...)
     Initialize all the `mpfr_t' variables of the given variable
     argument `va_list', set their precision to be *exactly* PREC bits
     and their value to NaN.  See `mpfr_init2' for more details.  The
     `va_list' is assumed to be composed only of type `mpfr_t' (or
     equivalently `mpfr_ptr').  It begins from X, and ends when it
     encounters a null pointer (whose type must also be `mpfr_ptr').

 -- Function: void mpfr_clear (mpfr_t X)
     Free the space occupied by the significand of X.  Make sure to
     call this function for all `mpfr_t' variables when you are done
     with them.

 -- Function: void mpfr_clears (mpfr_t X, ...)
     Free the space occupied by all the `mpfr_t' variables of the given
     `va_list'. See `mpfr_clear' for more details.  The `va_list' is
     assumed to be composed only of type `mpfr_t' (or equivalently
     `mpfr_ptr').  It begins from X, and ends when it encounters a null
     pointer (whose type must also be `mpfr_ptr').

   Here is an example of how to use multiple initialization functions
(since `NULL' is not necessarily defined in this context, we use
`(mpfr_ptr) 0' instead, but `(mpfr_ptr) NULL' is also correct).

     {
       mpfr_t x, y, z, t;
       mpfr_inits2 (256, x, y, z, t, (mpfr_ptr) 0);
       ...
       mpfr_clears (x, y, z, t, (mpfr_ptr) 0);
     }

 -- Function: void mpfr_init (mpfr_t X)
     Initialize X, set its precision to the default precision, and set
     its value to NaN.  The default precision can be changed by a call
     to `mpfr_set_default_prec'.

     Warning! In a given program, some other libraries might change the
     default precision and not restore it. Thus it is safer to use
     `mpfr_init2'.

 -- Function: void mpfr_inits (mpfr_t X, ...)
     Initialize all the `mpfr_t' variables of the given `va_list', set
     their precision to the default precision and their value to NaN.
     See `mpfr_init' for more details.  The `va_list' is assumed to be
     composed only of type `mpfr_t' (or equivalently `mpfr_ptr').  It
     begins from X, and ends when it encounters a null pointer (whose
     type must also be `mpfr_ptr').

     Warning! In a given program, some other libraries might change the
     default precision and not restore it. Thus it is safer to use
     `mpfr_inits2'.

 -- Macro: MPFR_DECL_INIT (NAME, PREC)
     This macro declares NAME as an automatic variable of type `mpfr_t',
     initializes it and sets its precision to be *exactly* PREC bits
     and its value to NaN. NAME must be a valid identifier.  You must
     use this macro in the declaration section.  This macro is much
     faster than using `mpfr_init2' but has some drawbacks:

        * You *must not* call `mpfr_clear' with variables created with
          this macro (the storage is allocated at the point of
          declaration and deallocated when the brace-level is exited).

        * You *cannot* change their precision.

        * You *should not* create variables with huge precision with
          this macro.

        * Your compiler must support `Non-Constant Initializers'
          (standard in C++ and ISO C99) and `Token Pasting' (standard
          in ISO C89). If PREC is not a constant expression, your
          compiler must support `variable-length automatic arrays'
          (standard in ISO C99). GCC 2.95.3 and above supports all
          these features.  If you compile your program with GCC in C89
          mode and with `-pedantic', you may want to define the
          `MPFR_USE_EXTENSION' macro to avoid warnings due to the
          `MPFR_DECL_INIT' implementation.

 -- Function: void mpfr_set_default_prec (mpfr_prec_t PREC)
     Set the default precision to be *exactly* PREC bits, where PREC
     can be any integer between `MPFR_PREC_MIN' and `MPFR_PREC_MAX'.
     The precision of a variable means the number of bits used to store
     its significand.  All subsequent calls to `mpfr_init' or
     `mpfr_inits' will use this precision, but previously initialized
     variables are unaffected.  The default precision is set to 53 bits
     initially.

     Note: when MPFR is built with the `--enable-thread-safe' configure
     option, the default precision is local to each thread. *Note
     Memory Handling::, for more information.

 -- Function: mpfr_prec_t mpfr_get_default_prec (void)
     Return the current default MPFR precision in bits.  See the
     documentation of `mpfr_set_default_prec'.

   Here is an example on how to initialize floating-point variables:

     {
       mpfr_t x, y;
       mpfr_init (x);                /* use default precision */
       mpfr_init2 (y, 256);          /* precision _exactly_ 256 bits */
       ...
       /* When the program is about to exit, do ... */
       mpfr_clear (x);
       mpfr_clear (y);
       mpfr_free_cache ();           /* free the cache for constants like pi */
     }

   The following functions are useful for changing the precision during
a calculation.  A typical use would be for adjusting the precision
gradually in iterative algorithms like Newton-Raphson, making the
computation precision closely match the actual accurate part of the
numbers.

 -- Function: void mpfr_set_prec (mpfr_t X, mpfr_prec_t PREC)
     Reset the precision of X to be *exactly* PREC bits, and set its
     value to NaN.  The previous value stored in X is lost. It is
     equivalent to a call to `mpfr_clear(x)' followed by a call to
     `mpfr_init2(x, prec)', but more efficient as no allocation is done
     in case the current allocated space for the significand of X is
     enough.  The precision PREC can be any integer between
     `MPFR_PREC_MIN' and `MPFR_PREC_MAX'.  In case you want to keep the
     previous value stored in X, use `mpfr_prec_round' instead.

 -- Function: mpfr_prec_t mpfr_get_prec (mpfr_t X)
     Return the precision of X, i.e., the number of bits used to store
     its significand.


File: mpfr.info,  Node: Assignment Functions,  Next: Combined Initialization and Assignment Functions,  Prev: Initialization Functions,  Up: MPFR Interface

5.2 Assignment Functions
========================

These functions assign new values to already initialized floats (*note
Initialization Functions::).

 -- Function: int mpfr_set (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_set_ui (mpfr_t ROP, unsigned long int OP,
          mpfr_rnd_t RND)
 -- Function: int mpfr_set_si (mpfr_t ROP, long int OP, mpfr_rnd_t RND)
 -- Function: int mpfr_set_uj (mpfr_t ROP, uintmax_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_set_sj (mpfr_t ROP, intmax_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_set_flt (mpfr_t ROP, float OP, mpfr_rnd_t RND)
 -- Function: int mpfr_set_d (mpfr_t ROP, double OP, mpfr_rnd_t RND)
 -- Function: int mpfr_set_ld (mpfr_t ROP, long double OP, mpfr_rnd_t
          RND)
 -- Function: int mpfr_set_decimal64 (mpfr_t ROP, _Decimal64 OP,
          mpfr_rnd_t RND)
 -- Function: int mpfr_set_z (mpfr_t ROP, mpz_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_set_q (mpfr_t ROP, mpq_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_set_f (mpfr_t ROP, mpf_t OP, mpfr_rnd_t RND)
     Set the value of ROP from OP, rounded toward the given direction
     RND.  Note that the input 0 is converted to +0 by `mpfr_set_ui',
     `mpfr_set_si', `mpfr_set_uj', `mpfr_set_sj', `mpfr_set_z',
     `mpfr_set_q' and `mpfr_set_f', regardless of the rounding mode.
     If the system does not support the IEEE 754 standard,
     `mpfr_set_flt', `mpfr_set_d', `mpfr_set_ld' and
     `mpfr_set_decimal64' might not preserve the signed zeros.  The
     `mpfr_set_decimal64' function is built only with the configure
     option `--enable-decimal-float', which also requires
     `--with-gmp-build', and when the compiler or system provides the
     `_Decimal64' data type (recent versions of GCC support this data
     type); to use `mpfr_set_decimal64', one should define the macro
     `MPFR_WANT_DECIMAL_FLOATS' before including `mpfr.h'.
     `mpfr_set_q' might fail if the numerator (or the denominator) can
     not be represented as a `mpfr_t'.

     Note: If you want to store a floating-point constant to a `mpfr_t',
     you should use `mpfr_set_str' (or one of the MPFR constant
     functions, such as `mpfr_const_pi' for Pi) instead of
     `mpfr_set_flt', `mpfr_set_d', `mpfr_set_ld' or
     `mpfr_set_decimal64'.  Otherwise the floating-point constant will
     be first converted into a reduced-precision (e.g., 53-bit) binary
     (or decimal, for `mpfr_set_decimal64') number before MPFR can work
     with it.

 -- Function: int mpfr_set_ui_2exp (mpfr_t ROP, unsigned long int OP,
          mpfr_exp_t E, mpfr_rnd_t RND)
 -- Function: int mpfr_set_si_2exp (mpfr_t ROP, long int OP, mpfr_exp_t
          E, mpfr_rnd_t RND)
 -- Function: int mpfr_set_uj_2exp (mpfr_t ROP, uintmax_t OP, intmax_t
          E, mpfr_rnd_t RND)
 -- Function: int mpfr_set_sj_2exp (mpfr_t ROP, intmax_t OP, intmax_t
          E, mpfr_rnd_t RND)
 -- Function: int mpfr_set_z_2exp (mpfr_t ROP, mpz_t OP, mpfr_exp_t E,
          mpfr_rnd_t RND)
     Set the value of ROP from OP multiplied by two to the power E,
     rounded toward the given direction RND.  Note that the input 0 is
     converted to +0.

 -- Function: int mpfr_set_str (mpfr_t ROP, const char *S, int BASE,
          mpfr_rnd_t RND)
     Set ROP to the value of the string S in base BASE, rounded in the
     direction RND.  See the documentation of `mpfr_strtofr' for a
     detailed description of the valid string formats.  Contrary to
     `mpfr_strtofr', `mpfr_set_str' requires the _whole_ string to
     represent a valid floating-point number.

     The meaning of the return value differs from other MPFR functions:
     it is 0 if the entire string up to the final null character is a
     valid number in base BASE; otherwise it is -1, and ROP may have
     changed (users interested in the *note ternary value:: should use
     `mpfr_strtofr' instead).

     Note: it is preferable to use `mpfr_set_str' if one wants to
     distinguish between an infinite ROP value coming from an infinite
     S or from an overflow.

 -- Function: int mpfr_strtofr (mpfr_t ROP, const char *NPTR, char
          **ENDPTR, int BASE, mpfr_rnd_t RND)
     Read a floating-point number from a string NPTR in base BASE,
     rounded in the direction RND; BASE must be either 0 (to detect the
     base, as described below) or a number from 2 to 62 (otherwise the
     behavior is undefined). If NPTR starts with valid data, the result
     is stored in ROP and `*ENDPTR' points to the character just after
     the valid data (if ENDPTR is not a null pointer); otherwise ROP is
     set to zero (for consistency with `strtod') and the value of NPTR
     is stored in the location referenced by ENDPTR (if ENDPTR is not a
     null pointer). The usual ternary value is returned.

     Parsing follows the standard C `strtod' function with some
     extensions.  After optional leading whitespace, one has a subject
     sequence consisting of an optional sign (`+' or `-'), and either
     numeric data or special data. The subject sequence is defined as
     the longest initial subsequence of the input string, starting with
     the first non-whitespace character, that is of the expected form.

     The form of numeric data is a non-empty sequence of significand
     digits with an optional decimal point, and an optional exponent
     consisting of an exponent prefix followed by an optional sign and
     a non-empty sequence of decimal digits. A significand digit is
     either a decimal digit or a Latin letter (62 possible characters),
     with `A' = 10, `B' = 11, ..., `Z' = 35; case is ignored in bases
     less or equal to 36, in bases larger than 36, `a' = 36, `b' = 37,
     ..., `z' = 61.  The value of a significand digit must be strictly
     less than the base.  The decimal point can be either the one
     defined by the current locale or the period (the first one is
     accepted for consistency with the C standard and the practice, the
     second one is accepted to allow the programmer to provide MPFR
     numbers from strings in a way that does not depend on the current
     locale).  The exponent prefix can be `e' or `E' for bases up to
     10, or `@' in any base; it indicates a multiplication by a power
     of the base. In bases 2 and 16, the exponent prefix can also be
     `p' or `P', in which case the exponent, called _binary exponent_,
     indicates a multiplication by a power of 2 instead of the base
     (there is a difference only for base 16); in base 16 for example
     `1p2' represents 4 whereas `1@2' represents 256. The value of an
     exponent is always written in base 10.

     If the argument BASE is 0, then the base is automatically detected
     as follows. If the significand starts with `0b' or `0B', base 2 is
     assumed. If the significand starts with `0x' or `0X', base 16 is
     assumed. Otherwise base 10 is assumed.

     Note: The exponent (if present) must contain at least a digit.
     Otherwise the possible exponent prefix and sign are not part of
     the number (which ends with the significand). Similarly, if `0b',
     `0B', `0x' or `0X' is not followed by a binary/hexadecimal digit,
     then the subject sequence stops at the character `0', thus 0 is
     read.

     Special data (for infinities and NaN) can be `@inf@' or
     `@nan@(n-char-sequence-opt)', and if BASE <= 16, it can also be
     `infinity', `inf', `nan' or `nan(n-char-sequence-opt)', all case
     insensitive.  A `n-char-sequence-opt' is a possibly empty string
     containing only digits, Latin letters and the underscore (0, 1, 2,
     ..., 9, a, b, ..., z, A, B, ..., Z, _). Note: one has an optional
     sign for all data, even NaN.  For example,
     `-@nAn@(This_Is_Not_17)' is a valid representation for NaN in base
     17.


 -- Function: void mpfr_set_nan (mpfr_t X)
 -- Function: void mpfr_set_inf (mpfr_t X, int SIGN)
 -- Function: void mpfr_set_zero (mpfr_t X, int SIGN)
     Set the variable X to NaN (Not-a-Number), infinity or zero
     respectively.  In `mpfr_set_inf' or `mpfr_set_zero', X is set to
     plus infinity or plus zero iff SIGN is nonnegative; in
     `mpfr_set_nan', the sign bit of the result is unspecified.

 -- Function: void mpfr_swap (mpfr_t X, mpfr_t Y)
     Swap the values X and Y efficiently. Warning: the precisions are
     exchanged too; in case the precisions are different, `mpfr_swap'
     is thus not equivalent to three `mpfr_set' calls using a third
     auxiliary variable.


File: mpfr.info,  Node: Combined Initialization and Assignment Functions,  Next: Conversion Functions,  Prev: Assignment Functions,  Up: MPFR Interface

5.3 Combined Initialization and Assignment Functions
====================================================

 -- Macro: int mpfr_init_set (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Macro: int mpfr_init_set_ui (mpfr_t ROP, unsigned long int OP,
          mpfr_rnd_t RND)
 -- Macro: int mpfr_init_set_si (mpfr_t ROP, long int OP, mpfr_rnd_t
          RND)
 -- Macro: int mpfr_init_set_d (mpfr_t ROP, double OP, mpfr_rnd_t RND)
 -- Macro: int mpfr_init_set_ld (mpfr_t ROP, long double OP, mpfr_rnd_t
          RND)
 -- Macro: int mpfr_init_set_z (mpfr_t ROP, mpz_t OP, mpfr_rnd_t RND)
 -- Macro: int mpfr_init_set_q (mpfr_t ROP, mpq_t OP, mpfr_rnd_t RND)
 -- Macro: int mpfr_init_set_f (mpfr_t ROP, mpf_t OP, mpfr_rnd_t RND)
     Initialize ROP and set its value from OP, rounded in the direction
     RND.  The precision of ROP will be taken from the active default
     precision, as set by `mpfr_set_default_prec'.

 -- Function: int mpfr_init_set_str (mpfr_t X, const char *S, int BASE,
          mpfr_rnd_t RND)
     Initialize X and set its value from the string S in base BASE,
     rounded in the direction RND.  See `mpfr_set_str'.


File: mpfr.info,  Node: Conversion Functions,  Next: Basic Arithmetic Functions,  Prev: Combined Initialization and Assignment Functions,  Up: MPFR Interface

5.4 Conversion Functions
========================

 -- Function: float mpfr_get_flt (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: double mpfr_get_d (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: long double mpfr_get_ld (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: _Decimal64 mpfr_get_decimal64 (mpfr_t OP, mpfr_rnd_t RND)
     Convert OP to a `float' (respectively `double', `long double' or
     `_Decimal64'), using the rounding mode RND.  If OP is NaN, some
     fixed NaN (either quiet or signaling) or the result of 0.0/0.0 is
     returned. If OP is ±Inf, an infinity of the same sign or the
     result of ±1.0/0.0 is returned. If OP is zero, these functions
     return a zero, trying to preserve its sign, if possible.  The
     `mpfr_get_decimal64' function is built only under some conditions:
     see the documentation of `mpfr_set_decimal64'.

 -- Function: long mpfr_get_si (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: unsigned long mpfr_get_ui (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: intmax_t mpfr_get_sj (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: uintmax_t mpfr_get_uj (mpfr_t OP, mpfr_rnd_t RND)
     Convert OP to a `long', an `unsigned long', an `intmax_t' or an
     `uintmax_t' (respectively) after rounding it with respect to RND.
     If OP is NaN, 0 is returned and the _erange_ flag is set.  If OP
     is too big for the return type, the function returns the maximum
     or the minimum of the corresponding C type, depending on the
     direction of the overflow; the _erange_ flag is set too.  See also
     `mpfr_fits_slong_p', `mpfr_fits_ulong_p', `mpfr_fits_intmax_p' and
     `mpfr_fits_uintmax_p'.

 -- Function: double mpfr_get_d_2exp (long *EXP, mpfr_t OP, mpfr_rnd_t
          RND)
 -- Function: long double mpfr_get_ld_2exp (long *EXP, mpfr_t OP,
          mpfr_rnd_t RND)
     Return D and set EXP (formally, the value pointed to by EXP) such
     that 0.5<=abs(D)<1 and D times 2 raised to EXP equals OP rounded
     to double (resp. long double) precision, using the given rounding
     mode.  If OP is zero, then a zero of the same sign (or an unsigned
     zero, if the implementation does not have signed zeros) is
     returned, and EXP is set to 0.  If OP is NaN or an infinity, then
     the corresponding double precision (resp. long-double precision)
     value is returned, and EXP is undefined.

 -- Function: int mpfr_frexp (mpfr_exp_t *EXP, mpfr_t Y, mpfr_t X,
          mpfr_rnd_t RND)
     Set EXP (formally, the value pointed to by EXP) and Y such that
     0.5<=abs(Y)<1 and Y times 2 raised to EXP equals X rounded to the
     precision of Y, using the given rounding mode.  If X is zero, then
     Y is set to a zero of the same sign and EXP is set to 0.  If X is
     NaN or an infinity, then Y is set to the same value and EXP is
     undefined.

 -- Function: mpfr_exp_t mpfr_get_z_2exp (mpz_t ROP, mpfr_t OP)
     Put the scaled significand of OP (regarded as an integer, with the
     precision of OP) into ROP, and return the exponent EXP (which may
     be outside the current exponent range) such that OP exactly equals
     ROP times 2 raised to the power EXP.  If OP is zero, the minimal
     exponent `emin' is returned.  If OP is NaN or an infinity, the
     _erange_ flag is set, ROP is set to 0, and the the minimal
     exponent `emin' is returned.  The returned exponent may be less
     than the minimal exponent `emin' of MPFR numbers in the current
     exponent range; in case the exponent is not representable in the
     `mpfr_exp_t' type, the _erange_ flag is set and the minimal value
     of the `mpfr_exp_t' type is returned.

 -- Function: int mpfr_get_z (mpz_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Convert OP to a `mpz_t', after rounding it with respect to RND. If
     OP is NaN or an infinity, the _erange_ flag is set, ROP is set to
     0, and 0 is returned.

 -- Function: int mpfr_get_f (mpf_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Convert OP to a `mpf_t', after rounding it with respect to RND.
     The _erange_ flag is set if OP is NaN or an infinity, which do not
     exist in MPF.  If OP is NaN, then ROP is undefined.  If OP is an
     +Inf (resp. -Inf), then ROP is set to the maximum (resp. minimum)
     value in the precision of the MPF number; if a future MPF version
     supports infinities, this behavior will be considered incorrect
     and will change (portable programs should assume that ROP is set
     either to this finite number or to an infinite number).  Note that
     since MPFR currently has the same exponent type as MPF (but not
     with the same radix), the range of values is much larger in MPF
     than in MPFR, so that an overflow or underflow is not possible.

 -- Function: char * mpfr_get_str (char *STR, mpfr_exp_t *EXPPTR, int
          B, size_t N, mpfr_t OP, mpfr_rnd_t RND)
     Convert OP to a string of digits in base B, with rounding in the
     direction RND, where N is either zero (see below) or the number of
     significant digits output in the string; in the latter case, N
     must be greater or equal to 2. The base may vary from 2 to 62.  If
     the input number is an ordinary number, the exponent is written
     through the pointer EXPPTR (for input 0, the current minimal
     exponent is written).

     The generated string is a fraction, with an implicit radix point
     immediately to the left of the first digit.  For example, the
     number -3.1416 would be returned as "-31416" in the string and 1
     written at EXPPTR.  If RND is to nearest, and OP is exactly in the
     middle of two consecutive possible outputs, the one with an even
     significand is chosen, where both significands are considered with
     the exponent of OP.  Note that for an odd base, this may not
     correspond to an even last digit: for example with 2 digits in
     base 7, (14) and a half is rounded to (15) which is 12 in decimal,
     (16) and a half is rounded to (20) which is 14 in decimal, and
     (26) and a half is rounded to (26) which is 20 in decimal.

     If N is zero, the number of digits of the significand is chosen
     large enough so that re-reading the printed value with the same
     precision, assuming both output and input use rounding to nearest,
     will recover the original value of OP.  More precisely, in most
     cases, the chosen precision of STR is the minimal precision m
     depending only on P = PREC(OP) and B that satisfies the above
     property, i.e., m = 1 + ceil(P*log(2)/log(B)), with P replaced by
     P-1 if B is a power of 2, but in some very rare cases, it might be
     m+1 (the smallest case for bases up to 62 is when P equals
     186564318007 for bases 7 and 49).

     If STR is a null pointer, space for the significand is allocated
     using the current allocation function, and a pointer to the string
     is returned.  To free the returned string, you must use
     `mpfr_free_str'.

     If STR is not a null pointer, it should point to a block of storage
     large enough for the significand, i.e., at least `max(N + 2, 7)'.
     The extra two bytes are for a possible minus sign, and for the
     terminating null character, and the value 7 accounts for `-@Inf@'
     plus the terminating null character.

     A pointer to the string is returned, unless there is an error, in
     which case a null pointer is returned.

 -- Function: void mpfr_free_str (char *STR)
     Free a string allocated by `mpfr_get_str' using the current
     unallocation function.  The block is assumed to be `strlen(STR)+1'
     bytes.  For more information about how it is done: *note Custom
     Allocation: (gmp.info)Custom Allocation.

 -- Function: int mpfr_fits_ulong_p (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_fits_slong_p (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_fits_uint_p (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_fits_sint_p (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_fits_ushort_p (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_fits_sshort_p (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_fits_uintmax_p (mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_fits_intmax_p (mpfr_t OP, mpfr_rnd_t RND)
     Return non-zero if OP would fit in the respective C data type,
     respectively `unsigned long', `long', `unsigned int', `int',
     `unsigned short', `short', `uintmax_t', `intmax_t', when rounded
     to an integer in the direction RND.


File: mpfr.info,  Node: Basic Arithmetic Functions,  Next: Comparison Functions,  Prev: Conversion Functions,  Up: MPFR Interface

5.5 Basic Arithmetic Functions
==============================

 -- Function: int mpfr_add (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_add_ui (mpfr_t ROP, mpfr_t OP1, unsigned long
          int OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_add_si (mpfr_t ROP, mpfr_t OP1, long int OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_add_d (mpfr_t ROP, mpfr_t OP1, double OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_add_z (mpfr_t ROP, mpfr_t OP1, mpz_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_add_q (mpfr_t ROP, mpfr_t OP1, mpq_t OP2,
          mpfr_rnd_t RND)
     Set ROP to OP1 + OP2 rounded in the direction RND. For types
     having no signed zero, it is considered unsigned (i.e., (+0) + 0 =
     (+0) and (-0) + 0 = (-0)).  The `mpfr_add_d' function assumes that
     the radix of the `double' type is a power of 2, with a precision
     at most that declared by the C implementation (macro
     `IEEE_DBL_MANT_DIG', and if not defined 53 bits).

 -- Function: int mpfr_sub (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_ui_sub (mpfr_t ROP, unsigned long int OP1,
          mpfr_t OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_sub_ui (mpfr_t ROP, mpfr_t OP1, unsigned long
          int OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_si_sub (mpfr_t ROP, long int OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_sub_si (mpfr_t ROP, mpfr_t OP1, long int OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_d_sub (mpfr_t ROP, double OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_sub_d (mpfr_t ROP, mpfr_t OP1, double OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_z_sub (mpfr_t ROP, mpz_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_sub_z (mpfr_t ROP, mpfr_t OP1, mpz_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_sub_q (mpfr_t ROP, mpfr_t OP1, mpq_t OP2,
          mpfr_rnd_t RND)
     Set ROP to OP1 - OP2 rounded in the direction RND. For types
     having no signed zero, it is considered unsigned (i.e., (+0) - 0 =
     (+0), (-0) - 0 = (-0), 0 - (+0) = (-0) and 0 - (-0) = (+0)).  The
     same restrictions than for `mpfr_add_d' apply to `mpfr_d_sub' and
     `mpfr_sub_d'.

 -- Function: int mpfr_mul (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_mul_ui (mpfr_t ROP, mpfr_t OP1, unsigned long
          int OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_mul_si (mpfr_t ROP, mpfr_t OP1, long int OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_mul_d (mpfr_t ROP, mpfr_t OP1, double OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_mul_z (mpfr_t ROP, mpfr_t OP1, mpz_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_mul_q (mpfr_t ROP, mpfr_t OP1, mpq_t OP2,
          mpfr_rnd_t RND)
     Set ROP to OP1 times OP2 rounded in the direction RND.  When a
     result is zero, its sign is the product of the signs of the
     operands (for types having no signed zero, it is considered
     positive).  The same restrictions than for `mpfr_add_d' apply to
     `mpfr_mul_d'.

 -- Function: int mpfr_sqr (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the square of OP rounded in the direction RND.

 -- Function: int mpfr_div (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_ui_div (mpfr_t ROP, unsigned long int OP1,
          mpfr_t OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_div_ui (mpfr_t ROP, mpfr_t OP1, unsigned long
          int OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_si_div (mpfr_t ROP, long int OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_div_si (mpfr_t ROP, mpfr_t OP1, long int OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_d_div (mpfr_t ROP, double OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_div_d (mpfr_t ROP, mpfr_t OP1, double OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_div_z (mpfr_t ROP, mpfr_t OP1, mpz_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_div_q (mpfr_t ROP, mpfr_t OP1, mpq_t OP2,
          mpfr_rnd_t RND)
     Set ROP to OP1/OP2 rounded in the direction RND.  When a result is
     zero, its sign is the product of the signs of the operands (for
     types having no signed zero, it is considered positive).  The same
     restrictions than for `mpfr_add_d' apply to `mpfr_d_div' and
     `mpfr_div_d'.

 -- Function: int mpfr_sqrt (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_sqrt_ui (mpfr_t ROP, unsigned long int OP,
          mpfr_rnd_t RND)
     Set ROP to the square root of OP rounded in the direction RND (set
     ROP to -0 if OP is -0, to be consistent with the IEEE 754
     standard).  Set ROP to NaN if OP is negative.

 -- Function: int mpfr_rec_sqrt (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the reciprocal square root of OP rounded in the
     direction RND. Set ROP to +Inf if OP is ±0, +0 if OP is +Inf, and
     NaN if OP is negative.

 -- Function: int mpfr_cbrt (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_root (mpfr_t ROP, mpfr_t OP, unsigned long int
          K, mpfr_rnd_t RND)
     Set ROP to the cubic root (resp. the Kth root) of OP rounded in
     the direction RND.  For K odd (resp. even) and OP negative
     (including -Inf), set ROP to a negative number (resp. NaN).  The
     Kth root of -0 is defined to be -0, whatever the parity of K.

 -- Function: int mpfr_pow (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_pow_ui (mpfr_t ROP, mpfr_t OP1, unsigned long
          int OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_pow_si (mpfr_t ROP, mpfr_t OP1, long int OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_pow_z (mpfr_t ROP, mpfr_t OP1, mpz_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_ui_pow_ui (mpfr_t ROP, unsigned long int OP1,
          unsigned long int OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_ui_pow (mpfr_t ROP, unsigned long int OP1,
          mpfr_t OP2, mpfr_rnd_t RND)
     Set ROP to OP1 raised to OP2, rounded in the direction RND.
     Special values are handled as described in the ISO C99 and IEEE
     754-2008 standards for the `pow' function:
        * `pow(±0, Y)' returns plus or minus infinity for Y a negative
          odd integer.

        * `pow(±0, Y)' returns plus infinity for Y negative and not an
          odd integer.

        * `pow(±0, Y)' returns plus or minus zero for Y a positive odd
          integer.

        * `pow(±0, Y)' returns plus zero for Y positive and not an odd
          integer.

        * `pow(-1, ±Inf)' returns 1.

        * `pow(+1, Y)' returns 1 for any Y, even a NaN.

        * `pow(X, ±0)' returns 1 for any X, even a NaN.

        * `pow(X, Y)' returns NaN for finite negative X and finite
          non-integer Y.

        * `pow(X, -Inf)' returns plus infinity for 0 < abs(x) < 1, and
          plus zero for abs(x) > 1.

        * `pow(X, +Inf)' returns plus zero for 0 < abs(x) < 1, and plus
          infinity for abs(x) > 1.

        * `pow(-Inf, Y)' returns minus zero for Y a negative odd
          integer.

        * `pow(-Inf, Y)' returns plus zero for Y negative and not an
          odd integer.

        * `pow(-Inf, Y)' returns minus infinity for Y a positive odd
          integer.

        * `pow(-Inf, Y)' returns plus infinity for Y positive and not
          an odd integer.

        * `pow(+Inf, Y)' returns plus zero for Y negative, and plus
          infinity for Y positive.

 -- Function: int mpfr_neg (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_abs (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to -OP and the absolute value of OP respectively, rounded
     in the direction RND.  Just changes or adjusts the sign if ROP and
     OP are the same variable, otherwise a rounding might occur if the
     precision of ROP is less than that of OP.

 -- Function: int mpfr_dim (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
     Set ROP to the positive difference of OP1 and OP2, i.e., OP1 - OP2
     rounded in the direction RND if OP1 > OP2, +0 if OP1 <= OP2, and
     NaN if OP1 or OP2 is NaN.

 -- Function: int mpfr_mul_2ui (mpfr_t ROP, mpfr_t OP1, unsigned long
          int OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_mul_2si (mpfr_t ROP, mpfr_t OP1, long int OP2,
          mpfr_rnd_t RND)
     Set ROP to OP1 times 2 raised to OP2 rounded in the direction RND.
     Just increases the exponent by OP2 when ROP and OP1 are identical.

 -- Function: int mpfr_div_2ui (mpfr_t ROP, mpfr_t OP1, unsigned long
          int OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_div_2si (mpfr_t ROP, mpfr_t OP1, long int OP2,
          mpfr_rnd_t RND)
     Set ROP to OP1 divided by 2 raised to OP2 rounded in the direction
     RND. Just decreases the exponent by OP2 when ROP and OP1 are
     identical.


File: mpfr.info,  Node: Comparison Functions,  Next: Special Functions,  Prev: Basic Arithmetic Functions,  Up: MPFR Interface

5.6 Comparison Functions
========================

 -- Function: int mpfr_cmp (mpfr_t OP1, mpfr_t OP2)
 -- Function: int mpfr_cmp_ui (mpfr_t OP1, unsigned long int OP2)
 -- Function: int mpfr_cmp_si (mpfr_t OP1, long int OP2)
 -- Function: int mpfr_cmp_d (mpfr_t OP1, double OP2)
 -- Function: int mpfr_cmp_ld (mpfr_t OP1, long double OP2)
 -- Function: int mpfr_cmp_z (mpfr_t OP1, mpz_t OP2)
 -- Function: int mpfr_cmp_q (mpfr_t OP1, mpq_t OP2)
 -- Function: int mpfr_cmp_f (mpfr_t OP1, mpf_t OP2)
     Compare OP1 and OP2.  Return a positive value if OP1 > OP2, zero
     if OP1 = OP2, and a negative value if OP1 < OP2.  Both OP1 and OP2
     are considered to their full own precision, which may differ.  If
     one of the operands is NaN, set the _erange_ flag and return zero.

     Note: These functions may be useful to distinguish the three
     possible cases.  If you need to distinguish two cases only, it is
     recommended to use the predicate functions (e.g., `mpfr_equal_p'
     for the equality) described below; they behave like the IEEE 754
     comparisons, in particular when one or both arguments are NaN. But
     only floating-point numbers can be compared (you may need to do a
     conversion first).

 -- Function: int mpfr_cmp_ui_2exp (mpfr_t OP1, unsigned long int OP2,
          mpfr_exp_t E)
 -- Function: int mpfr_cmp_si_2exp (mpfr_t OP1, long int OP2,
          mpfr_exp_t E)
     Compare OP1 and OP2 multiplied by two to the power E. Similar as
     above.

 -- Function: int mpfr_cmpabs (mpfr_t OP1, mpfr_t OP2)
     Compare |OP1| and |OP2|.  Return a positive value if |OP1| >
     |OP2|, zero if |OP1| = |OP2|, and a negative value if |OP1| <
     |OP2|.  If one of the operands is NaN, set the _erange_ flag and
     return zero.

 -- Function: int mpfr_nan_p (mpfr_t OP)
 -- Function: int mpfr_inf_p (mpfr_t OP)
 -- Function: int mpfr_number_p (mpfr_t OP)
 -- Function: int mpfr_zero_p (mpfr_t OP)
 -- Function: int mpfr_regular_p (mpfr_t OP)
     Return non-zero if OP is respectively NaN, an infinity, an ordinary
     number (i.e., neither NaN nor an infinity), zero, or a regular
     number (i.e., neither NaN, nor an infinity nor zero). Return zero
     otherwise.

 -- Macro: int mpfr_sgn (mpfr_t OP)
     Return a positive value if OP > 0, zero if OP = 0, and a negative
     value if OP < 0.  If the operand is NaN, set the _erange_ flag and
     return zero.  This is equivalent to `mpfr_cmp_ui (op, 0)', but
     more efficient.

 -- Function: int mpfr_greater_p (mpfr_t OP1, mpfr_t OP2)
 -- Function: int mpfr_greaterequal_p (mpfr_t OP1, mpfr_t OP2)
 -- Function: int mpfr_less_p (mpfr_t OP1, mpfr_t OP2)
 -- Function: int mpfr_lessequal_p (mpfr_t OP1, mpfr_t OP2)
 -- Function: int mpfr_equal_p (mpfr_t OP1, mpfr_t OP2)
     Return non-zero if OP1 > OP2, OP1 >= OP2, OP1 < OP2, OP1 <= OP2,
     OP1 = OP2 respectively, and zero otherwise.  Those functions
     return zero whenever OP1 and/or OP2 is NaN.

 -- Function: int mpfr_lessgreater_p (mpfr_t OP1, mpfr_t OP2)
     Return non-zero if OP1 < OP2 or OP1 > OP2 (i.e., neither OP1, nor
     OP2 is NaN, and OP1 <> OP2), zero otherwise (i.e., OP1 and/or OP2
     is NaN, or OP1 = OP2).

 -- Function: int mpfr_unordered_p (mpfr_t OP1, mpfr_t OP2)
     Return non-zero if OP1 or OP2 is a NaN (i.e., they cannot be
     compared), zero otherwise.


File: mpfr.info,  Node: Special Functions,  Next: Input and Output Functions,  Prev: Comparison Functions,  Up: MPFR Interface

5.7 Special Functions
=====================

All those functions, except explicitly stated (for example
`mpfr_sin_cos'), return a *note ternary value::, i.e., zero for an
exact return value, a positive value for a return value larger than the
exact result, and a negative value otherwise.

   Important note: in some domains, computing special functions (either
with correct or incorrect rounding) is expensive, even for small
precision, for example the trigonometric and Bessel functions for large
argument.

 -- Function: int mpfr_log (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_log2 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_log10 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the natural logarithm of OP, log2(OP) or log10(OP),
     respectively, rounded in the direction RND.  Set ROP to -Inf if OP
     is -0 (i.e., the sign of the zero has no influence on the result).

 -- Function: int mpfr_exp (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_exp2 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_exp10 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the exponential of OP,  to 2 power of OP or to 10 power
     of OP, respectively, rounded in the direction RND.

 -- Function: int mpfr_cos (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_sin (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_tan (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the cosine of OP, sine of OP, tangent of OP, rounded in
     the direction RND.

 -- Function: int mpfr_sin_cos (mpfr_t SOP, mpfr_t COP, mpfr_t OP,
          mpfr_rnd_t RND)
     Set simultaneously SOP to the sine of OP and COP to the cosine of
     OP, rounded in the direction RND with the corresponding precisions
     of SOP and COP, which must be different variables.  Return 0 iff
     both results are exact, more precisely it returns s+4c where s=0
     if SOP is exact, s=1 if SOP is larger than the sine of OP, s=2 if
     SOP is smaller than the sine of OP, and similarly for c and the
     cosine of OP.

 -- Function: int mpfr_sec (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_csc (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_cot (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the secant of OP, cosecant of OP, cotangent of OP,
     rounded in the direction RND.

 -- Function: int mpfr_acos (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_asin (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_atan (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the arc-cosine, arc-sine or arc-tangent of OP, rounded
     in the direction RND.  Note that since `acos(-1)' returns the
     floating-point number closest to Pi according to the given
     rounding mode, this number might not be in the output range 0 <=
     ROP < \pi of the arc-cosine function; still, the result lies in
     the image of the output range by the rounding function.  The same
     holds for `asin(-1)', `asin(1)', `atan(-Inf)', `atan(+Inf)' or for
     `atan(op)' with large OP and small precision of ROP.

 -- Function: int mpfr_atan2 (mpfr_t ROP, mpfr_t Y, mpfr_t X,
          mpfr_rnd_t RND)
     Set ROP to the arc-tangent2 of Y and X, rounded in the direction
     RND: if `x > 0', `atan2(y, x) = atan (y/x)'; if `x < 0', `atan2(y,
     x) = sign(y)*(Pi - atan (abs(y/x)))', thus a number from -Pi to Pi.
     As for `atan', in case the exact mathematical result is +Pi or -Pi,
     its rounded result might be outside the function output range.

     `atan2(y, 0)' does not raise any floating-point exception.
     Special values are handled as described in the ISO C99 and IEEE
     754-2008 standards for the `atan2' function:
        * `atan2(+0, -0)' returns +Pi.

        * `atan2(-0, -0)' returns -Pi.

        * `atan2(+0, +0)' returns +0.

        * `atan2(-0, +0)' returns -0.

        * `atan2(+0, x)' returns +Pi for x < 0.

        * `atan2(-0, x)' returns -Pi for x < 0.

        * `atan2(+0, x)' returns +0 for x > 0.

        * `atan2(-0, x)' returns -0 for x > 0.

        * `atan2(y, 0)' returns -Pi/2 for y < 0.

        * `atan2(y, 0)' returns +Pi/2 for y > 0.

        * `atan2(+Inf, -Inf)' returns +3*Pi/4.

        * `atan2(-Inf, -Inf)' returns -3*Pi/4.

        * `atan2(+Inf, +Inf)' returns +Pi/4.

        * `atan2(-Inf, +Inf)' returns -Pi/4.

        * `atan2(+Inf, x)' returns +Pi/2 for finite x.

        * `atan2(-Inf, x)' returns -Pi/2 for finite x.

        * `atan2(y, -Inf)' returns +Pi for finite y > 0.

        * `atan2(y, -Inf)' returns -Pi for finite y < 0.

        * `atan2(y, +Inf)' returns +0 for finite y > 0.

        * `atan2(y, +Inf)' returns -0 for finite y < 0.

 -- Function: int mpfr_cosh (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_sinh (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_tanh (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the hyperbolic cosine, sine or tangent of OP, rounded
     in the direction RND.

 -- Function: int mpfr_sinh_cosh (mpfr_t SOP, mpfr_t COP, mpfr_t OP,
          mpfr_rnd_t RND)
     Set simultaneously SOP to the hyperbolic sine of OP and COP to the
     hyperbolic cosine of OP, rounded in the direction RND with the
     corresponding precision of SOP and COP, which must be different
     variables.  Return 0 iff both results are exact (see
     `mpfr_sin_cos' for a more detailed description of the return
     value).

 -- Function: int mpfr_sech (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_csch (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_coth (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the hyperbolic secant of OP, cosecant of OP, cotangent
     of OP, rounded in the direction RND.

 -- Function: int mpfr_acosh (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_asinh (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_atanh (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the inverse hyperbolic cosine, sine or tangent of OP,
     rounded in the direction RND.

 -- Function: int mpfr_fac_ui (mpfr_t ROP, unsigned long int OP,
          mpfr_rnd_t RND)
     Set ROP to the factorial of OP, rounded in the direction RND.

 -- Function: int mpfr_log1p (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the logarithm of one plus OP, rounded in the direction
     RND.

 -- Function: int mpfr_expm1 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the exponential of OP followed by a subtraction by one,
     rounded in the direction RND.

 -- Function: int mpfr_eint (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the exponential integral of OP, rounded in the
     direction RND.  For positive OP, the exponential integral is the
     sum of Euler's constant, of the logarithm of OP, and of the sum
     for k from 1 to infinity of OP to the power k, divided by k and
     factorial(k).  For negative OP, ROP is set to NaN (this definition
     for negative argument follows formula 5.1.2 from the Handbook of
     Mathematical Functions from Abramowitz and Stegun, a future
     version might use another definition).

 -- Function: int mpfr_li2 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to real part of the dilogarithm of OP, rounded in the
     direction RND. MPFR defines the dilogarithm function as the
     integral of -log(1-t)/t from 0 to OP.

 -- Function: int mpfr_gamma (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the value of the Gamma function on OP, rounded in the
     direction RND. When OP is a negative integer, ROP is set to NaN.

 -- Function: int mpfr_lngamma (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the value of the logarithm of the Gamma function on OP,
     rounded in the direction RND.  When -2K-1 <= OP <= -2K, K being a
     non-negative integer, ROP is set to NaN.  See also `mpfr_lgamma'.

 -- Function: int mpfr_lgamma (mpfr_t ROP, int *SIGNP, mpfr_t OP,
          mpfr_rnd_t RND)
     Set ROP to the value of the logarithm of the absolute value of the
     Gamma function on OP, rounded in the direction RND. The sign (1 or
     -1) of Gamma(OP) is returned in the object pointed to by SIGNP.
     When OP is an infinity or a non-positive integer, set ROP to +Inf.
     When OP is NaN, -Inf or a negative integer, *SIGNP is undefined,
     and when OP is ±0, *SIGNP is the sign of the zero.

 -- Function: int mpfr_digamma (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the value of the Digamma (sometimes also called Psi)
     function on OP, rounded in the direction RND.  When OP is a
     negative integer, set ROP to NaN.

 -- Function: int mpfr_zeta (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_zeta_ui (mpfr_t ROP, unsigned long OP,
          mpfr_rnd_t RND)
     Set ROP to the value of the Riemann Zeta function on OP, rounded
     in the direction RND.

 -- Function: int mpfr_erf (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_erfc (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the value of the error function on OP (resp. the
     complementary error function on OP) rounded in the direction RND.

 -- Function: int mpfr_j0 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_j1 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_jn (mpfr_t ROP, long N, mpfr_t OP, mpfr_rnd_t
          RND)
     Set ROP to the value of the first kind Bessel function of order 0,
     (resp. 1 and N) on OP, rounded in the direction RND. When OP is
     NaN, ROP is always set to NaN. When OP is plus or minus Infinity,
     ROP is set to +0. When OP is zero, and N is not zero, ROP is set
     to +0 or -0 depending on the parity and sign of N, and the sign of
     OP.

 -- Function: int mpfr_y0 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_y1 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_yn (mpfr_t ROP, long N, mpfr_t OP, mpfr_rnd_t
          RND)
     Set ROP to the value of the second kind Bessel function of order 0
     (resp. 1 and N) on OP, rounded in the direction RND. When OP is
     NaN or negative, ROP is always set to NaN. When OP is +Inf, ROP is
     set to +0. When OP is zero, ROP is set to +Inf or -Inf depending
     on the parity and sign of N.

 -- Function: int mpfr_fma (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2, mpfr_t
          OP3, mpfr_rnd_t RND)
 -- Function: int mpfr_fms (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2, mpfr_t
          OP3, mpfr_rnd_t RND)
     Set ROP to (OP1 times OP2) + OP3 (resp. (OP1 times OP2) - OP3)
     rounded in the direction RND.

 -- Function: int mpfr_agm (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
     Set ROP to the arithmetic-geometric mean of OP1 and OP2, rounded
     in the direction RND.  The arithmetic-geometric mean is the common
     limit of the sequences U_N and V_N, where U_0=OP1, V_0=OP2,
     U_(N+1) is the arithmetic mean of U_N and V_N, and V_(N+1) is the
     geometric mean of U_N and V_N.  If any operand is negative, set
     ROP to NaN.

 -- Function: int mpfr_hypot (mpfr_t ROP, mpfr_t X, mpfr_t Y,
          mpfr_rnd_t RND)
     Set ROP to the Euclidean norm of X and Y, i.e., the square root of
     the sum of the squares of X and Y, rounded in the direction RND.
     Special values are handled as described in Section F.9.4.3 of the
     ISO C99 and IEEE 754-2008 standards: If X or Y is an infinity,
     then +Inf is returned in ROP, even if the other number is NaN.

 -- Function: int mpfr_ai (mpfr_t ROP, mpfr_t X, mpfr_rnd_t RND)
     Set ROP to the value of the Airy function Ai  on X, rounded in the
     direction RND.  When X is NaN, ROP is always set to NaN. When X is
     +Inf or -Inf, ROP is +0.  The current implementation is not
     intended to be used with large arguments.  It works with abs(X)
     typically smaller than 500. For larger arguments, other methods
     should be used and will be implemented in a future version.

 -- Function: int mpfr_const_log2 (mpfr_t ROP, mpfr_rnd_t RND)
 -- Function: int mpfr_const_pi (mpfr_t ROP, mpfr_rnd_t RND)
 -- Function: int mpfr_const_euler (mpfr_t ROP, mpfr_rnd_t RND)
 -- Function: int mpfr_const_catalan (mpfr_t ROP, mpfr_rnd_t RND)
     Set ROP to the logarithm of 2, the value of Pi, of Euler's
     constant 0.577..., of Catalan's constant 0.915..., respectively,
     rounded in the direction RND. These functions cache the computed
     values to avoid other calculations if a lower or equal precision
     is requested. To free these caches, use `mpfr_free_cache'.

 -- Function: void mpfr_free_cache (void)
     Free various caches used by MPFR internally, in particular the
     caches used by the functions computing constants
     (`mpfr_const_log2', `mpfr_const_pi', `mpfr_const_euler' and
     `mpfr_const_catalan').  You should call this function before
     terminating a thread, even if you did not call these functions
     directly (they could have been called internally).

 -- Function: int mpfr_sum (mpfr_t ROP, mpfr_ptr const TAB[], unsigned
          long int N, mpfr_rnd_t RND)
     Set ROP to the sum of all elements of TAB, whose size is N,
     rounded in the direction RND. Warning: for efficiency reasons, TAB
     is an array of pointers to `mpfr_t', not an array of `mpfr_t'.  If
     the returned `int' value is zero, ROP is guaranteed to be the
     exact sum; otherwise ROP might be smaller than, equal to, or
     larger than the exact sum (in accordance to the rounding mode).
     However, `mpfr_sum' does guarantee the result is correctly rounded.


File: mpfr.info,  Node: Input and Output Functions,  Next: Formatted Output Functions,  Prev: Special Functions,  Up: MPFR Interface

5.8 Input and Output Functions
==============================

This section describes functions that perform input from an input/output
stream, and functions that output to an input/output stream.  Passing a
null pointer for a `stream' to any of these functions will make them
read from `stdin' and write to `stdout', respectively.

   When using any of these functions, you must include the `<stdio.h>'
standard header before `mpfr.h', to allow `mpfr.h' to define prototypes
for these functions.

 -- Function: size_t mpfr_out_str (FILE *STREAM, int BASE, size_t N,
          mpfr_t OP, mpfr_rnd_t RND)
     Output OP on stream STREAM, as a string of digits in base BASE,
     rounded in the direction RND.  The base may vary from 2 to 62.
     Print N significant digits exactly, or if N is 0, enough digits so
     that OP can be read back exactly (see `mpfr_get_str').

     In addition to the significant digits, a decimal point (defined by
     the current locale) at the right of the first digit and a trailing
     exponent in base 10, in the form `eNNN', are printed. If BASE is
     greater than 10, `@' will be used instead of `e' as exponent
     delimiter.

     Return the number of characters written, or if an error occurred,
     return 0.

 -- Function: size_t mpfr_inp_str (mpfr_t ROP, FILE *STREAM, int BASE,
          mpfr_rnd_t RND)
     Input a string in base BASE from stream STREAM, rounded in the
     direction RND, and put the read float in ROP.

     This function reads a word (defined as a sequence of characters
     between whitespace) and parses it using `mpfr_set_str'.  See the
     documentation of `mpfr_strtofr' for a detailed description of the
     valid string formats.

     Return the number of bytes read, or if an error occurred, return 0.


File: mpfr.info,  Node: Formatted Output Functions,  Next: Integer Related Functions,  Prev: Input and Output Functions,  Up: MPFR Interface

5.9 Formatted Output Functions
==============================

5.9.1 Requirements
------------------

The class of `mpfr_printf' functions provides formatted output in a
similar manner as the standard C `printf'. These functions are defined
only if your system supports ISO C variadic functions and the
corresponding argument access macros.

   When using any of these functions, you must include the `<stdio.h>'
standard header before `mpfr.h', to allow `mpfr.h' to define prototypes
for these functions.

5.9.2 Format String
-------------------

The format specification accepted by `mpfr_printf' is an extension of
the `printf' one. The conversion specification is of the form:
     % [flags] [width] [.[precision]] [type] [rounding] conv
   `flags', `width', and `precision' have the same meaning as for the
standard `printf' (in particular, notice that the `precision' is
related to the number of digits displayed in the base chosen by `conv'
and not related to the internal precision of the `mpfr_t' variable).
`mpfr_printf' accepts the same `type' specifiers as GMP (except the
non-standard and deprecated `q', use `ll' instead), namely the length
modifiers defined in the C standard:

     `h'       `short'
     `hh'      `char'
     `j'       `intmax_t' or `uintmax_t'
     `l'       `long' or `wchar_t'
     `ll'      `long long'
     `L'       `long double'
     `t'       `ptrdiff_t'
     `z'       `size_t'

   and the `type' specifiers defined in GMP plus `R' and `P' specific
to MPFR (the second column in the table below shows the type of the
argument read in the argument list and the kind of `conv' specifier to
use after the `type' specifier):

     `F'       `mpf_t', float conversions
     `Q'       `mpq_t', integer conversions
     `M'       `mp_limb_t', integer conversions
     `N'       `mp_limb_t' array, integer conversions
     `Z'       `mpz_t', integer conversions
     `P'       `mpfr_prec_t', integer conversions
     `R'       `mpfr_t', float conversions

   The `type' specifiers have the same restrictions as those mentioned
in the GMP documentation: *note Formatted Output Strings:
(gmp.info)Formatted Output Strings.  In particular, the `type'
specifiers (except `R' and `P') are supported only if they are
supported by `gmp_printf' in your GMP build; this implies that the
standard specifiers, such as `t', must _also_ be supported by your C
library if you want to use them.

   The `rounding' field is specific to `mpfr_t' arguments and should
not be used with other types.

   With conversion specification not involving `P' and `R' types,
`mpfr_printf' behaves exactly as `gmp_printf'.

   The `P' type specifies that a following `o', `u', `x', or `X'
conversion specifier applies to a `mpfr_prec_t' argument.  It is needed
because the `mpfr_prec_t' type does not necessarily correspond to an
`unsigned int' or any fixed standard type.  The `precision' field
specifies the minimum number of digits to appear. The default
`precision' is 1.  For example:
     mpfr_t x;
     mpfr_prec_t p;
     mpfr_init (x);
     ...
     p = mpfr_get_prec (x);
     mpfr_printf ("variable x with %Pu bits", p);

   The `R' type specifies that a following `a', `A', `b', `e', `E',
`f', `F', `g', `G', or `n' conversion specifier applies to a `mpfr_t'
argument.  The `R' type can be followed by a `rounding' specifier
denoted by one of the following characters:

     `U'       round toward plus infinity
     `D'       round toward minus infinity
     `Y'       round away from zero
     `Z'       round toward zero
     `N'       round to nearest (with ties to even)
     `*'       rounding mode indicated by the
               `mpfr_rnd_t' argument just before the
               corresponding `mpfr_t' variable.

   The default rounding mode is rounding to nearest.  The following
three examples are equivalent:
     mpfr_t x;
     mpfr_init (x);
     ...
     mpfr_printf ("%.128Rf", x);
     mpfr_printf ("%.128RNf", x);
     mpfr_printf ("%.128R*f", MPFR_RNDN, x);

   Note that the rounding away from zero mode is specified with `Y'
because ISO C reserves the `A' specifier for hexadecimal output (see
below).

   The output `conv' specifiers allowed with `mpfr_t' parameter are:

     `a' `A'   hex float, C99 style
     `b'       binary output
     `e' `E'   scientific format float
     `f' `F'   fixed point float
     `g' `G'   fixed or scientific float

   The conversion specifier `b' which displays the argument in binary is
specific to `mpfr_t' arguments and should not be used with other types.
Other conversion specifiers have the same meaning as for a `double'
argument.

   In case of non-decimal output, only the significand is written in the
specified base, the exponent is always displayed in decimal.  Special
values are always displayed as `nan', `-inf', and `inf' for `a', `b',
`e', `f', and `g' specifiers and `NAN', `-INF', and `INF' for `A', `E',
`F', and `G' specifiers.

   If the `precision' field is not empty, the `mpfr_t' number is
rounded to the given precision in the direction specified by the
rounding mode.  If the precision is zero with rounding to nearest mode
and one of the following `conv' specifiers: `a', `A', `b', `e', `E',
tie case is rounded to even when it lies between two consecutive values
at the wanted precision which have the same exponent, otherwise, it is
rounded away from zero.  For instance, 85 is displayed as "8e+1" and 95
is displayed as "1e+2" with the format specification `"%.0RNe"'.  This
also applies when the `g' (resp. `G') conversion specifier uses the `e'
(resp. `E') style.  If the precision is set to a value greater than the
maximum value for an `int', it will be silently reduced down to
`INT_MAX'.

   If the `precision' field is empty (as in `%Re' or `%.RE') with
`conv' specifier `e' and `E', the number is displayed with enough
digits so that it can be read back exactly, assuming that the input and
output variables have the same precision and that the input and output
rounding modes are both rounding to nearest (as for `mpfr_get_str').
The default precision for an empty `precision' field with `conv'
specifiers `f', `F', `g', and `G' is 6.

5.9.3 Functions
---------------

For all the following functions, if the number of characters which
ought to be written appears to exceed the maximum limit for an `int',
nothing is written in the stream (resp. to `stdout', to BUF, to STR),
the function returns -1, sets the _erange_ flag, and (in POSIX system
only) `errno' is set to `EOVERFLOW'.

 -- Function: int mpfr_fprintf (FILE *STREAM, const char *TEMPLATE, ...)
 -- Function: int mpfr_vfprintf (FILE *STREAM, const char *TEMPLATE,
          va_list AP)
     Print to the stream STREAM the optional arguments under the
     control of the template string TEMPLATE.  Return the number of
     characters written or a negative value if an error occurred.

 -- Function: int mpfr_printf (const char *TEMPLATE, ...)
 -- Function: int mpfr_vprintf (const char *TEMPLATE, va_list AP)
     Print to `stdout' the optional arguments under the control of the
     template string TEMPLATE.  Return the number of characters written
     or a negative value if an error occurred.

 -- Function: int mpfr_sprintf (char *BUF, const char *TEMPLATE, ...)
 -- Function: int mpfr_vsprintf (char *BUF, const char *TEMPLATE,
          va_list AP)
     Form a null-terminated string corresponding to the optional
     arguments under the control of the template string TEMPLATE, and
     print it in BUF. No overlap is permitted between BUF and the other
     arguments.  Return the number of characters written in the array
     BUF _not counting_ the terminating null character or a negative
     value if an error occurred.

 -- Function: int mpfr_snprintf (char *BUF, size_t N, const char
          *TEMPLATE, ...)
 -- Function: int mpfr_vsnprintf (char *BUF, size_t N, const char
          *TEMPLATE, va_list AP)
     Form a null-terminated string corresponding to the optional
     arguments under the control of the template string TEMPLATE, and
     print it in BUF. If N is zero, nothing is written and BUF may be a
     null pointer, otherwise, the N-1 first characters are written in
     BUF and the N-th is a null character.  Return the number of
     characters that would have been written had N be sufficiently
     large, _not counting_ the terminating null character, or a
     negative value if an error occurred.

 -- Function: int mpfr_asprintf (char **STR, const char *TEMPLATE, ...)
 -- Function: int mpfr_vasprintf (char **STR, const char *TEMPLATE,
          va_list AP)
     Write their output as a null terminated string in a block of
     memory allocated using the current allocation function. A pointer
     to the block is stored in STR. The block of memory must be freed
     using `mpfr_free_str'.  The return value is the number of
     characters written in the string, excluding the null-terminator,
     or a negative value if an error occurred.


File: mpfr.info,  Node: Integer Related Functions,  Next: Rounding Related Functions,  Prev: Formatted Output Functions,  Up: MPFR Interface

5.10 Integer and Remainder Related Functions
============================================

 -- Function: int mpfr_rint (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_ceil (mpfr_t ROP, mpfr_t OP)
 -- Function: int mpfr_floor (mpfr_t ROP, mpfr_t OP)
 -- Function: int mpfr_round (mpfr_t ROP, mpfr_t OP)
 -- Function: int mpfr_trunc (mpfr_t ROP, mpfr_t OP)
     Set ROP to OP rounded to an integer.  `mpfr_rint' rounds to the
     nearest representable integer in the given direction RND,
     `mpfr_ceil' rounds to the next higher or equal representable
     integer, `mpfr_floor' to the next lower or equal representable
     integer, `mpfr_round' to the nearest representable integer,
     rounding halfway cases away from zero (as in the roundTiesToAway
     mode of IEEE 754-2008), and `mpfr_trunc' to the next representable
     integer toward zero.

     The returned value is zero when the result is exact, positive when
     it is greater than the original value of OP, and negative when it
     is smaller.  More precisely, the returned value is 0 when OP is an
     integer representable in ROP, 1 or -1 when OP is an integer that
     is not representable in ROP, 2 or -2 when OP is not an integer.

     Note that `mpfr_round' is different from `mpfr_rint' called with
     the rounding to nearest mode (where halfway cases are rounded to
     an even integer or significand). Note also that no double rounding
     is performed; for instance, 10.5 (1010.1 in binary) is rounded by
     `mpfr_rint' with rounding to nearest to 12 (1100 in binary) in
     2-bit precision, because the two enclosing numbers representable
     on two bits are 8 and 12, and the closest is 12.  (If one first
     rounded to an integer, one would round 10.5 to 10 with even
     rounding, and then 10 would be rounded to 8 again with even
     rounding.)

 -- Function: int mpfr_rint_ceil (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
 -- Function: int mpfr_rint_floor (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t
          RND)
 -- Function: int mpfr_rint_round (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t
          RND)
 -- Function: int mpfr_rint_trunc (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t
          RND)
     Set ROP to OP rounded to an integer.  `mpfr_rint_ceil' rounds to
     the next higher or equal integer, `mpfr_rint_floor' to the next
     lower or equal integer, `mpfr_rint_round' to the nearest integer,
     rounding halfway cases away from zero, and `mpfr_rint_trunc' to
     the next integer toward zero.  If the result is not representable,
     it is rounded in the direction RND.  The returned value is the
     ternary value associated with the considered round-to-integer
     function (regarded in the same way as any other mathematical
     function).  Contrary to `mpfr_rint', those functions do perform a
     double rounding: first OP is rounded to the nearest integer in the
     direction given by the function name, then this nearest integer
     (if not representable) is rounded in the given direction RND.  For
     example, `mpfr_rint_round' with rounding to nearest and a precision
     of two bits rounds 6.5 to 7 (halfway cases away from zero), then 7
     is rounded to 8 by the round-even rule, despite the fact that 6 is
     also representable on two bits, and is closer to 6.5 than 8.

 -- Function: int mpfr_frac (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
     Set ROP to the fractional part of OP, having the same sign as OP,
     rounded in the direction RND (unlike in `mpfr_rint', RND affects
     only how the exact fractional part is rounded, not how the
     fractional part is generated).

 -- Function: int mpfr_modf (mpfr_t IOP, mpfr_t FOP, mpfr_t OP,
          mpfr_rnd_t RND)
     Set simultaneously IOP to the integral part of OP and FOP to the
     fractional part of OP, rounded in the direction RND with the
     corresponding precision of IOP and FOP (equivalent to
     `mpfr_trunc(IOP, OP, RND)' and `mpfr_frac(FOP, OP, RND)'). The
     variables IOP and FOP must be different. Return 0 iff both results
     are exact (see `mpfr_sin_cos' for a more detailed description of
     the return value).

 -- Function: int mpfr_fmod (mpfr_t R, mpfr_t X, mpfr_t Y, mpfr_rnd_t
          RND)
 -- Function: int mpfr_remainder (mpfr_t R, mpfr_t X, mpfr_t Y,
          mpfr_rnd_t RND)
 -- Function: int mpfr_remquo (mpfr_t R, long* Q, mpfr_t X, mpfr_t Y,
          mpfr_rnd_t RND)
     Set R to the value of X - NY, rounded according to the direction
     RND, where N is the integer quotient of X divided by Y, defined as
     follows: N is rounded toward zero for `mpfr_fmod', and to the
     nearest integer (ties rounded to even) for `mpfr_remainder' and
     `mpfr_remquo'.

     Special values are handled as described in Section F.9.7.1 of the
     ISO C99 standard: If X is infinite or Y is zero, R is NaN.  If Y
     is infinite and X is finite, R is X rounded to the precision of R.
     If R is zero, it has the sign of X.  The return value is the
     ternary value corresponding to R.

     Additionally, `mpfr_remquo' stores the low significant bits from
     the quotient N in *Q (more precisely the number of bits in a
     `long' minus one), with the sign of X divided by Y (except if
     those low bits are all zero, in which case zero is returned).
     Note that X may be so large in magnitude relative to Y that an
     exact representation of the quotient is not practical.  The
     `mpfr_remainder' and `mpfr_remquo' functions are useful for
     additive argument reduction.

 -- Function: int mpfr_integer_p (mpfr_t OP)
     Return non-zero iff OP is an integer.


File: mpfr.info,  Node: Rounding Related Functions,  Next: Miscellaneous Functions,  Prev: Integer Related Functions,  Up: MPFR Interface

5.11 Rounding Related Functions
===============================

 -- Function: void mpfr_set_default_rounding_mode (mpfr_rnd_t RND)
     Set the default rounding mode to RND.  The default rounding mode
     is to nearest initially.

 -- Function: mpfr_rnd_t mpfr_get_default_rounding_mode (void)
     Get the default rounding mode.

 -- Function: int mpfr_prec_round (mpfr_t X, mpfr_prec_t PREC,
          mpfr_rnd_t RND)
     Round X according to RND with precision PREC, which must be an
     integer between `MPFR_PREC_MIN' and `MPFR_PREC_MAX' (otherwise the
     behavior is undefined).  If PREC is greater or equal to the
     precision of X, then new space is allocated for the significand,
     and it is filled with zeros.  Otherwise, the significand is
     rounded to precision PREC with the given direction. In both cases,
     the precision of X is changed to PREC.

     Here is an example of how to use `mpfr_prec_round' to implement
     Newton's algorithm to compute the inverse of A, assuming X is
     already an approximation to N bits:
            mpfr_set_prec (t, 2 * n);
            mpfr_set (t, a, MPFR_RNDN);         /* round a to 2n bits */
            mpfr_mul (t, t, x, MPFR_RNDN);      /* t is correct to 2n bits */
            mpfr_ui_sub (t, 1, t, MPFR_RNDN);   /* high n bits cancel with 1 */
            mpfr_prec_round (t, n, MPFR_RNDN);  /* t is correct to n bits */
            mpfr_mul (t, t, x, MPFR_RNDN);      /* t is correct to n bits */
            mpfr_prec_round (x, 2 * n, MPFR_RNDN); /* exact */
            mpfr_add (x, x, t, MPFR_RNDN);      /* x is correct to 2n bits */

 -- Function: int mpfr_can_round (mpfr_t B, mpfr_exp_t ERR, mpfr_rnd_t
          RND1, mpfr_rnd_t RND2, mpfr_prec_t PREC)
     Assuming B is an approximation of an unknown number X in the
     direction RND1 with error at most two to the power E(b)-ERR where
     E(b) is the exponent of B, return a non-zero value if one is able
     to round correctly X to precision PREC with the direction RND2,
     and 0 otherwise (including for NaN and Inf).  This function *does
     not modify* its arguments.

     If RND1 is `MPFR_RNDN', then the sign of the error is unknown, but
     its absolute value is the same, so that the possible range is
     twice as large as with a directed rounding for RND1.

     Note: if one wants to also determine the correct *note ternary
     value:: when rounding B to precision PREC with rounding mode RND,
     a useful trick is the following: if (mpfr_can_round (b, err, MPFR_RNDN, MPFR_RNDZ, prec + (rnd == MPFR_RNDN)))
        ...
      Indeed, if RND is `MPFR_RNDN', this will check if one can round
     to PREC+1 bits with a directed rounding: if so, one can surely
     round to nearest to PREC bits, and in addition one can determine
     the correct ternary value, which would not be the case when B is
     near from a value exactly representable on PREC bits.

 -- Function: mpfr_prec_t mpfr_min_prec (mpfr_t X)
     Return the minimal number of bits required to store the
     significand of X, and 0 for special values, including 0. (Warning:
     the returned value can be less than `MPFR_PREC_MIN'.)

     The function name is subject to change.

 -- Function: const char * mpfr_print_rnd_mode (mpfr_rnd_t RND)
     Return a string ("MPFR_RNDD", "MPFR_RNDU", "MPFR_RNDN",
     "MPFR_RNDZ", "MPFR_RNDA") corresponding to the rounding mode RND,
     or a null pointer if RND is an invalid rounding mode.


File: mpfr.info,  Node: Miscellaneous Functions,  Next: Exception Related Functions,  Prev: Rounding Related Functions,  Up: MPFR Interface

5.12 Miscellaneous Functions
============================

 -- Function: void mpfr_nexttoward (mpfr_t X, mpfr_t Y)
     If X or Y is NaN, set X to NaN. If X and Y are equal, X is
     unchanged. Otherwise, if X is different from Y, replace X by the
     next floating-point number (with the precision of X and the
     current exponent range) in the direction of Y (the infinite values
     are seen as the smallest and largest floating-point numbers). If
     the result is zero, it keeps the same sign. No underflow or
     overflow is generated.

 -- Function: void mpfr_nextabove (mpfr_t X)
 -- Function: void mpfr_nextbelow (mpfr_t X)
     Equivalent to `mpfr_nexttoward' where Y is plus infinity (resp.
     minus infinity).

 -- Function: int mpfr_min (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
 -- Function: int mpfr_max (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
     Set ROP to the minimum (resp. maximum) of OP1 and OP2. If OP1 and
     OP2 are both NaN, then ROP is set to NaN. If OP1 or OP2 is NaN,
     then ROP is set to the numeric value. If OP1 and OP2 are zeros of
     different signs, then ROP is set to -0 (resp. +0).

 -- Function: int mpfr_urandomb (mpfr_t ROP, gmp_randstate_t STATE)
     Generate a uniformly distributed random float in the interval 0 <=
     ROP < 1. More precisely, the number can be seen as a float with a
     random non-normalized significand and exponent 0, which is then
     normalized (thus if E denotes the exponent after normalization,
     then the least -E significant bits of the significand are always
     0).

     Return 0, unless the exponent is not in the current exponent
     range, in which case ROP is set to NaN and a non-zero value is
     returned (this should never happen in practice, except in very
     specific cases). The second argument is a `gmp_randstate_t'
     structure which should be created using the GMP `gmp_randinit'
     function (see the GMP manual).

     Note: for a given version of MPFR, the returned value of ROP and
     the new value of STATE (which controls further random values) do
     not depend on the machine word size.

 -- Function: int mpfr_urandom (mpfr_t ROP, gmp_randstate_t STATE,
          mpfr_rnd_t RND)
     Generate a uniformly distributed random float.  The floating-point
     number ROP can be seen as if a random real number is generated
     according to the continuous uniform distribution on the interval
     [0, 1] and then rounded in the direction RND.

     The second argument is a `gmp_randstate_t' structure which should
     be created using the GMP `gmp_randinit' function (see the GMP
     manual).

     Note: the note for `mpfr_urandomb' holds too. In addition, the
     exponent range and the rounding mode might have a side effect on
     the next random state.

 -- Function: int mpfr_grandom (mpfr_t ROP1, mpfr_t ROP2,
          gmp_randstate_t STATE, mpfr_rnd_t RND)
     Generate two random floats according to a standard normal gaussian
     distribution. If ROP2 is a null pointer, then only one value is
     generated and stored in ROP1.

     The floating-point number ROP1 (and ROP2) can be seen as if a
     random real number were generated according to the standard normal
     gaussian distribution and then rounded in the direction RND.

     The third argument is a `gmp_randstate_t' structure, which should
     be created using the GMP `gmp_randinit' function (see the GMP
     manual).

     The combination of the ternary values is returned like with
     `mpfr_sin_cos'. If ROP2 is a null pointer, the second ternary
     value is assumed to be 0 (note that the encoding of the only
     ternary value is not the same as the usual encoding for functions
     that return only one result). Otherwise the ternary value of a
     random number is always non-zero.

     Note: the note for `mpfr_urandomb' holds too. In addition, the
     exponent range and the rounding mode might have a side effect on
     the next random state.

 -- Function: mpfr_exp_t mpfr_get_exp (mpfr_t X)
     Return the exponent of X, assuming that X is a non-zero ordinary
     number and the significand is considered in [1/2,1). The behavior
     for NaN, infinity or zero is undefined.

 -- Function: int mpfr_set_exp (mpfr_t X, mpfr_exp_t E)
     Set the exponent of X if E is in the current exponent range, and
     return 0 (even if X is not a non-zero ordinary number); otherwise,
     return a non-zero value.  The significand is assumed to be in
     [1/2,1).

 -- Function: int mpfr_signbit (mpfr_t OP)
     Return a non-zero value iff OP has its sign bit set (i.e., if it is
     negative, -0, or a NaN whose representation has its sign bit set).

 -- Function: int mpfr_setsign (mpfr_t ROP, mpfr_t OP, int S,
          mpfr_rnd_t RND)
     Set the value of ROP from OP, rounded toward the given direction
     RND, then set (resp. clear) its sign bit if S is non-zero (resp.
     zero), even when OP is a NaN.

 -- Function: int mpfr_copysign (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
     Set the value of ROP from OP1, rounded toward the given direction
     RND, then set its sign bit to that of OP2 (even when OP1 or OP2 is
     a NaN). This function is equivalent to `mpfr_setsign (ROP, OP1,
     mpfr_signbit (OP2), RND)'.

 -- Function: const char * mpfr_get_version (void)
     Return the MPFR version, as a null-terminated string.

 -- Macro: MPFR_VERSION
 -- Macro: MPFR_VERSION_MAJOR
 -- Macro: MPFR_VERSION_MINOR
 -- Macro: MPFR_VERSION_PATCHLEVEL
 -- Macro: MPFR_VERSION_STRING
     `MPFR_VERSION' is the version of MPFR as a preprocessing constant.
     `MPFR_VERSION_MAJOR', `MPFR_VERSION_MINOR' and
     `MPFR_VERSION_PATCHLEVEL' are respectively the major, minor and
     patch level of MPFR version, as preprocessing constants.
     `MPFR_VERSION_STRING' is the version (with an optional suffix, used
     in development and pre-release versions) as a string constant,
     which can be compared to the result of `mpfr_get_version' to check
     at run time the header file and library used match:
          if (strcmp (mpfr_get_version (), MPFR_VERSION_STRING))
            fprintf (stderr, "Warning: header and library do not match\n");
     Note: Obtaining different strings is not necessarily an error, as
     in general, a program compiled with some old MPFR version can be
     dynamically linked with a newer MPFR library version (if allowed
     by the library versioning system).

 -- Macro: long MPFR_VERSION_NUM (MAJOR, MINOR, PATCHLEVEL)
     Create an integer in the same format as used by `MPFR_VERSION'
     from the given MAJOR, MINOR and PATCHLEVEL.  Here is an example of
     how to check the MPFR version at compile time:
          #if (!defined(MPFR_VERSION) || (MPFR_VERSION<MPFR_VERSION_NUM(3,0,0)))
          # error "Wrong MPFR version."
          #endif

 -- Function: const char * mpfr_get_patches (void)
     Return a null-terminated string containing the ids of the patches
     applied to the MPFR library (contents of the `PATCHES' file),
     separated by spaces.  Note: If the program has been compiled with
     an older MPFR version and is dynamically linked with a new MPFR
     library version, the identifiers of the patches applied to the old
     (compile-time) MPFR version are not available (however this
     information should not have much interest in general).

 -- Function: int mpfr_buildopt_tls_p (void)
     Return a non-zero value if MPFR was compiled as thread safe using
     compiler-level Thread Local Storage (that is, MPFR was built with
     the `--enable-thread-safe' configure option, see `INSTALL' file),
     return zero otherwise.

 -- Function: int mpfr_buildopt_decimal_p (void)
     Return a non-zero value if MPFR was compiled with decimal float
     support (that is, MPFR was built with the `--enable-decimal-float'
     configure option), return zero otherwise.

 -- Function: int mpfr_buildopt_gmpinternals_p (void)
     Return a non-zero value if MPFR was compiled with GMP internals
     (that is, MPFR was built with either `--with-gmp-build' or
     `--enable-gmp-internals' configure option), return zero otherwise.

 -- Function: const char * mpfr_buildopt_tune_case (void)
     Return a string saying which thresholds file has been used at
     compile time.  This file is normally selected from the processor
     type.


File: mpfr.info,  Node: Exception Related Functions,  Next: Compatibility with MPF,  Prev: Miscellaneous Functions,  Up: MPFR Interface

5.13 Exception Related Functions
================================

 -- Function: mpfr_exp_t mpfr_get_emin (void)
 -- Function: mpfr_exp_t mpfr_get_emax (void)
     Return the (current) smallest and largest exponents allowed for a
     floating-point variable. The smallest positive value of a
     floating-point variable is one half times 2 raised to the smallest
     exponent and the largest value has the form (1 - epsilon) times 2
     raised to the largest exponent, where epsilon depends on the
     precision of the considered variable.

 -- Function: int mpfr_set_emin (mpfr_exp_t EXP)
 -- Function: int mpfr_set_emax (mpfr_exp_t EXP)
     Set the smallest and largest exponents allowed for a
     floating-point variable.  Return a non-zero value when EXP is not
     in the range accepted by the implementation (in that case the
     smallest or largest exponent is not changed), and zero otherwise.
     If the user changes the exponent range, it is her/his
     responsibility to check that all current floating-point variables
     are in the new allowed range (for example using
     `mpfr_check_range'), otherwise the subsequent behavior will be
     undefined, in the sense of the ISO C standard.

 -- Function: mpfr_exp_t mpfr_get_emin_min (void)
 -- Function: mpfr_exp_t mpfr_get_emin_max (void)
 -- Function: mpfr_exp_t mpfr_get_emax_min (void)
 -- Function: mpfr_exp_t mpfr_get_emax_max (void)
     Return the minimum and maximum of the exponents allowed for
     `mpfr_set_emin' and `mpfr_set_emax' respectively.  These values
     are implementation dependent, thus a program using
     `mpfr_set_emax(mpfr_get_emax_max())' or
     `mpfr_set_emin(mpfr_get_emin_min())' may not be portable.

 -- Function: int mpfr_check_range (mpfr_t X, int T, mpfr_rnd_t RND)
     This function assumes that X is the correctly-rounded value of some
     real value Y in the direction RND and some extended exponent
     range, and that T is the corresponding *note ternary value::.  For
     example, one performed `t = mpfr_log (x, u, rnd)', and Y is the
     exact logarithm of U.  Thus T is negative if X is smaller than Y,
     positive if X is larger than Y, and zero if X equals Y.  This
     function modifies X if needed to be in the current range of
     acceptable values: It generates an underflow or an overflow if the
     exponent of X is outside the current allowed range; the value of T
     may be used to avoid a double rounding. This function returns zero
     if the new value of X equals the exact one Y, a positive value if
     that new value is larger than Y, and a negative value if it is
     smaller than Y.  Note that unlike most functions, the new result X
     is compared to the (unknown) exact one Y, not the input value X,
     i.e., the ternary value is propagated.

     Note: If X is an infinity and T is different from zero (i.e., if
     the rounded result is an inexact infinity), then the overflow flag
     is set. This is useful because `mpfr_check_range' is typically
     called (at least in MPFR functions) after restoring the flags that
     could have been set due to internal computations.

 -- Function: int mpfr_subnormalize (mpfr_t X, int T, mpfr_rnd_t RND)
     This function rounds X emulating subnormal number arithmetic: if X
     is outside the subnormal exponent range, it just propagates the
     *note ternary value:: T; otherwise, it rounds X to precision
     `EXP(x)-emin+1' according to rounding mode RND and previous
     ternary value T, avoiding double rounding problems.  More
     precisely in the subnormal domain, denoting by E the value of
     `emin', X is rounded in fixed-point arithmetic to an integer
     multiple of two to the power E-1; as a consequence, 1.5 multiplied
     by two to the power E-1 when T is zero is rounded to two to the
     power E with rounding to nearest.

     `PREC(x)' is not modified by this function.  RND and T must be the
     rounding mode and the returned ternary value used when computing X
     (as in `mpfr_check_range').  The subnormal exponent range is from
     `emin' to `emin+PREC(x)-1'.  If the result cannot be represented
     in the current exponent range (due to a too small `emax'), the
     behavior is undefined.  Note that unlike most functions, the
     result is compared to the exact one, not the input value X, i.e.,
     the ternary value is propagated.

     As usual, if the returned ternary value is non zero, the inexact
     flag is set.  Moreover, if a second rounding occurred (because the
     input X was in the subnormal range), the underflow flag is set.

   This is an example of how to emulate binary double IEEE 754
arithmetic (binary64 in IEEE 754-2008) using MPFR:

     {
       mpfr_t xa, xb; int i; volatile double a, b;

       mpfr_set_default_prec (53);
       mpfr_set_emin (-1073); mpfr_set_emax (1024);

       mpfr_init (xa); mpfr_init (xb);

       b = 34.3; mpfr_set_d (xb, b, MPFR_RNDN);
       a = 0x1.1235P-1021; mpfr_set_d (xa, a, MPFR_RNDN);

       a /= b;
       i = mpfr_div (xa, xa, xb, MPFR_RNDN);
       i = mpfr_subnormalize (xa, i, MPFR_RNDN); /* new ternary value */

       mpfr_clear (xa); mpfr_clear (xb);
     }

   Warning: this emulates a double IEEE 754 arithmetic with correct
rounding in the subnormal range, which may not be the case for your
hardware.

 -- Function: void mpfr_clear_underflow (void)
 -- Function: void mpfr_clear_overflow (void)
 -- Function: void mpfr_clear_divby0 (void)
 -- Function: void mpfr_clear_nanflag (void)
 -- Function: void mpfr_clear_inexflag (void)
 -- Function: void mpfr_clear_erangeflag (void)
     Clear the underflow, overflow, divide-by-zero, invalid, inexact
     and _erange_ flags.

 -- Function: void mpfr_set_underflow (void)
 -- Function: void mpfr_set_overflow (void)
 -- Function: void mpfr_set_divby0 (void)
 -- Function: void mpfr_set_nanflag (void)
 -- Function: void mpfr_set_inexflag (void)
 -- Function: void mpfr_set_erangeflag (void)
     Set the underflow, overflow, divide-by-zero, invalid, inexact and
     _erange_ flags.

 -- Function: void mpfr_clear_flags (void)
     Clear all global flags (underflow, overflow, divide-by-zero,
     invalid, inexact, _erange_).

 -- Function: int mpfr_underflow_p (void)
 -- Function: int mpfr_overflow_p (void)
 -- Function: int mpfr_divby0_p (void)
 -- Function: int mpfr_nanflag_p (void)
 -- Function: int mpfr_inexflag_p (void)
 -- Function: int mpfr_erangeflag_p (void)
     Return the corresponding (underflow, overflow, divide-by-zero,
     invalid, inexact, _erange_) flag, which is non-zero iff the flag
     is set.


File: mpfr.info,  Node: Compatibility with MPF,  Next: Custom Interface,  Prev: Exception Related Functions,  Up: MPFR Interface

5.14 Compatibility With MPF
===========================

A header file `mpf2mpfr.h' is included in the distribution of MPFR for
compatibility with the GNU MP class MPF.  By inserting the following
two lines after the `#include <gmp.h>' line,
#include <mpfr.h>
#include <mpf2mpfr.h>
 any program written for MPF can be compiled directly with MPFR without
any changes (except the `gmp_printf' functions will not work for
arguments of type `mpfr_t').  All operations are then performed with
the default MPFR rounding mode, which can be reset with
`mpfr_set_default_rounding_mode'.

   Warning: the `mpf_init' and `mpf_init2' functions initialize to
zero, whereas the corresponding MPFR functions initialize to NaN: this
is useful to detect uninitialized values, but is slightly incompatible
with MPF.

 -- Function: void mpfr_set_prec_raw (mpfr_t X, mpfr_prec_t PREC)
     Reset the precision of X to be *exactly* PREC bits.  The only
     difference with `mpfr_set_prec' is that PREC is assumed to be
     small enough so that the significand fits into the current
     allocated memory space for X. Otherwise the behavior is undefined.

 -- Function: int mpfr_eq (mpfr_t OP1, mpfr_t OP2, unsigned long int
          OP3)
     Return non-zero if OP1 and OP2 are both non-zero ordinary numbers
     with the same exponent and the same first OP3 bits, both zero, or
     both infinities of the same sign. Return zero otherwise.  This
     function is defined for compatibility with MPF, we do not recommend
     to use it otherwise.  Do not use it either if you want to know
     whether two numbers are close to each other; for instance,
     1.011111 and 1.100000 are regarded as different for any value of
     OP3 larger than 1.

 -- Function: void mpfr_reldiff (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
          mpfr_rnd_t RND)
     Compute the relative difference between OP1 and OP2 and store the
     result in ROP.  This function does not guarantee the correct
     rounding on the relative difference; it just computes
     |OP1-OP2|/OP1, using the precision of ROP and the rounding mode
     RND for all operations.

 -- Function: int mpfr_mul_2exp (mpfr_t ROP, mpfr_t OP1, unsigned long
          int OP2, mpfr_rnd_t RND)
 -- Function: int mpfr_div_2exp (mpfr_t ROP, mpfr_t OP1, unsigned long
          int OP2, mpfr_rnd_t RND)
     These functions are identical to `mpfr_mul_2ui' and `mpfr_div_2ui'
     respectively.  These functions are only kept for compatibility
     with MPF, one should prefer `mpfr_mul_2ui' and `mpfr_div_2ui'
     otherwise.


File: mpfr.info,  Node: Custom Interface,  Next: Internals,  Prev: Compatibility with MPF,  Up: MPFR Interface

5.15 Custom Interface
=====================

Some applications use a stack to handle the memory and their objects.
However, the MPFR memory design is not well suited for such a thing. So
that such applications are able to use MPFR, an auxiliary memory
interface has been created: the Custom Interface.

   The following interface allows one to use MPFR in two ways:
   * Either directly store a floating-point number as a `mpfr_t' on the
     stack.

   * Either store its own representation on the stack and construct a
     new temporary `mpfr_t' each time it is needed.
   Nothing has to be done to destroy the floating-point numbers except
garbaging the used memory: all the memory management (allocating,
destroying, garbaging) is left to the application.

   Each function in this interface is also implemented as a macro for
efficiency reasons: for example `mpfr_custom_init (s, p)' uses the
macro, while `(mpfr_custom_init) (s, p)' uses the function.

   Note 1: MPFR functions may still initialize temporary floating-point
numbers using `mpfr_init' and similar functions. See Custom Allocation
(GNU MP).

   Note 2: MPFR functions may use the cached functions (`mpfr_const_pi'
for example), even if they are not explicitly called. You have to call
`mpfr_free_cache' each time you garbage the memory iff `mpfr_init',
through GMP Custom Allocation, allocates its memory on the application
stack.

 -- Function: size_t mpfr_custom_get_size (mpfr_prec_t PREC)
     Return the needed size in bytes to store the significand of a
     floating-point number of precision PREC.

 -- Function: void mpfr_custom_init (void *SIGNIFICAND, mpfr_prec_t
          PREC)
     Initialize a significand of precision PREC, where SIGNIFICAND must
     be an area of `mpfr_custom_get_size (prec)' bytes at least and be
     suitably aligned for an array of `mp_limb_t' (GMP type, *note
     Internals::).

 -- Function: void mpfr_custom_init_set (mpfr_t X, int KIND, mpfr_exp_t
          EXP, mpfr_prec_t PREC, void *SIGNIFICAND)
     Perform a dummy initialization of a `mpfr_t' and set it to:
        * if `ABS(kind) == MPFR_NAN_KIND', X is set to NaN;

        * if `ABS(kind) == MPFR_INF_KIND', X is set to the infinity of
          sign `sign(kind)';

        * if `ABS(kind) == MPFR_ZERO_KIND', X is set to the zero of
          sign `sign(kind)';

        * if `ABS(kind) == MPFR_REGULAR_KIND', X is set to a regular
          number: `x = sign(kind)*significand*2^exp'.
     In all cases, it uses SIGNIFICAND directly for further computing
     involving X. It will not allocate anything.  A floating-point
     number initialized with this function cannot be resized using
     `mpfr_set_prec' or `mpfr_prec_round', or cleared using
     `mpfr_clear'!  The SIGNIFICAND must have been initialized with
     `mpfr_custom_init' using the same precision PREC.

 -- Function: int mpfr_custom_get_kind (mpfr_t X)
     Return the current kind of a `mpfr_t' as created by
     `mpfr_custom_init_set'.  The behavior of this function for any
     `mpfr_t' not initialized with `mpfr_custom_init_set' is undefined.

 -- Function: void * mpfr_custom_get_significand (mpfr_t X)
     Return a pointer to the significand used by a `mpfr_t' initialized
     with `mpfr_custom_init_set'.  The behavior of this function for
     any `mpfr_t' not initialized with `mpfr_custom_init_set' is
     undefined.

 -- Function: mpfr_exp_t mpfr_custom_get_exp (mpfr_t X)
     Return the exponent of X, assuming that X is a non-zero ordinary
     number. The return value for NaN, Infinity or zero is unspecified
     but does not produce any trap.  The behavior of this function for
     any `mpfr_t' not initialized with `mpfr_custom_init_set' is
     undefined.

 -- Function: void mpfr_custom_move (mpfr_t X, void *NEW_POSITION)
     Inform MPFR that the significand of X has moved due to a garbage
     collect and update its new position to `new_position'.  However
     the application has to move the significand and the `mpfr_t'
     itself.  The behavior of this function for any `mpfr_t' not
     initialized with `mpfr_custom_init_set' is undefined.


File: mpfr.info,  Node: Internals,  Prev: Custom Interface,  Up: MPFR Interface

5.16 Internals
==============

A "limb" means the part of a multi-precision number that fits in a
single word. Usually a limb contains 32 or 64 bits.  The C data type
for a limb is `mp_limb_t'.

   The `mpfr_t' type is internally defined as a one-element array of a
structure, and `mpfr_ptr' is the C data type representing a pointer to
this structure.  The `mpfr_t' type consists of four fields:

   * The `_mpfr_prec' field is used to store the precision of the
     variable (in bits); this is not less than `MPFR_PREC_MIN'.

   * The `_mpfr_sign' field is used to store the sign of the variable.

   * The `_mpfr_exp' field stores the exponent.  An exponent of 0 means
     a radix point just above the most significant limb.  Non-zero
     values n are a multiplier 2^n relative to that point.  A NaN, an
     infinity and a zero are indicated by special values of the exponent
     field.

   * Finally, the `_mpfr_d' field is a pointer to the limbs, least
     significant limbs stored first.  The number of limbs in use is
     controlled by `_mpfr_prec', namely
     ceil(`_mpfr_prec'/`mp_bits_per_limb').  Non-singular (i.e.,
     different from NaN, Infinity or zero) values always have the most
     significant bit of the most significant limb set to 1.  When the
     precision does not correspond to a whole number of limbs, the
     excess bits at the low end of the data are zeros.



File: mpfr.info,  Node: API Compatibility,  Next: Contributors,  Prev: MPFR Interface,  Up: Top

6 API Compatibility
*******************

The goal of this section is to describe some API changes that occurred
from one version of MPFR to another, and how to write code that can be
compiled and run with older MPFR versions.  The minimum MPFR version
that is considered here is 2.2.0 (released on 20 September 2005).

   API changes can only occur between major or minor versions.  Thus the
patchlevel (the third number in the MPFR version) will be ignored in
the following.  If a program does not use MPFR internals, changes in
the behavior between two versions differing only by the patchlevel
should only result from what was regarded as a bug or unspecified
behavior.

   As a general rule, a program written for some MPFR version should
work with later versions, possibly except at a new major version, where
some features (described as obsolete for some time) can be removed.  In
such a case, a failure should occur during compilation or linking.  If
a result becomes incorrect because of such a change, please look at the
various changes below (they are minimal, and most software should be
unaffected), at the FAQ and at the MPFR web page for your version (a
bug could have been introduced and be already fixed); and if the
problem is not mentioned, please send us a bug report (*note Reporting
Bugs::).

   However, a program written for the current MPFR version (as
documented by this manual) may not necessarily work with previous
versions of MPFR.  This section should help developers to write
portable code.

   Note: Information given here may be incomplete.  API changes are
also described in the NEWS file (for each version, instead of being
classified like here), together with other changes.

* Menu:

* Type and Macro Changes::
* Added Functions::
* Changed Functions::
* Removed Functions::
* Other Changes::


File: mpfr.info,  Node: Type and Macro Changes,  Next: Added Functions,  Prev: API Compatibility,  Up: API Compatibility

6.1 Type and Macro Changes
==========================

The official type for exponent values changed from `mp_exp_t' to
`mpfr_exp_t' in MPFR 3.0.  The type `mp_exp_t' will remain available as
it comes from GMP (with a different meaning).  These types are
currently the same (`mpfr_exp_t' is defined as `mp_exp_t' with
`typedef'), so that programs can still use `mp_exp_t'; but this may
change in the future.  Alternatively, using the following code after
including `mpfr.h' will work with official MPFR versions, as
`mpfr_exp_t' was never defined in MPFR 2.x:
     #if MPFR_VERSION_MAJOR < 3
     typedef mp_exp_t mpfr_exp_t;
     #endif

   The official types for precision values and for rounding modes
respectively changed from `mp_prec_t' and `mp_rnd_t' to `mpfr_prec_t'
and `mpfr_rnd_t' in MPFR 3.0.  This change was actually done a long
time ago in MPFR, at least since MPFR 2.2.0, with the following code in
`mpfr.h':
     #ifndef mp_rnd_t
     # define mp_rnd_t  mpfr_rnd_t
     #endif
     #ifndef mp_prec_t
     # define mp_prec_t mpfr_prec_t
     #endif
   This means that it is safe to use the new official types
`mpfr_prec_t' and `mpfr_rnd_t' in your programs.  The types `mp_prec_t'
and `mp_rnd_t' (defined in MPFR only) may be removed in the future, as
the prefix `mp_' is reserved by GMP.

   The precision type `mpfr_prec_t' (`mp_prec_t') was unsigned before
MPFR 3.0; it is now signed.  `MPFR_PREC_MAX' has not changed, though.
Indeed the MPFR code requires that `MPFR_PREC_MAX' be representable in
the exponent type, which may have the same size as `mpfr_prec_t' but
has always been signed.  The consequence is that valid code that does
not assume anything about the signedness of `mpfr_prec_t' should work
with past and new MPFR versions.  This change was useful as the use of
unsigned types tends to convert signed values to unsigned ones in
expressions due to the usual arithmetic conversions, which can yield
incorrect results if a negative value is converted in such a way.
Warning!  A program assuming (intentionally or not) that `mpfr_prec_t'
is signed may be affected by this problem when it is built and run
against MPFR 2.x.

   The rounding modes `GMP_RNDx' were renamed to `MPFR_RNDx' in MPFR
3.0. However the old names `GMP_RNDx' have been kept for compatibility
(this might change in future versions), using:
     #define GMP_RNDN MPFR_RNDN
     #define GMP_RNDZ MPFR_RNDZ
     #define GMP_RNDU MPFR_RNDU
     #define GMP_RNDD MPFR_RNDD
   The rounding mode "round away from zero" (`MPFR_RNDA') was added in
MPFR 3.0 (however no rounding mode `GMP_RNDA' exists).


File: mpfr.info,  Node: Added Functions,  Next: Changed Functions,  Prev: Type and Macro Changes,  Up: API Compatibility

6.2 Added Functions
===================

We give here in alphabetical order the functions that were added after
MPFR 2.2, and in which MPFR version.

   * `mpfr_add_d' in MPFR 2.4.

   * `mpfr_ai' in MPFR 3.0 (incomplete, experimental).

   * `mpfr_asprintf' in MPFR 2.4.

   * `mpfr_buildopt_decimal_p' and `mpfr_buildopt_tls_p' in MPFR 3.0.

   * `mpfr_buildopt_gmpinternals_p' and `mpfr_buildopt_tune_case' in
     MPFR 3.1.

   * `mpfr_clear_divby0' in MPFR 3.1 (new divide-by-zero exception).

   * `mpfr_copysign' in MPFR 2.3.  Note: MPFR 2.2 had a `mpfr_copysign'
     function that was available, but not documented, and with a slight
     difference in the semantics (when the second input operand is a
     NaN).

   * `mpfr_custom_get_significand' in MPFR 3.0.  This function was
     named `mpfr_custom_get_mantissa' in previous versions;
     `mpfr_custom_get_mantissa' is still available via a macro in
     `mpfr.h':
          #define mpfr_custom_get_mantissa mpfr_custom_get_significand
     Thus code that needs to work with both MPFR 2.x and MPFR 3.x should
     use `mpfr_custom_get_mantissa'.

   * `mpfr_d_div' and `mpfr_d_sub' in MPFR 2.4.

   * `mpfr_digamma' in MPFR 3.0.

   * `mpfr_divby0_p' in MPFR 3.1 (new divide-by-zero exception).

   * `mpfr_div_d' in MPFR 2.4.

   * `mpfr_fmod' in MPFR 2.4.

   * `mpfr_fms' in MPFR 2.3.

   * `mpfr_fprintf' in MPFR 2.4.

   * `mpfr_frexp' in MPFR 3.1.

   * `mpfr_get_flt' in MPFR 3.0.

   * `mpfr_get_patches' in MPFR 2.3.

   * `mpfr_get_z_2exp' in MPFR 3.0.  This function was named
     `mpfr_get_z_exp' in previous versions; `mpfr_get_z_exp' is still
     available via a macro in `mpfr.h':
          #define mpfr_get_z_exp mpfr_get_z_2exp
     Thus code that needs to work with both MPFR 2.x and MPFR 3.x should
     use `mpfr_get_z_exp'.

   * `mpfr_grandom' in MPFR 3.1.

   * `mpfr_j0', `mpfr_j1' and `mpfr_jn' in MPFR 2.3.

   * `mpfr_lgamma' in MPFR 2.3.

   * `mpfr_li2' in MPFR 2.4.

   * `mpfr_min_prec' in MPFR 3.0.

   * `mpfr_modf' in MPFR 2.4.

   * `mpfr_mul_d' in MPFR 2.4.

   * `mpfr_printf' in MPFR 2.4.

   * `mpfr_rec_sqrt' in MPFR 2.4.

   * `mpfr_regular_p' in MPFR 3.0.

   * `mpfr_remainder' and `mpfr_remquo' in MPFR 2.3.

   * `mpfr_set_divby0' in MPFR 3.1 (new divide-by-zero exception).

   * `mpfr_set_flt' in MPFR 3.0.

   * `mpfr_set_z_2exp' in MPFR 3.0.

   * `mpfr_set_zero' in MPFR 3.0.

   * `mpfr_setsign' in MPFR 2.3.

   * `mpfr_signbit' in MPFR 2.3.

   * `mpfr_sinh_cosh' in MPFR 2.4.

   * `mpfr_snprintf' and `mpfr_sprintf' in MPFR 2.4.

   * `mpfr_sub_d' in MPFR 2.4.

   * `mpfr_urandom' in MPFR 3.0.

   * `mpfr_vasprintf', `mpfr_vfprintf', `mpfr_vprintf',
     `mpfr_vsprintf' and `mpfr_vsnprintf' in MPFR 2.4.

   * `mpfr_y0', `mpfr_y1' and `mpfr_yn' in MPFR 2.3.

   * `mpfr_z_sub' in MPFR 3.1.



File: mpfr.info,  Node: Changed Functions,  Next: Removed Functions,  Prev: Added Functions,  Up: API Compatibility

6.3 Changed Functions
=====================

The following functions have changed after MPFR 2.2. Changes can affect
the behavior of code written for some MPFR version when built and run
against another MPFR version (older or newer), as described below.

   * `mpfr_check_range' changed in MPFR 2.3.2 and MPFR 2.4.  If the
     value is an inexact infinity, the overflow flag is now set (in
     case it was lost), while it was previously left unchanged.  This
     is really what is expected in practice (and what the MPFR code was
     expecting), so that the previous behavior was regarded as a bug.
     Hence the change in MPFR 2.3.2.

   * `mpfr_get_f' changed in MPFR 3.0.  This function was returning
     zero, except for NaN and Inf, which do not exist in MPF. The
     _erange_ flag is now set in these cases, and `mpfr_get_f' now
     returns the usual ternary value.

   * `mpfr_get_si', `mpfr_get_sj', `mpfr_get_ui' and `mpfr_get_uj'
     changed in MPFR 3.0.  In previous MPFR versions, the cases where
     the _erange_ flag is set were unspecified.

   * `mpfr_get_z' changed in MPFR 3.0.  The return type was `void'; it
     is now `int', and the usual ternary value is returned.  Thus
     programs that need to work with both MPFR 2.x and 3.x must not use
     the return value.  Even in this case, C code using `mpfr_get_z' as
     the second or third term of a conditional operator may also be
     affected. For instance, the following is correct with MPFR 3.0,
     but not with MPFR 2.x:
            bool ? mpfr_get_z(...) : mpfr_add(...);
     On the other hand, the following is correct with MPFR 2.x, but not
     with MPFR 3.0:
            bool ? mpfr_get_z(...) : (void) mpfr_add(...);
     Portable code should cast `mpfr_get_z(...)' to `void' to use the
     type `void' for both terms of the conditional operator, as in:
            bool ? (void) mpfr_get_z(...) : (void) mpfr_add(...);
     Alternatively, `if ... else' can be used instead of the
     conditional operator.

     Moreover the cases where the _erange_ flag is set were unspecified
     in MPFR 2.x.

   * `mpfr_get_z_exp' changed in MPFR 3.0.  In previous MPFR versions,
     the cases where the _erange_ flag is set were unspecified.  Note:
     this function has been renamed to `mpfr_get_z_2exp' in MPFR 3.0,
     but `mpfr_get_z_exp' is still available for compatibility reasons.

   * `mpfr_strtofr' changed in MPFR 2.3.1 and MPFR 2.4.  This was
     actually a bug fix since the code and the documentation did not
     match.  But both were changed in order to have a more consistent
     and useful behavior.  The main changes in the code are as follows.
     The binary exponent is now accepted even without the `0b' or `0x'
     prefix.  Data corresponding to NaN can now have an optional sign
     (such data were previously invalid).

   * `mpfr_strtofr' changed in MPFR 3.0.  This function now accepts
     bases from 37 to 62 (no changes for the other bases).  Note: if an
     unsupported base is provided to this function, the behavior is
     undefined; more precisely, in MPFR 2.3.1 and later, providing an
     unsupported base yields an assertion failure (this behavior may
     change in the future).

   * `mpfr_subnormalize' changed in MPFR 3.1.  This was actually
     regarded as a bug fix. The `mpfr_subnormalize' implementation up
     to MPFR 3.0.0 did not change the flags. In particular, it did not
     follow the generic rule concerning the inexact flag (and no
     special behavior was specified). The case of the underflow flag
     was more a lack of specification.

   * `mpfr_urandom' and `mpfr_urandomb' changed in MPFR 3.1.  Their
     behavior no longer depends on the platform (assuming this is also
     true for GMP's random generator, which is not the case between GMP
     4.1 and 4.2 if `gmp_randinit_default' is used).  As a consequence,
     the returned values can be different between MPFR 3.1 and previous
     MPFR versions.  Note: as the reproducibility of these functions
     was not specified before MPFR 3.1, the MPFR 3.1 behavior is _not_
     regarded as backward incompatible with previous versions.



File: mpfr.info,  Node: Removed Functions,  Next: Other Changes,  Prev: Changed Functions,  Up: API Compatibility

6.4 Removed Functions
=====================

Functions `mpfr_random' and `mpfr_random2' have been removed in MPFR
3.0 (this only affects old code built against MPFR 3.0 or later).  (The
function `mpfr_random' had been deprecated since at least MPFR 2.2.0,
and `mpfr_random2' since MPFR 2.4.0.)


File: mpfr.info,  Node: Other Changes,  Prev: Removed Functions,  Up: API Compatibility

6.5 Other Changes
=================

For users of a C++ compiler, the way how the availability of `intmax_t'
is detected has changed in MPFR 3.0.  In MPFR 2.x, if a macro
`INTMAX_C' or `UINTMAX_C' was defined (e.g. when the
`__STDC_CONSTANT_MACROS' macro had been defined before `<stdint.h>' or
`<inttypes.h>' has been included), `intmax_t' was assumed to be defined.
However this was not always the case (more precisely, `intmax_t' can be
defined only in the namespace `std', as with Boost), so that
compilations could fail.  Thus the check for `INTMAX_C' or `UINTMAX_C'
is now disabled for C++ compilers, with the following consequences:

   * Programs written for MPFR 2.x that need `intmax_t' may no longer
     be compiled against MPFR 3.0: a `#define MPFR_USE_INTMAX_T' may be
     necessary before `mpfr.h' is included.

   * The compilation of programs that work with MPFR 3.0 may fail with
     MPFR 2.x due to the problem described above.  Workarounds are
     possible, such as defining `intmax_t' and `uintmax_t' in the global
     namespace, though this is not clean.


   The divide-by-zero exception is new in MPFR 3.1. However it should
not introduce incompatible changes for programs that strictly follow
the MPFR API since the exception can only be seen via new functions.

   As of MPFR 3.1, the `mpfr.h' header can be included several times,
while still supporting optional functions (*note Headers and
Libraries::).


File: mpfr.info,  Node: Contributors,  Next: References,  Prev: API Compatibility,  Up: Top

Contributors
************

The main developers of MPFR are Guillaume Hanrot, Vincent Lefèvre,
Patrick Pélissier, Philippe Théveny and Paul Zimmermann.

   Sylvie Boldo from ENS-Lyon, France, contributed the functions
`mpfr_agm' and `mpfr_log'.  Sylvain Chevillard contributed the
`mpfr_ai' function.  David Daney contributed the hyperbolic and inverse
hyperbolic functions, the base-2 exponential, and the factorial
function.  Alain Delplanque contributed the new version of the
`mpfr_get_str' function.  Mathieu Dutour contributed the functions
`mpfr_acos', `mpfr_asin' and `mpfr_atan', and a previous version of
`mpfr_gamma'.  Laurent Fousse contributed the `mpfr_sum' function.
Emmanuel Jeandel, from ENS-Lyon too, contributed the generic
hypergeometric code, as well as the internal function `mpfr_exp3', a
first implementation of the sine and cosine, and improved versions of
`mpfr_const_log2' and `mpfr_const_pi'.  Ludovic Meunier helped in the
design of the `mpfr_erf' code.  Jean-Luc Rémy contributed the
`mpfr_zeta' code.  Fabrice Rouillier contributed the `mpfr_xxx_z' and
`mpfr_xxx_q' functions, and helped to the Microsoft Windows porting.
Damien Stehlé contributed the `mpfr_get_ld_2exp' function.

   We would like to thank Jean-Michel Muller and Joris van der Hoeven
for very fruitful discussions at the beginning of that project,
Torbjörn Granlund and Kevin Ryde for their help about design issues,
and Nathalie Revol for her careful reading of a previous version of
this documentation. In particular Kevin Ryde did a tremendous job for
the portability of MPFR in 2002-2004.

   The development of the MPFR library would not have been possible
without the continuous support of INRIA, and of the LORIA (Nancy,
France) and LIP (Lyon, France) laboratories. In particular the main
authors were or are members of the PolKA, Spaces, Cacao and Caramel
project-teams at LORIA and of the Arénaire and AriC project-teams at
LIP.  This project was started during the Fiable (reliable in French)
action supported by INRIA, and continued during the AOC action.  The
development of MPFR was also supported by a grant (202F0659 00 MPN 121)
from the Conseil Régional de Lorraine in 2002, from INRIA by an
"associate engineer" grant (2003-2005), an "opération de développement
logiciel" grant (2007-2009), and the post-doctoral grant of Sylvain
Chevillard in 2009-2010.  The MPFR-MPC workshop in June 2012 was partly
supported by the ERC grant ANTICS of Andreas Enge.


File: mpfr.info,  Node: References,  Next: GNU Free Documentation License,  Prev: Contributors,  Up: Top

References
**********

   * Richard Brent and Paul Zimmermann, "Modern Computer Arithmetic",
     Cambridge University Press (to appear), also available from the
     authors' web pages.

   * Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick
     Pélissier and Paul Zimmermann, "MPFR: A Multiple-Precision Binary
     Floating-Point Library With Correct Rounding", ACM Transactions on
     Mathematical Software, volume 33, issue 2, article 13, 15 pages,
     2007, `http://doi.acm.org/10.1145/1236463.1236468'.

   * Torbjörn Granlund, "GNU MP: The GNU Multiple Precision Arithmetic
     Library",   version 5.0.1, 2010, `http://gmplib.org'.

   * IEEE standard for binary floating-point arithmetic, Technical
     Report ANSI-IEEE Standard 754-1985, New York, 1985.  Approved
     March 21, 1985: IEEE Standards Board; approved July 26,   1985:
     American National Standards Institute, 18 pages.

   * IEEE Standard for Floating-Point Arithmetic, ANSI-IEEE Standard
     754-2008, 2008.  Revision of ANSI-IEEE Standard 754-1985, approved
     June 12, 2008: IEEE Standards Board, 70 pages.

   * Donald E. Knuth, "The Art of Computer Programming", vol 2,
     "Seminumerical Algorithms", 2nd edition, Addison-Wesley, 1981.

   * Jean-Michel Muller, "Elementary Functions, Algorithms and
     Implementation", Birkhäuser, Boston, 2nd edition, 2006.

   * Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin,
     Claude-Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond,
     Nathalie Revol, Damien Stehlé and Serge Torrès, "Handbook of
     Floating-Point Arithmetic", Birkhäuser, Boston, 2009.



File: mpfr.info,  Node: GNU Free Documentation License,  Next: Concept Index,  Prev: References,  Up: Top

Appendix A GNU Free Documentation License
*****************************************

                      Version 1.2, November 2002

     Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
     51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA

     Everyone is permitted to copy and distribute verbatim copies
     of this license document, but changing it is not allowed.

  0. PREAMBLE

     The purpose of this License is to make a manual, textbook, or other
     functional and useful document "free" in the sense of freedom: to
     assure everyone the effective freedom to copy and redistribute it,
     with or without modifying it, either commercially or
     noncommercially.  Secondarily, this License preserves for the
     author and publisher a way to get credit for their work, while not
     being considered responsible for modifications made by others.

     This License is a kind of "copyleft", which means that derivative
     works of the document must themselves be free in the same sense.
     It complements the GNU General Public License, which is a copyleft
     license designed for free software.

     We have designed this License in order to use it for manuals for
     free software, because free software needs free documentation: a
     free program should come with manuals providing the same freedoms
     that the software does.  But this License is not limited to
     software manuals; it can be used for any textual work, regardless
     of subject matter or whether it is published as a printed book.
     We recommend this License principally for works whose purpose is
     instruction or reference.

  1. APPLICABILITY AND DEFINITIONS

     This License applies to any manual or other work, in any medium,
     that contains a notice placed by the copyright holder saying it
     can be distributed under the terms of this License.  Such a notice
     grants a world-wide, royalty-free license, unlimited in duration,
     to use that work under the conditions stated herein.  The
     "Document", below, refers to any such manual or work.  Any member
     of the public is a licensee, and is addressed as "you".  You
     accept the license if you copy, modify or distribute the work in a
     way requiring permission under copyright law.

     A "Modified Version" of the Document means any work containing the
     Document or a portion of it, either copied verbatim, or with
     modifications and/or translated into another language.

     A "Secondary Section" is a named appendix or a front-matter section
     of the Document that deals exclusively with the relationship of the
     publishers or authors of the Document to the Document's overall
     subject (or to related matters) and contains nothing that could
     fall directly within that overall subject.  (Thus, if the Document
     is in part a textbook of mathematics, a Secondary Section may not
     explain any mathematics.)  The relationship could be a matter of
     historical connection with the subject or with related matters, or
     of legal, commercial, philosophical, ethical or political position
     regarding them.

     The "Invariant Sections" are certain Secondary Sections whose
     titles are designated, as being those of Invariant Sections, in
     the notice that says that the Document is released under this
     License.  If a section does not fit the above definition of
     Secondary then it is not allowed to be designated as Invariant.
     The Document may contain zero Invariant Sections.  If the Document
     does not identify any Invariant Sections then there are none.

     The "Cover Texts" are certain short passages of text that are
     listed, as Front-Cover Texts or Back-Cover Texts, in the notice
     that says that the Document is released under this License.  A
     Front-Cover Text may be at most 5 words, and a Back-Cover Text may
     be at most 25 words.

     A "Transparent" copy of the Document means a machine-readable copy,
     represented in a format whose specification is available to the
     general public, that is suitable for revising the document
     straightforwardly with generic text editors or (for images
     composed of pixels) generic paint programs or (for drawings) some
     widely available drawing editor, and that is suitable for input to
     text formatters or for automatic translation to a variety of
     formats suitable for input to text formatters.  A copy made in an
     otherwise Transparent file format whose markup, or absence of
     markup, has been arranged to thwart or discourage subsequent
     modification by readers is not Transparent.  An image format is
     not Transparent if used for any substantial amount of text.  A
     copy that is not "Transparent" is called "Opaque".

     Examples of suitable formats for Transparent copies include plain
     ASCII without markup, Texinfo input format, LaTeX input format,
     SGML or XML using a publicly available DTD, and
     standard-conforming simple HTML, PostScript or PDF designed for
     human modification.  Examples of transparent image formats include
     PNG, XCF and JPG.  Opaque formats include proprietary formats that
     can be read and edited only by proprietary word processors, SGML or
     XML for which the DTD and/or processing tools are not generally
     available, and the machine-generated HTML, PostScript or PDF
     produced by some word processors for output purposes only.

     The "Title Page" means, for a printed book, the title page itself,
     plus such following pages as are needed to hold, legibly, the
     material this License requires to appear in the title page.  For
     works in formats which do not have any title page as such, "Title
     Page" means the text near the most prominent appearance of the
     work's title, preceding the beginning of the body of the text.

     A section "Entitled XYZ" means a named subunit of the Document
     whose title either is precisely XYZ or contains XYZ in parentheses
     following text that translates XYZ in another language.  (Here XYZ
     stands for a specific section name mentioned below, such as
     "Acknowledgements", "Dedications", "Endorsements", or "History".)
     To "Preserve the Title" of such a section when you modify the
     Document means that it remains a section "Entitled XYZ" according
     to this definition.

     The Document may include Warranty Disclaimers next to the notice
     which states that this License applies to the Document.  These
     Warranty Disclaimers are considered to be included by reference in
     this License, but only as regards disclaiming warranties: any other
     implication that these Warranty Disclaimers may have is void and
     has no effect on the meaning of this License.

  2. VERBATIM COPYING

     You may copy and distribute the Document in any medium, either
     commercially or noncommercially, provided that this License, the
     copyright notices, and the license notice saying this License
     applies to the Document are reproduced in all copies, and that you
     add no other conditions whatsoever to those of this License.  You
     may not use technical measures to obstruct or control the reading
     or further copying of the copies you make or distribute.  However,
     you may accept compensation in exchange for copies.  If you
     distribute a large enough number of copies you must also follow
     the conditions in section 3.

     You may also lend copies, under the same conditions stated above,
     and you may publicly display copies.

  3. COPYING IN QUANTITY

     If you publish printed copies (or copies in media that commonly
     have printed covers) of the Document, numbering more than 100, and
     the Document's license notice requires Cover Texts, you must
     enclose the copies in covers that carry, clearly and legibly, all
     these Cover Texts: Front-Cover Texts on the front cover, and
     Back-Cover Texts on the back cover.  Both covers must also clearly
     and legibly identify you as the publisher of these copies.  The
     front cover must present the full title with all words of the
     title equally prominent and visible.  You may add other material
     on the covers in addition.  Copying with changes limited to the
     covers, as long as they preserve the title of the Document and
     satisfy these conditions, can be treated as verbatim copying in
     other respects.

     If the required texts for either cover are too voluminous to fit
     legibly, you should put the first ones listed (as many as fit
     reasonably) on the actual cover, and continue the rest onto
     adjacent pages.

     If you publish or distribute Opaque copies of the Document
     numbering more than 100, you must either include a
     machine-readable Transparent copy along with each Opaque copy, or
     state in or with each Opaque copy a computer-network location from
     which the general network-using public has access to download
     using public-standard network protocols a complete Transparent
     copy of the Document, free of added material.  If you use the
     latter option, you must take reasonably prudent steps, when you
     begin distribution of Opaque copies in quantity, to ensure that
     this Transparent copy will remain thus accessible at the stated
     location until at least one year after the last time you
     distribute an Opaque copy (directly or through your agents or
     retailers) of that edition to the public.

     It is requested, but not required, that you contact the authors of
     the Document well before redistributing any large number of
     copies, to give them a chance to provide you with an updated
     version of the Document.

  4. MODIFICATIONS

     You may copy and distribute a Modified Version of the Document
     under the conditions of sections 2 and 3 above, provided that you
     release the Modified Version under precisely this License, with
     the Modified Version filling the role of the Document, thus
     licensing distribution and modification of the Modified Version to
     whoever possesses a copy of it.  In addition, you must do these
     things in the Modified Version:

       A. Use in the Title Page (and on the covers, if any) a title
          distinct from that of the Document, and from those of
          previous versions (which should, if there were any, be listed
          in the History section of the Document).  You may use the
          same title as a previous version if the original publisher of
          that version gives permission.

       B. List on the Title Page, as authors, one or more persons or
          entities responsible for authorship of the modifications in
          the Modified Version, together with at least five of the
          principal authors of the Document (all of its principal
          authors, if it has fewer than five), unless they release you
          from this requirement.

       C. State on the Title page the name of the publisher of the
          Modified Version, as the publisher.

       D. Preserve all the copyright notices of the Document.

       E. Add an appropriate copyright notice for your modifications
          adjacent to the other copyright notices.

       F. Include, immediately after the copyright notices, a license
          notice giving the public permission to use the Modified
          Version under the terms of this License, in the form shown in
          the Addendum below.

       G. Preserve in that license notice the full lists of Invariant
          Sections and required Cover Texts given in the Document's
          license notice.

       H. Include an unaltered copy of this License.

       I. Preserve the section Entitled "History", Preserve its Title,
          and add to it an item stating at least the title, year, new
          authors, and publisher of the Modified Version as given on
          the Title Page.  If there is no section Entitled "History" in
          the Document, create one stating the title, year, authors,
          and publisher of the Document as given on its Title Page,
          then add an item describing the Modified Version as stated in
          the previous sentence.

       J. Preserve the network location, if any, given in the Document
          for public access to a Transparent copy of the Document, and
          likewise the network locations given in the Document for
          previous versions it was based on.  These may be placed in
          the "History" section.  You may omit a network location for a
          work that was published at least four years before the
          Document itself, or if the original publisher of the version
          it refers to gives permission.

       K. For any section Entitled "Acknowledgements" or "Dedications",
          Preserve the Title of the section, and preserve in the
          section all the substance and tone of each of the contributor
          acknowledgements and/or dedications given therein.

       L. Preserve all the Invariant Sections of the Document,
          unaltered in their text and in their titles.  Section numbers
          or the equivalent are not considered part of the section
          titles.

       M. Delete any section Entitled "Endorsements".  Such a section
          may not be included in the Modified Version.

       N. Do not retitle any existing section to be Entitled
          "Endorsements" or to conflict in title with any Invariant
          Section.

       O. Preserve any Warranty Disclaimers.

     If the Modified Version includes new front-matter sections or
     appendices that qualify as Secondary Sections and contain no
     material copied from the Document, you may at your option
     designate some or all of these sections as invariant.  To do this,
     add their titles to the list of Invariant Sections in the Modified
     Version's license notice.  These titles must be distinct from any
     other section titles.

     You may add a section Entitled "Endorsements", provided it contains
     nothing but endorsements of your Modified Version by various
     parties--for example, statements of peer review or that the text
     has been approved by an organization as the authoritative
     definition of a standard.

     You may add a passage of up to five words as a Front-Cover Text,
     and a passage of up to 25 words as a Back-Cover Text, to the end
     of the list of Cover Texts in the Modified Version.  Only one
     passage of Front-Cover Text and one of Back-Cover Text may be
     added by (or through arrangements made by) any one entity.  If the
     Document already includes a cover text for the same cover,
     previously added by you or by arrangement made by the same entity
     you are acting on behalf of, you may not add another; but you may
     replace the old one, on explicit permission from the previous
     publisher that added the old one.

     The author(s) and publisher(s) of the Document do not by this
     License give permission to use their names for publicity for or to
     assert or imply endorsement of any Modified Version.

  5. COMBINING DOCUMENTS

     You may combine the Document with other documents released under
     this License, under the terms defined in section 4 above for
     modified versions, provided that you include in the combination
     all of the Invariant Sections of all of the original documents,
     unmodified, and list them all as Invariant Sections of your
     combined work in its license notice, and that you preserve all
     their Warranty Disclaimers.

     The combined work need only contain one copy of this License, and
     multiple identical Invariant Sections may be replaced with a single
     copy.  If there are multiple Invariant Sections with the same name
     but different contents, make the title of each such section unique
     by adding at the end of it, in parentheses, the name of the
     original author or publisher of that section if known, or else a
     unique number.  Make the same adjustment to the section titles in
     the list of Invariant Sections in the license notice of the
     combined work.

     In the combination, you must combine any sections Entitled
     "History" in the various original documents, forming one section
     Entitled "History"; likewise combine any sections Entitled
     "Acknowledgements", and any sections Entitled "Dedications".  You
     must delete all sections Entitled "Endorsements."

  6. COLLECTIONS OF DOCUMENTS

     You may make a collection consisting of the Document and other
     documents released under this License, and replace the individual
     copies of this License in the various documents with a single copy
     that is included in the collection, provided that you follow the
     rules of this License for verbatim copying of each of the
     documents in all other respects.

     You may extract a single document from such a collection, and
     distribute it individually under this License, provided you insert
     a copy of this License into the extracted document, and follow
     this License in all other respects regarding verbatim copying of
     that document.

  7. AGGREGATION WITH INDEPENDENT WORKS

     A compilation of the Document or its derivatives with other
     separate and independent documents or works, in or on a volume of
     a storage or distribution medium, is called an "aggregate" if the
     copyright resulting from the compilation is not used to limit the
     legal rights of the compilation's users beyond what the individual
     works permit.  When the Document is included in an aggregate, this
     License does not apply to the other works in the aggregate which
     are not themselves derivative works of the Document.

     If the Cover Text requirement of section 3 is applicable to these
     copies of the Document, then if the Document is less than one half
     of the entire aggregate, the Document's Cover Texts may be placed
     on covers that bracket the Document within the aggregate, or the
     electronic equivalent of covers if the Document is in electronic
     form.  Otherwise they must appear on printed covers that bracket
     the whole aggregate.

  8. TRANSLATION

     Translation is considered a kind of modification, so you may
     distribute translations of the Document under the terms of section
     4.  Replacing Invariant Sections with translations requires special
     permission from their copyright holders, but you may include
     translations of some or all Invariant Sections in addition to the
     original versions of these Invariant Sections.  You may include a
     translation of this License, and all the license notices in the
     Document, and any Warranty Disclaimers, provided that you also
     include the original English version of this License and the
     original versions of those notices and disclaimers.  In case of a
     disagreement between the translation and the original version of
     this License or a notice or disclaimer, the original version will
     prevail.

     If a section in the Document is Entitled "Acknowledgements",
     "Dedications", or "History", the requirement (section 4) to
     Preserve its Title (section 1) will typically require changing the
     actual title.

  9. TERMINATION

     You may not copy, modify, sublicense, or distribute the Document
     except as expressly provided for under this License.  Any other
     attempt to copy, modify, sublicense or distribute the Document is
     void, and will automatically terminate your rights under this
     License.  However, parties who have received copies, or rights,
     from you under this License will not have their licenses
     terminated so long as such parties remain in full compliance.

 10. FUTURE REVISIONS OF THIS LICENSE

     The Free Software Foundation may publish new, revised versions of
     the GNU Free Documentation License from time to time.  Such new
     versions will be similar in spirit to the present version, but may
     differ in detail to address new problems or concerns.  See
     `http://www.gnu.org/copyleft/'.

     Each version of the License is given a distinguishing version
     number.  If the Document specifies that a particular numbered
     version of this License "or any later version" applies to it, you
     have the option of following the terms and conditions either of
     that specified version or of any later version that has been
     published (not as a draft) by the Free Software Foundation.  If
     the Document does not specify a version number of this License,
     you may choose any version ever published (not as a draft) by the
     Free Software Foundation.

A.1 ADDENDUM: How to Use This License For Your Documents
========================================================

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:

       Copyright (C)  YEAR  YOUR NAME.
       Permission is granted to copy, distribute and/or modify this document
       under the terms of the GNU Free Documentation License, Version 1.2
       or any later version published by the Free Software Foundation;
       with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
       Texts.  A copy of the license is included in the section entitled ``GNU
       Free Documentation License''.

   If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the "with...Texts." line with this:

         with the Invariant Sections being LIST THEIR TITLES, with
         the Front-Cover Texts being LIST, and with the Back-Cover Texts
         being LIST.

   If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

   If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to
permit their use in free software.


File: mpfr.info,  Node: Concept Index,  Next: Function and Type Index,  Prev: GNU Free Documentation License,  Up: Top

Concept Index
*************

[index]
* Menu:

* Accuracy:                              MPFR Interface.       (line 25)
* Arithmetic functions:                  Basic Arithmetic Functions.
                                                               (line  3)
* Assignment functions:                  Assignment Functions. (line  3)
* Basic arithmetic functions:            Basic Arithmetic Functions.
                                                               (line  3)
* Combined initialization and assignment functions: Combined Initialization and Assignment Functions.
                                                               (line  3)
* Comparison functions:                  Comparison Functions. (line  3)
* Compatibility with MPF:                Compatibility with MPF.
                                                               (line  3)
* Conditions for copying MPFR:           Copying.              (line  6)
* Conversion functions:                  Conversion Functions. (line  3)
* Copying conditions:                    Copying.              (line  6)
* Custom interface:                      Custom Interface.     (line  3)
* Exception related functions:           Exception Related Functions.
                                                               (line  3)
* Float arithmetic functions:            Basic Arithmetic Functions.
                                                               (line  3)
* Float comparisons functions:           Comparison Functions. (line  3)
* Float functions:                       MPFR Interface.       (line  6)
* Float input and output functions:      Input and Output Functions.
                                                               (line  3)
* Float output functions:                Formatted Output Functions.
                                                               (line  3)
* Floating-point functions:              MPFR Interface.       (line  6)
* Floating-point number:                 Nomenclature and Types.
                                                               (line  6)
* GNU Free Documentation License:        GNU Free Documentation License.
                                                               (line  6)
* I/O functions <1>:                     Formatted Output Functions.
                                                               (line  3)
* I/O functions:                         Input and Output Functions.
                                                               (line  3)
* Initialization functions:              Initialization Functions.
                                                               (line  3)
* Input functions:                       Input and Output Functions.
                                                               (line  3)
* Installation:                          Installing MPFR.      (line  6)
* Integer related functions:             Integer Related Functions.
                                                               (line  3)
* Internals:                             Internals.            (line  3)
* intmax_t:                              Headers and Libraries.
                                                               (line 22)
* inttypes.h:                            Headers and Libraries.
                                                               (line 22)
* libmpfr:                               Headers and Libraries.
                                                               (line 50)
* Libraries:                             Headers and Libraries.
                                                               (line 50)
* Libtool:                               Headers and Libraries.
                                                               (line 56)
* Limb:                                  Internals.            (line  6)
* Linking:                               Headers and Libraries.
                                                               (line 50)
* Miscellaneous float functions:         Miscellaneous Functions.
                                                               (line  3)
* mpfr.h:                                Headers and Libraries.
                                                               (line  6)
* Output functions <1>:                  Formatted Output Functions.
                                                               (line  3)
* Output functions:                      Input and Output Functions.
                                                               (line  3)
* Precision <1>:                         MPFR Interface.       (line 17)
* Precision:                             Nomenclature and Types.
                                                               (line 20)
* Reporting bugs:                        Reporting Bugs.       (line  6)
* Rounding mode related functions:       Rounding Related Functions.
                                                               (line  3)
* Rounding Modes:                        Nomenclature and Types.
                                                               (line 34)
* Special functions:                     Special Functions.    (line  3)
* stdarg.h:                              Headers and Libraries.
                                                               (line 19)
* stdint.h:                              Headers and Libraries.
                                                               (line 22)
* stdio.h:                               Headers and Libraries.
                                                               (line 12)
* Ternary value:                         Rounding Modes.       (line 29)
* uintmax_t:                             Headers and Libraries.
                                                               (line 22)


File: mpfr.info,  Node: Function and Type Index,  Prev: Concept Index,  Up: Top

Function and Type Index
***********************

[index]
* Menu:

* mpfr_abs:                              Basic Arithmetic Functions.
                                                              (line 175)
* mpfr_acos:                             Special Functions.   (line  52)
* mpfr_acosh:                            Special Functions.   (line 136)
* mpfr_add:                              Basic Arithmetic Functions.
                                                              (line   8)
* mpfr_add_d:                            Basic Arithmetic Functions.
                                                              (line  14)
* mpfr_add_q:                            Basic Arithmetic Functions.
                                                              (line  18)
* mpfr_add_si:                           Basic Arithmetic Functions.
                                                              (line  12)
* mpfr_add_ui:                           Basic Arithmetic Functions.
                                                              (line  10)
* mpfr_add_z:                            Basic Arithmetic Functions.
                                                              (line  16)
* mpfr_agm:                              Special Functions.   (line 232)
* mpfr_ai:                               Special Functions.   (line 248)
* mpfr_asin:                             Special Functions.   (line  53)
* mpfr_asinh:                            Special Functions.   (line 137)
* mpfr_asprintf:                         Formatted Output Functions.
                                                              (line 194)
* mpfr_atan:                             Special Functions.   (line  54)
* mpfr_atan2:                            Special Functions.   (line  65)
* mpfr_atanh:                            Special Functions.   (line 138)
* mpfr_buildopt_decimal_p:               Miscellaneous Functions.
                                                              (line 163)
* mpfr_buildopt_gmpinternals_p:          Miscellaneous Functions.
                                                              (line 168)
* mpfr_buildopt_tls_p:                   Miscellaneous Functions.
                                                              (line 157)
* mpfr_buildopt_tune_case:               Miscellaneous Functions.
                                                              (line 173)
* mpfr_can_round:                        Rounding Related Functions.
                                                              (line  37)
* mpfr_cbrt:                             Basic Arithmetic Functions.
                                                              (line 109)
* mpfr_ceil:                             Integer Related Functions.
                                                              (line   8)
* mpfr_check_range:                      Exception Related Functions.
                                                              (line  38)
* mpfr_clear:                            Initialization Functions.
                                                              (line  31)
* mpfr_clear_divby0:                     Exception Related Functions.
                                                              (line 113)
* mpfr_clear_erangeflag:                 Exception Related Functions.
                                                              (line 116)
* mpfr_clear_flags:                      Exception Related Functions.
                                                              (line 129)
* mpfr_clear_inexflag:                   Exception Related Functions.
                                                              (line 115)
* mpfr_clear_nanflag:                    Exception Related Functions.
                                                              (line 114)
* mpfr_clear_overflow:                   Exception Related Functions.
                                                              (line 112)
* mpfr_clear_underflow:                  Exception Related Functions.
                                                              (line 111)
* mpfr_clears:                           Initialization Functions.
                                                              (line  36)
* mpfr_cmp:                              Comparison Functions.
                                                              (line   7)
* mpfr_cmp_d:                            Comparison Functions.
                                                              (line  10)
* mpfr_cmp_f:                            Comparison Functions.
                                                              (line  14)
* mpfr_cmp_ld:                           Comparison Functions.
                                                              (line  11)
* mpfr_cmp_q:                            Comparison Functions.
                                                              (line  13)
* mpfr_cmp_si:                           Comparison Functions.
                                                              (line   9)
* mpfr_cmp_si_2exp:                      Comparison Functions.
                                                              (line  31)
* mpfr_cmp_ui:                           Comparison Functions.
                                                              (line   8)
* mpfr_cmp_ui_2exp:                      Comparison Functions.
                                                              (line  29)
* mpfr_cmp_z:                            Comparison Functions.
                                                              (line  12)
* mpfr_cmpabs:                           Comparison Functions.
                                                              (line  35)
* mpfr_const_catalan:                    Special Functions.   (line 259)
* mpfr_const_euler:                      Special Functions.   (line 258)
* mpfr_const_log2:                       Special Functions.   (line 256)
* mpfr_const_pi:                         Special Functions.   (line 257)
* mpfr_copysign:                         Miscellaneous Functions.
                                                              (line 111)
* mpfr_cos:                              Special Functions.   (line  30)
* mpfr_cosh:                             Special Functions.   (line 115)
* mpfr_cot:                              Special Functions.   (line  48)
* mpfr_coth:                             Special Functions.   (line 132)
* mpfr_csc:                              Special Functions.   (line  47)
* mpfr_csch:                             Special Functions.   (line 131)
* mpfr_custom_get_exp:                   Custom Interface.    (line  78)
* mpfr_custom_get_kind:                  Custom Interface.    (line  67)
* mpfr_custom_get_significand:           Custom Interface.    (line  72)
* mpfr_custom_get_size:                  Custom Interface.    (line  36)
* mpfr_custom_init:                      Custom Interface.    (line  41)
* mpfr_custom_init_set:                  Custom Interface.    (line  48)
* mpfr_custom_move:                      Custom Interface.    (line  85)
* mpfr_d_div:                            Basic Arithmetic Functions.
                                                              (line  84)
* mpfr_d_sub:                            Basic Arithmetic Functions.
                                                              (line  37)
* MPFR_DECL_INIT:                        Initialization Functions.
                                                              (line  75)
* mpfr_digamma:                          Special Functions.   (line 187)
* mpfr_dim:                              Basic Arithmetic Functions.
                                                              (line 182)
* mpfr_div:                              Basic Arithmetic Functions.
                                                              (line  74)
* mpfr_div_2exp:                         Compatibility with MPF.
                                                              (line  51)
* mpfr_div_2si:                          Basic Arithmetic Functions.
                                                              (line 197)
* mpfr_div_2ui:                          Basic Arithmetic Functions.
                                                              (line 195)
* mpfr_div_d:                            Basic Arithmetic Functions.
                                                              (line  86)
* mpfr_div_q:                            Basic Arithmetic Functions.
                                                              (line  90)
* mpfr_div_si:                           Basic Arithmetic Functions.
                                                              (line  82)
* mpfr_div_ui:                           Basic Arithmetic Functions.
                                                              (line  78)
* mpfr_div_z:                            Basic Arithmetic Functions.
                                                              (line  88)
* mpfr_divby0_p:                         Exception Related Functions.
                                                              (line 135)
* mpfr_eint:                             Special Functions.   (line 154)
* mpfr_eq:                               Compatibility with MPF.
                                                              (line  30)
* mpfr_equal_p:                          Comparison Functions.
                                                              (line  61)
* mpfr_erangeflag_p:                     Exception Related Functions.
                                                              (line 138)
* mpfr_erf:                              Special Functions.   (line 198)
* mpfr_erfc:                             Special Functions.   (line 199)
* mpfr_exp:                              Special Functions.   (line  24)
* mpfr_exp10:                            Special Functions.   (line  26)
* mpfr_exp2:                             Special Functions.   (line  25)
* mpfr_expm1:                            Special Functions.   (line 150)
* mpfr_fac_ui:                           Special Functions.   (line 143)
* mpfr_fits_intmax_p:                    Conversion Functions.
                                                              (line 146)
* mpfr_fits_sint_p:                      Conversion Functions.
                                                              (line 142)
* mpfr_fits_slong_p:                     Conversion Functions.
                                                              (line 140)
* mpfr_fits_sshort_p:                    Conversion Functions.
                                                              (line 144)
* mpfr_fits_uint_p:                      Conversion Functions.
                                                              (line 141)
* mpfr_fits_uintmax_p:                   Conversion Functions.
                                                              (line 145)
* mpfr_fits_ulong_p:                     Conversion Functions.
                                                              (line 139)
* mpfr_fits_ushort_p:                    Conversion Functions.
                                                              (line 143)
* mpfr_floor:                            Integer Related Functions.
                                                              (line   9)
* mpfr_fma:                              Special Functions.   (line 225)
* mpfr_fmod:                             Integer Related Functions.
                                                              (line  79)
* mpfr_fms:                              Special Functions.   (line 227)
* mpfr_fprintf:                          Formatted Output Functions.
                                                              (line 158)
* mpfr_frac:                             Integer Related Functions.
                                                              (line  62)
* mpfr_free_cache:                       Special Functions.   (line 266)
* mpfr_free_str:                         Conversion Functions.
                                                              (line 133)
* mpfr_frexp:                            Conversion Functions.
                                                              (line  47)
* mpfr_gamma:                            Special Functions.   (line 169)
* mpfr_get_d:                            Conversion Functions.
                                                              (line   8)
* mpfr_get_d_2exp:                       Conversion Functions.
                                                              (line  34)
* mpfr_get_decimal64:                    Conversion Functions.
                                                              (line  10)
* mpfr_get_default_prec:                 Initialization Functions.
                                                              (line 114)
* mpfr_get_default_rounding_mode:        Rounding Related Functions.
                                                              (line  11)
* mpfr_get_emax:                         Exception Related Functions.
                                                              (line   8)
* mpfr_get_emax_max:                     Exception Related Functions.
                                                              (line  31)
* mpfr_get_emax_min:                     Exception Related Functions.
                                                              (line  30)
* mpfr_get_emin:                         Exception Related Functions.
                                                              (line   7)
* mpfr_get_emin_max:                     Exception Related Functions.
                                                              (line  29)
* mpfr_get_emin_min:                     Exception Related Functions.
                                                              (line  28)
* mpfr_get_exp:                          Miscellaneous Functions.
                                                              (line  89)
* mpfr_get_f:                            Conversion Functions.
                                                              (line  73)
* mpfr_get_flt:                          Conversion Functions.
                                                              (line   7)
* mpfr_get_ld:                           Conversion Functions.
                                                              (line   9)
* mpfr_get_ld_2exp:                      Conversion Functions.
                                                              (line  36)
* mpfr_get_patches:                      Miscellaneous Functions.
                                                              (line 148)
* mpfr_get_prec:                         Initialization Functions.
                                                              (line 147)
* mpfr_get_si:                           Conversion Functions.
                                                              (line  20)
* mpfr_get_sj:                           Conversion Functions.
                                                              (line  22)
* mpfr_get_str:                          Conversion Functions.
                                                              (line  87)
* mpfr_get_ui:                           Conversion Functions.
                                                              (line  21)
* mpfr_get_uj:                           Conversion Functions.
                                                              (line  23)
* mpfr_get_version:                      Miscellaneous Functions.
                                                              (line 117)
* mpfr_get_z:                            Conversion Functions.
                                                              (line  68)
* mpfr_get_z_2exp:                       Conversion Functions.
                                                              (line  55)
* mpfr_grandom:                          Miscellaneous Functions.
                                                              (line  65)
* mpfr_greater_p:                        Comparison Functions.
                                                              (line  57)
* mpfr_greaterequal_p:                   Comparison Functions.
                                                              (line  58)
* mpfr_hypot:                            Special Functions.   (line 241)
* mpfr_inexflag_p:                       Exception Related Functions.
                                                              (line 137)
* mpfr_inf_p:                            Comparison Functions.
                                                              (line  42)
* mpfr_init:                             Initialization Functions.
                                                              (line  54)
* mpfr_init2:                            Initialization Functions.
                                                              (line  11)
* mpfr_init_set:                         Combined Initialization and Assignment Functions.
                                                              (line   7)
* mpfr_init_set_d:                       Combined Initialization and Assignment Functions.
                                                              (line  12)
* mpfr_init_set_f:                       Combined Initialization and Assignment Functions.
                                                              (line  17)
* mpfr_init_set_ld:                      Combined Initialization and Assignment Functions.
                                                              (line  14)
* mpfr_init_set_q:                       Combined Initialization and Assignment Functions.
                                                              (line  16)
* mpfr_init_set_si:                      Combined Initialization and Assignment Functions.
                                                              (line  11)
* mpfr_init_set_str:                     Combined Initialization and Assignment Functions.
                                                              (line  23)
* mpfr_init_set_ui:                      Combined Initialization and Assignment Functions.
                                                              (line   9)
* mpfr_init_set_z:                       Combined Initialization and Assignment Functions.
                                                              (line  15)
* mpfr_inits:                            Initialization Functions.
                                                              (line  63)
* mpfr_inits2:                           Initialization Functions.
                                                              (line  23)
* mpfr_inp_str:                          Input and Output Functions.
                                                              (line  33)
* mpfr_integer_p:                        Integer Related Functions.
                                                              (line 105)
* mpfr_j0:                               Special Functions.   (line 203)
* mpfr_j1:                               Special Functions.   (line 204)
* mpfr_jn:                               Special Functions.   (line 206)
* mpfr_less_p:                           Comparison Functions.
                                                              (line  59)
* mpfr_lessequal_p:                      Comparison Functions.
                                                              (line  60)
* mpfr_lessgreater_p:                    Comparison Functions.
                                                              (line  66)
* mpfr_lgamma:                           Special Functions.   (line 179)
* mpfr_li2:                              Special Functions.   (line 164)
* mpfr_lngamma:                          Special Functions.   (line 173)
* mpfr_log:                              Special Functions.   (line  17)
* mpfr_log10:                            Special Functions.   (line  19)
* mpfr_log1p:                            Special Functions.   (line 146)
* mpfr_log2:                             Special Functions.   (line  18)
* mpfr_max:                              Miscellaneous Functions.
                                                              (line  24)
* mpfr_min:                              Miscellaneous Functions.
                                                              (line  22)
* mpfr_min_prec:                         Rounding Related Functions.
                                                              (line  59)
* mpfr_modf:                             Integer Related Functions.
                                                              (line  69)
* mpfr_mul:                              Basic Arithmetic Functions.
                                                              (line  53)
* mpfr_mul_2exp:                         Compatibility with MPF.
                                                              (line  49)
* mpfr_mul_2si:                          Basic Arithmetic Functions.
                                                              (line 190)
* mpfr_mul_2ui:                          Basic Arithmetic Functions.
                                                              (line 188)
* mpfr_mul_d:                            Basic Arithmetic Functions.
                                                              (line  59)
* mpfr_mul_q:                            Basic Arithmetic Functions.
                                                              (line  63)
* mpfr_mul_si:                           Basic Arithmetic Functions.
                                                              (line  57)
* mpfr_mul_ui:                           Basic Arithmetic Functions.
                                                              (line  55)
* mpfr_mul_z:                            Basic Arithmetic Functions.
                                                              (line  61)
* mpfr_nan_p:                            Comparison Functions.
                                                              (line  41)
* mpfr_nanflag_p:                        Exception Related Functions.
                                                              (line 136)
* mpfr_neg:                              Basic Arithmetic Functions.
                                                              (line 174)
* mpfr_nextabove:                        Miscellaneous Functions.
                                                              (line  16)
* mpfr_nextbelow:                        Miscellaneous Functions.
                                                              (line  17)
* mpfr_nexttoward:                       Miscellaneous Functions.
                                                              (line   7)
* mpfr_number_p:                         Comparison Functions.
                                                              (line  43)
* mpfr_out_str:                          Input and Output Functions.
                                                              (line  17)
* mpfr_overflow_p:                       Exception Related Functions.
                                                              (line 134)
* mpfr_pow:                              Basic Arithmetic Functions.
                                                              (line 118)
* mpfr_pow_si:                           Basic Arithmetic Functions.
                                                              (line 122)
* mpfr_pow_ui:                           Basic Arithmetic Functions.
                                                              (line 120)
* mpfr_pow_z:                            Basic Arithmetic Functions.
                                                              (line 124)
* mpfr_prec_round:                       Rounding Related Functions.
                                                              (line  15)
* mpfr_prec_t:                           Nomenclature and Types.
                                                              (line  20)
* mpfr_print_rnd_mode:                   Rounding Related Functions.
                                                              (line  66)
* mpfr_printf:                           Formatted Output Functions.
                                                              (line 165)
* mpfr_rec_sqrt:                         Basic Arithmetic Functions.
                                                              (line 104)
* mpfr_regular_p:                        Comparison Functions.
                                                              (line  45)
* mpfr_reldiff:                          Compatibility with MPF.
                                                              (line  41)
* mpfr_remainder:                        Integer Related Functions.
                                                              (line  81)
* mpfr_remquo:                           Integer Related Functions.
                                                              (line  83)
* mpfr_rint:                             Integer Related Functions.
                                                              (line   7)
* mpfr_rint_ceil:                        Integer Related Functions.
                                                              (line  38)
* mpfr_rint_floor:                       Integer Related Functions.
                                                              (line  40)
* mpfr_rint_round:                       Integer Related Functions.
                                                              (line  42)
* mpfr_rint_trunc:                       Integer Related Functions.
                                                              (line  44)
* mpfr_rnd_t:                            Nomenclature and Types.
                                                              (line  34)
* mpfr_root:                             Basic Arithmetic Functions.
                                                              (line 111)
* mpfr_round:                            Integer Related Functions.
                                                              (line  10)
* mpfr_sec:                              Special Functions.   (line  46)
* mpfr_sech:                             Special Functions.   (line 130)
* mpfr_set:                              Assignment Functions.
                                                              (line  10)
* mpfr_set_d:                            Assignment Functions.
                                                              (line  17)
* mpfr_set_decimal64:                    Assignment Functions.
                                                              (line  21)
* mpfr_set_default_prec:                 Initialization Functions.
                                                              (line 101)
* mpfr_set_default_rounding_mode:        Rounding Related Functions.
                                                              (line   7)
* mpfr_set_divby0:                       Exception Related Functions.
                                                              (line 122)
* mpfr_set_emax:                         Exception Related Functions.
                                                              (line  17)
* mpfr_set_emin:                         Exception Related Functions.
                                                              (line  16)
* mpfr_set_erangeflag:                   Exception Related Functions.
                                                              (line 125)
* mpfr_set_exp:                          Miscellaneous Functions.
                                                              (line  94)
* mpfr_set_f:                            Assignment Functions.
                                                              (line  24)
* mpfr_set_flt:                          Assignment Functions.
                                                              (line  16)
* mpfr_set_inexflag:                     Exception Related Functions.
                                                              (line 124)
* mpfr_set_inf:                          Assignment Functions.
                                                              (line 147)
* mpfr_set_ld:                           Assignment Functions.
                                                              (line  19)
* mpfr_set_nan:                          Assignment Functions.
                                                              (line 146)
* mpfr_set_nanflag:                      Exception Related Functions.
                                                              (line 123)
* mpfr_set_overflow:                     Exception Related Functions.
                                                              (line 121)
* mpfr_set_prec:                         Initialization Functions.
                                                              (line 137)
* mpfr_set_prec_raw:                     Compatibility with MPF.
                                                              (line  23)
* mpfr_set_q:                            Assignment Functions.
                                                              (line  23)
* mpfr_set_si:                           Assignment Functions.
                                                              (line  13)
* mpfr_set_si_2exp:                      Assignment Functions.
                                                              (line  53)
* mpfr_set_sj:                           Assignment Functions.
                                                              (line  15)
* mpfr_set_sj_2exp:                      Assignment Functions.
                                                              (line  57)
* mpfr_set_str:                          Assignment Functions.
                                                              (line  65)
* mpfr_set_ui:                           Assignment Functions.
                                                              (line  12)
* mpfr_set_ui_2exp:                      Assignment Functions.
                                                              (line  51)
* mpfr_set_uj:                           Assignment Functions.
                                                              (line  14)
* mpfr_set_uj_2exp:                      Assignment Functions.
                                                              (line  55)
* mpfr_set_underflow:                    Exception Related Functions.
                                                              (line 120)
* mpfr_set_z:                            Assignment Functions.
                                                              (line  22)
* mpfr_set_z_2exp:                       Assignment Functions.
                                                              (line  59)
* mpfr_set_zero:                         Assignment Functions.
                                                              (line 148)
* mpfr_setsign:                          Miscellaneous Functions.
                                                              (line 105)
* mpfr_sgn:                              Comparison Functions.
                                                              (line  51)
* mpfr_si_div:                           Basic Arithmetic Functions.
                                                              (line  80)
* mpfr_si_sub:                           Basic Arithmetic Functions.
                                                              (line  33)
* mpfr_signbit:                          Miscellaneous Functions.
                                                              (line 100)
* mpfr_sin:                              Special Functions.   (line  31)
* mpfr_sin_cos:                          Special Functions.   (line  37)
* mpfr_sinh:                             Special Functions.   (line 116)
* mpfr_sinh_cosh:                        Special Functions.   (line 122)
* mpfr_snprintf:                         Formatted Output Functions.
                                                              (line 182)
* mpfr_sprintf:                          Formatted Output Functions.
                                                              (line 171)
* mpfr_sqr:                              Basic Arithmetic Functions.
                                                              (line  70)
* mpfr_sqrt:                             Basic Arithmetic Functions.
                                                              (line  97)
* mpfr_sqrt_ui:                          Basic Arithmetic Functions.
                                                              (line  99)
* mpfr_strtofr:                          Assignment Functions.
                                                              (line  83)
* mpfr_sub:                              Basic Arithmetic Functions.
                                                              (line  27)
* mpfr_sub_d:                            Basic Arithmetic Functions.
                                                              (line  39)
* mpfr_sub_q:                            Basic Arithmetic Functions.
                                                              (line  45)
* mpfr_sub_si:                           Basic Arithmetic Functions.
                                                              (line  35)
* mpfr_sub_ui:                           Basic Arithmetic Functions.
                                                              (line  31)
* mpfr_sub_z:                            Basic Arithmetic Functions.
                                                              (line  43)
* mpfr_subnormalize:                     Exception Related Functions.
                                                              (line  61)
* mpfr_sum:                              Special Functions.   (line 275)
* mpfr_swap:                             Assignment Functions.
                                                              (line 154)
* mpfr_t:                                Nomenclature and Types.
                                                              (line   6)
* mpfr_tan:                              Special Functions.   (line  32)
* mpfr_tanh:                             Special Functions.   (line 117)
* mpfr_trunc:                            Integer Related Functions.
                                                              (line  11)
* mpfr_ui_div:                           Basic Arithmetic Functions.
                                                              (line  76)
* mpfr_ui_pow:                           Basic Arithmetic Functions.
                                                              (line 128)
* mpfr_ui_pow_ui:                        Basic Arithmetic Functions.
                                                              (line 126)
* mpfr_ui_sub:                           Basic Arithmetic Functions.
                                                              (line  29)
* mpfr_underflow_p:                      Exception Related Functions.
                                                              (line 133)
* mpfr_unordered_p:                      Comparison Functions.
                                                              (line  71)
* mpfr_urandom:                          Miscellaneous Functions.
                                                              (line  50)
* mpfr_urandomb:                         Miscellaneous Functions.
                                                              (line  30)
* mpfr_vasprintf:                        Formatted Output Functions.
                                                              (line 196)
* MPFR_VERSION:                          Miscellaneous Functions.
                                                              (line 120)
* MPFR_VERSION_MAJOR:                    Miscellaneous Functions.
                                                              (line 121)
* MPFR_VERSION_MINOR:                    Miscellaneous Functions.
                                                              (line 122)
* MPFR_VERSION_NUM:                      Miscellaneous Functions.
                                                              (line 140)
* MPFR_VERSION_PATCHLEVEL:               Miscellaneous Functions.
                                                              (line 123)
* MPFR_VERSION_STRING:                   Miscellaneous Functions.
                                                              (line 124)
* mpfr_vfprintf:                         Formatted Output Functions.
                                                              (line 160)
* mpfr_vprintf:                          Formatted Output Functions.
                                                              (line 166)
* mpfr_vsnprintf:                        Formatted Output Functions.
                                                              (line 184)
* mpfr_vsprintf:                         Formatted Output Functions.
                                                              (line 173)
* mpfr_y0:                               Special Functions.   (line 214)
* mpfr_y1:                               Special Functions.   (line 215)
* mpfr_yn:                               Special Functions.   (line 217)
* mpfr_z_sub:                            Basic Arithmetic Functions.
                                                              (line  41)
* mpfr_zero_p:                           Comparison Functions.
                                                              (line  44)
* mpfr_zeta:                             Special Functions.   (line 192)
* mpfr_zeta_ui:                          Special Functions.   (line 194)



Tag Table:
Node: Top886
Node: Copying2231
Node: Introduction to MPFR3991
Node: Installing MPFR6080
Node: Reporting Bugs10902
Node: MPFR Basics12831
Node: Headers and Libraries13147
Node: Nomenclature and Types16131
Node: MPFR Variable Conventions18135
Node: Rounding Modes19665
Ref: ternary value20762
Node: Floating-Point Values on Special Numbers22715
Node: Exceptions25691
Node: Memory Handling28843
Node: MPFR Interface29975
Node: Initialization Functions32071
Node: Assignment Functions38985
Node: Combined Initialization and Assignment Functions47639
Node: Conversion Functions48932
Node: Basic Arithmetic Functions57484
Node: Comparison Functions66492
Node: Special Functions69974
Node: Input and Output Functions83727
Node: Formatted Output Functions85650
Node: Integer Related Functions94769
Node: Rounding Related Functions100531
Node: Miscellaneous Functions104145
Node: Exception Related Functions112712
Node: Compatibility with MPF119466
Node: Custom Interface122154
Node: Internals126399
Node: API Compatibility127883
Node: Type and Macro Changes129813
Node: Added Functions132534
Node: Changed Functions135477
Node: Removed Functions139758
Node: Other Changes140170
Node: Contributors141699
Node: References144273
Node: GNU Free Documentation License146014
Node: Concept Index168457
Node: Function and Type Index174376

End Tag Table


Local Variables:
coding: utf-8
End: