// Inferno utils/6l/asm.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/asm.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package amd64 import ( "cmd/internal/obj" "cmd/link/internal/ld" "debug/elf" "log" ) func PADDR(x uint32) uint32 { return x &^ 0x80000000 } func Addcall(ctxt *ld.Link, s *ld.Symbol, t *ld.Symbol) int64 { s.Attr |= ld.AttrReachable i := s.Size s.Size += 4 ld.Symgrow(s, s.Size) r := ld.Addrel(s) r.Sym = t r.Off = int32(i) r.Type = obj.R_CALL r.Siz = 4 return i + int64(r.Siz) } func gentext(ctxt *ld.Link) { if !ctxt.DynlinkingGo() { return } addmoduledata := ctxt.Syms.Lookup("runtime.addmoduledata", 0) if addmoduledata.Type == obj.STEXT && ld.Buildmode != ld.BuildmodePlugin { // we're linking a module containing the runtime -> no need for // an init function return } addmoduledata.Attr |= ld.AttrReachable initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0) initfunc.Type = obj.STEXT initfunc.Attr |= ld.AttrLocal initfunc.Attr |= ld.AttrReachable o := func(op ...uint8) { for _, op1 := range op { ld.Adduint8(ctxt, initfunc, op1) } } // 0000000000000000 <local.dso_init>: // 0: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi # 7 <local.dso_init+0x7> // 3: R_X86_64_PC32 runtime.firstmoduledata-0x4 o(0x48, 0x8d, 0x3d) ld.Addpcrelplus(ctxt, initfunc, ctxt.Moduledata, 0) // 7: e8 00 00 00 00 callq c <local.dso_init+0xc> // 8: R_X86_64_PLT32 runtime.addmoduledata-0x4 o(0xe8) Addcall(ctxt, initfunc, addmoduledata) // c: c3 retq o(0xc3) if ld.Buildmode == ld.BuildmodePlugin { ctxt.Textp = append(ctxt.Textp, addmoduledata) } ctxt.Textp = append(ctxt.Textp, initfunc) initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0) initarray_entry.Attr |= ld.AttrReachable initarray_entry.Attr |= ld.AttrLocal initarray_entry.Type = obj.SINITARR ld.Addaddr(ctxt, initarray_entry, initfunc) } func adddynrel(ctxt *ld.Link, s *ld.Symbol, r *ld.Reloc) bool { targ := r.Sym switch r.Type { default: if r.Type >= 256 { ld.Errorf(s, "unexpected relocation type %d", r.Type) return false } // Handle relocations found in ELF object files. case 256 + ld.R_X86_64_PC32: if targ.Type == obj.SDYNIMPORT { ld.Errorf(s, "unexpected R_X86_64_PC32 relocation for dynamic symbol %s", targ.Name) } if targ.Type == 0 || targ.Type == obj.SXREF { ld.Errorf(s, "unknown symbol %s in pcrel", targ.Name) } r.Type = obj.R_PCREL r.Add += 4 return true case 256 + ld.R_X86_64_PLT32: r.Type = obj.R_PCREL r.Add += 4 if targ.Type == obj.SDYNIMPORT { addpltsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".plt", 0) r.Add += int64(targ.Plt) } return true case 256 + ld.R_X86_64_GOTPCREL, 256 + ld.R_X86_64_GOTPCRELX, 256 + ld.R_X86_64_REX_GOTPCRELX: if targ.Type != obj.SDYNIMPORT { // have symbol if r.Off >= 2 && s.P[r.Off-2] == 0x8b { // turn MOVQ of GOT entry into LEAQ of symbol itself s.P[r.Off-2] = 0x8d r.Type = obj.R_PCREL r.Add += 4 return true } } // fall back to using GOT and hope for the best (CMOV*) // TODO: just needs relocation, no need to put in .dynsym addgotsym(ctxt, targ) r.Type = obj.R_PCREL r.Sym = ctxt.Syms.Lookup(".got", 0) r.Add += 4 r.Add += int64(targ.Got) return true case 256 + ld.R_X86_64_64: if targ.Type == obj.SDYNIMPORT { ld.Errorf(s, "unexpected R_X86_64_64 relocation for dynamic symbol %s", targ.Name) } r.Type = obj.R_ADDR return true // Handle relocations found in Mach-O object files. case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 0, 512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 0, 512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 0: // TODO: What is the difference between all these? r.Type = obj.R_ADDR if targ.Type == obj.SDYNIMPORT { ld.Errorf(s, "unexpected reloc for dynamic symbol %s", targ.Name) } return true case 512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 1: if targ.Type == obj.SDYNIMPORT { addpltsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".plt", 0) r.Add = int64(targ.Plt) r.Type = obj.R_PCREL return true } fallthrough // fall through case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED_1*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED_2*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED_4*2 + 1: r.Type = obj.R_PCREL if targ.Type == obj.SDYNIMPORT { ld.Errorf(s, "unexpected pc-relative reloc for dynamic symbol %s", targ.Name) } return true case 512 + ld.MACHO_X86_64_RELOC_GOT_LOAD*2 + 1: if targ.Type != obj.SDYNIMPORT { // have symbol // turn MOVQ of GOT entry into LEAQ of symbol itself if r.Off < 2 || s.P[r.Off-2] != 0x8b { ld.Errorf(s, "unexpected GOT_LOAD reloc for non-dynamic symbol %s", targ.Name) return false } s.P[r.Off-2] = 0x8d r.Type = obj.R_PCREL return true } fallthrough // fall through case 512 + ld.MACHO_X86_64_RELOC_GOT*2 + 1: if targ.Type != obj.SDYNIMPORT { ld.Errorf(s, "unexpected GOT reloc for non-dynamic symbol %s", targ.Name) } addgotsym(ctxt, targ) r.Type = obj.R_PCREL r.Sym = ctxt.Syms.Lookup(".got", 0) r.Add += int64(targ.Got) return true } switch r.Type { case obj.R_CALL, obj.R_PCREL: if targ.Type != obj.SDYNIMPORT { // nothing to do, the relocation will be laid out in reloc return true } if ld.Headtype == obj.Hwindows || ld.Headtype == obj.Hwindowsgui { // nothing to do, the relocation will be laid out in pereloc1 return true } else { // for both ELF and Mach-O addpltsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".plt", 0) r.Add = int64(targ.Plt) return true } case obj.R_ADDR: if s.Type == obj.STEXT && ld.Iself { if ld.Headtype == obj.Hsolaris { addpltsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".plt", 0) r.Add += int64(targ.Plt) return true } // The code is asking for the address of an external // function. We provide it with the address of the // correspondent GOT symbol. addgotsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".got", 0) r.Add += int64(targ.Got) return true } // Process dynamic relocations for the data sections. if ld.Buildmode == ld.BuildmodePIE && ld.Linkmode == ld.LinkInternal { // When internally linking, generate dynamic relocations // for all typical R_ADDR relocations. The exception // are those R_ADDR that are created as part of generating // the dynamic relocations and must be resolved statically. // // There are three phases relevant to understanding this: // // dodata() // we are here // address() // symbol address assignment // reloc() // resolution of static R_ADDR relocs // // At this point symbol addresses have not been // assigned yet (as the final size of the .rela section // will affect the addresses), and so we cannot write // the Elf64_Rela.r_offset now. Instead we delay it // until after the 'address' phase of the linker is // complete. We do this via Addaddrplus, which creates // a new R_ADDR relocation which will be resolved in // the 'reloc' phase. // // These synthetic static R_ADDR relocs must be skipped // now, or else we will be caught in an infinite loop // of generating synthetic relocs for our synthetic // relocs. switch s.Name { case ".dynsym", ".rela", ".got.plt", ".dynamic": return false } } else { // Either internally linking a static executable, // in which case we can resolve these relocations // statically in the 'reloc' phase, or externally // linking, in which case the relocation will be // prepared in the 'reloc' phase and passed to the // external linker in the 'asmb' phase. if s.Type != obj.SDATA && s.Type != obj.SRODATA { break } } if ld.Iself { // TODO: We generate a R_X86_64_64 relocation for every R_ADDR, even // though it would be more efficient (for the dynamic linker) if we // generated R_X86_RELATIVE instead. ld.Adddynsym(ctxt, targ) rela := ctxt.Syms.Lookup(".rela", 0) ld.Addaddrplus(ctxt, rela, s, int64(r.Off)) if r.Siz == 8 { ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_64)) } else { // TODO: never happens, remove. ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_32)) } ld.Adduint64(ctxt, rela, uint64(r.Add)) r.Type = 256 // ignore during relocsym return true } if ld.Headtype == obj.Hdarwin && s.Size == int64(ld.SysArch.PtrSize) && r.Off == 0 { // Mach-O relocations are a royal pain to lay out. // They use a compact stateful bytecode representation // that is too much bother to deal with. // Instead, interpret the C declaration // void *_Cvar_stderr = &stderr; // as making _Cvar_stderr the name of a GOT entry // for stderr. This is separate from the usual GOT entry, // just in case the C code assigns to the variable, // and of course it only works for single pointers, // but we only need to support cgo and that's all it needs. ld.Adddynsym(ctxt, targ) got := ctxt.Syms.Lookup(".got", 0) s.Type = got.Type | obj.SSUB s.Outer = got s.Sub = got.Sub got.Sub = s s.Value = got.Size ld.Adduint64(ctxt, got, 0) ld.Adduint32(ctxt, ctxt.Syms.Lookup(".linkedit.got", 0), uint32(targ.Dynid)) r.Type = 256 // ignore during relocsym return true } if ld.Headtype == obj.Hwindows || ld.Headtype == obj.Hwindowsgui { // nothing to do, the relocation will be laid out in pereloc1 return true } } return false } func elfreloc1(ctxt *ld.Link, r *ld.Reloc, sectoff int64) int { ld.Thearch.Vput(uint64(sectoff)) elfsym := r.Xsym.ElfsymForReloc() switch r.Type { default: return -1 case obj.R_ADDR: if r.Siz == 4 { ld.Thearch.Vput(ld.R_X86_64_32 | uint64(elfsym)<<32) } else if r.Siz == 8 { ld.Thearch.Vput(ld.R_X86_64_64 | uint64(elfsym)<<32) } else { return -1 } case obj.R_TLS_LE: if r.Siz == 4 { ld.Thearch.Vput(ld.R_X86_64_TPOFF32 | uint64(elfsym)<<32) } else { return -1 } case obj.R_TLS_IE: if r.Siz == 4 { ld.Thearch.Vput(ld.R_X86_64_GOTTPOFF | uint64(elfsym)<<32) } else { return -1 } case obj.R_CALL: if r.Siz == 4 { if r.Xsym.Type == obj.SDYNIMPORT { if ctxt.DynlinkingGo() { ld.Thearch.Vput(ld.R_X86_64_PLT32 | uint64(elfsym)<<32) } else { ld.Thearch.Vput(ld.R_X86_64_GOTPCREL | uint64(elfsym)<<32) } } else { ld.Thearch.Vput(ld.R_X86_64_PC32 | uint64(elfsym)<<32) } } else { return -1 } case obj.R_PCREL: if r.Siz == 4 { if r.Xsym.Type == obj.SDYNIMPORT && r.Xsym.ElfType == elf.STT_FUNC { ld.Thearch.Vput(ld.R_X86_64_PLT32 | uint64(elfsym)<<32) } else { ld.Thearch.Vput(ld.R_X86_64_PC32 | uint64(elfsym)<<32) } } else { return -1 } case obj.R_GOTPCREL: if r.Siz == 4 { ld.Thearch.Vput(ld.R_X86_64_GOTPCREL | uint64(elfsym)<<32) } else { return -1 } } ld.Thearch.Vput(uint64(r.Xadd)) return 0 } func machoreloc1(s *ld.Symbol, r *ld.Reloc, sectoff int64) int { var v uint32 rs := r.Xsym if rs.Type == obj.SHOSTOBJ || r.Type == obj.R_PCREL || r.Type == obj.R_GOTPCREL { if rs.Dynid < 0 { ld.Errorf(s, "reloc %d to non-macho symbol %s type=%d", r.Type, rs.Name, rs.Type) return -1 } v = uint32(rs.Dynid) v |= 1 << 27 // external relocation } else { v = uint32(rs.Sect.Extnum) if v == 0 { ld.Errorf(s, "reloc %d to symbol %s in non-macho section %s type=%d", r.Type, rs.Name, rs.Sect.Name, rs.Type) return -1 } } switch r.Type { default: return -1 case obj.R_ADDR: v |= ld.MACHO_X86_64_RELOC_UNSIGNED << 28 case obj.R_CALL: v |= 1 << 24 // pc-relative bit v |= ld.MACHO_X86_64_RELOC_BRANCH << 28 // NOTE: Only works with 'external' relocation. Forced above. case obj.R_PCREL: v |= 1 << 24 // pc-relative bit v |= ld.MACHO_X86_64_RELOC_SIGNED << 28 case obj.R_GOTPCREL: v |= 1 << 24 // pc-relative bit v |= ld.MACHO_X86_64_RELOC_GOT_LOAD << 28 } switch r.Siz { default: return -1 case 1: v |= 0 << 25 case 2: v |= 1 << 25 case 4: v |= 2 << 25 case 8: v |= 3 << 25 } ld.Thearch.Lput(uint32(sectoff)) ld.Thearch.Lput(v) return 0 } func pereloc1(s *ld.Symbol, r *ld.Reloc, sectoff int64) bool { var v uint32 rs := r.Xsym if rs.Dynid < 0 { ld.Errorf(s, "reloc %d to non-coff symbol %s type=%d", r.Type, rs.Name, rs.Type) return false } ld.Thearch.Lput(uint32(sectoff)) ld.Thearch.Lput(uint32(rs.Dynid)) switch r.Type { default: return false case obj.R_ADDR: if r.Siz == 8 { v = ld.IMAGE_REL_AMD64_ADDR64 } else { v = ld.IMAGE_REL_AMD64_ADDR32 } case obj.R_CALL, obj.R_PCREL: v = ld.IMAGE_REL_AMD64_REL32 } ld.Thearch.Wput(uint16(v)) return true } func archreloc(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, val *int64) int { return -1 } func archrelocvariant(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, t int64) int64 { log.Fatalf("unexpected relocation variant") return t } func elfsetupplt(ctxt *ld.Link) { plt := ctxt.Syms.Lookup(".plt", 0) got := ctxt.Syms.Lookup(".got.plt", 0) if plt.Size == 0 { // pushq got+8(IP) ld.Adduint8(ctxt, plt, 0xff) ld.Adduint8(ctxt, plt, 0x35) ld.Addpcrelplus(ctxt, plt, got, 8) // jmpq got+16(IP) ld.Adduint8(ctxt, plt, 0xff) ld.Adduint8(ctxt, plt, 0x25) ld.Addpcrelplus(ctxt, plt, got, 16) // nopl 0(AX) ld.Adduint32(ctxt, plt, 0x00401f0f) // assume got->size == 0 too ld.Addaddrplus(ctxt, got, ctxt.Syms.Lookup(".dynamic", 0), 0) ld.Adduint64(ctxt, got, 0) ld.Adduint64(ctxt, got, 0) } } func addpltsym(ctxt *ld.Link, s *ld.Symbol) { if s.Plt >= 0 { return } ld.Adddynsym(ctxt, s) if ld.Iself { plt := ctxt.Syms.Lookup(".plt", 0) got := ctxt.Syms.Lookup(".got.plt", 0) rela := ctxt.Syms.Lookup(".rela.plt", 0) if plt.Size == 0 { elfsetupplt(ctxt) } // jmpq *got+size(IP) ld.Adduint8(ctxt, plt, 0xff) ld.Adduint8(ctxt, plt, 0x25) ld.Addpcrelplus(ctxt, plt, got, got.Size) // add to got: pointer to current pos in plt ld.Addaddrplus(ctxt, got, plt, plt.Size) // pushq $x ld.Adduint8(ctxt, plt, 0x68) ld.Adduint32(ctxt, plt, uint32((got.Size-24-8)/8)) // jmpq .plt ld.Adduint8(ctxt, plt, 0xe9) ld.Adduint32(ctxt, plt, uint32(-(plt.Size + 4))) // rela ld.Addaddrplus(ctxt, rela, got, got.Size-8) ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_X86_64_JMP_SLOT)) ld.Adduint64(ctxt, rela, 0) s.Plt = int32(plt.Size - 16) } else if ld.Headtype == obj.Hdarwin { // To do lazy symbol lookup right, we're supposed // to tell the dynamic loader which library each // symbol comes from and format the link info // section just so. I'm too lazy (ha!) to do that // so for now we'll just use non-lazy pointers, // which don't need to be told which library to use. // // http://networkpx.blogspot.com/2009/09/about-lcdyldinfoonly-command.html // has details about what we're avoiding. addgotsym(ctxt, s) plt := ctxt.Syms.Lookup(".plt", 0) ld.Adduint32(ctxt, ctxt.Syms.Lookup(".linkedit.plt", 0), uint32(s.Dynid)) // jmpq *got+size(IP) s.Plt = int32(plt.Size) ld.Adduint8(ctxt, plt, 0xff) ld.Adduint8(ctxt, plt, 0x25) ld.Addpcrelplus(ctxt, plt, ctxt.Syms.Lookup(".got", 0), int64(s.Got)) } else { ld.Errorf(s, "addpltsym: unsupported binary format") } } func addgotsym(ctxt *ld.Link, s *ld.Symbol) { if s.Got >= 0 { return } ld.Adddynsym(ctxt, s) got := ctxt.Syms.Lookup(".got", 0) s.Got = int32(got.Size) ld.Adduint64(ctxt, got, 0) if ld.Iself { rela := ctxt.Syms.Lookup(".rela", 0) ld.Addaddrplus(ctxt, rela, got, int64(s.Got)) ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_X86_64_GLOB_DAT)) ld.Adduint64(ctxt, rela, 0) } else if ld.Headtype == obj.Hdarwin { ld.Adduint32(ctxt, ctxt.Syms.Lookup(".linkedit.got", 0), uint32(s.Dynid)) } else { ld.Errorf(s, "addgotsym: unsupported binary format") } } func asmb(ctxt *ld.Link) { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f asmb\n", obj.Cputime()) } if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f codeblk\n", obj.Cputime()) } if ld.Iself { ld.Asmbelfsetup() } sect := ld.Segtext.Sect ld.Cseek(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) // 0xCC is INT $3 - breakpoint instruction ld.CodeblkPad(ctxt, int64(sect.Vaddr), int64(sect.Length), []byte{0xCC}) for sect = sect.Next; sect != nil; sect = sect.Next { ld.Cseek(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) } if ld.Segrodata.Filelen > 0 { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f rodatblk\n", obj.Cputime()) } ld.Cseek(int64(ld.Segrodata.Fileoff)) ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen)) } if ld.Segrelrodata.Filelen > 0 { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f relrodatblk\n", obj.Cputime()) } ld.Cseek(int64(ld.Segrelrodata.Fileoff)) ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen)) } if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f datblk\n", obj.Cputime()) } ld.Cseek(int64(ld.Segdata.Fileoff)) ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen)) ld.Cseek(int64(ld.Segdwarf.Fileoff)) ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen)) machlink := int64(0) if ld.Headtype == obj.Hdarwin { machlink = ld.Domacholink(ctxt) } switch ld.Headtype { default: ld.Errorf(nil, "unknown header type %v", ld.Headtype) fallthrough case obj.Hplan9: break case obj.Hdarwin: ld.Flag8 = true /* 64-bit addresses */ case obj.Hlinux, obj.Hfreebsd, obj.Hnetbsd, obj.Hopenbsd, obj.Hdragonfly, obj.Hsolaris: ld.Flag8 = true /* 64-bit addresses */ case obj.Hnacl, obj.Hwindows, obj.Hwindowsgui: break } ld.Symsize = 0 ld.Spsize = 0 ld.Lcsize = 0 symo := int64(0) if !*ld.FlagS { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f sym\n", obj.Cputime()) } switch ld.Headtype { default: case obj.Hplan9: *ld.FlagS = true symo = int64(ld.Segdata.Fileoff + ld.Segdata.Filelen) case obj.Hdarwin: symo = int64(ld.Segdwarf.Fileoff + uint64(ld.Rnd(int64(ld.Segdwarf.Filelen), int64(*ld.FlagRound))) + uint64(machlink)) case obj.Hlinux, obj.Hfreebsd, obj.Hnetbsd, obj.Hopenbsd, obj.Hdragonfly, obj.Hsolaris, obj.Hnacl: symo = int64(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) symo = ld.Rnd(symo, int64(*ld.FlagRound)) case obj.Hwindows, obj.Hwindowsgui: symo = int64(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) symo = ld.Rnd(symo, ld.PEFILEALIGN) } ld.Cseek(symo) switch ld.Headtype { default: if ld.Iself { ld.Cseek(symo) ld.Asmelfsym(ctxt) ld.Cflush() ld.Cwrite(ld.Elfstrdat) if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f dwarf\n", obj.Cputime()) } if ld.Linkmode == ld.LinkExternal { ld.Elfemitreloc(ctxt) } } case obj.Hplan9: ld.Asmplan9sym(ctxt) ld.Cflush() sym := ctxt.Syms.Lookup("pclntab", 0) if sym != nil { ld.Lcsize = int32(len(sym.P)) for i := 0; int32(i) < ld.Lcsize; i++ { ld.Cput(sym.P[i]) } ld.Cflush() } case obj.Hwindows, obj.Hwindowsgui: if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f dwarf\n", obj.Cputime()) } case obj.Hdarwin: if ld.Linkmode == ld.LinkExternal { ld.Machoemitreloc(ctxt) } } } if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f headr\n", obj.Cputime()) } ld.Cseek(0) switch ld.Headtype { default: case obj.Hplan9: /* plan9 */ magic := int32(4*26*26 + 7) magic |= 0x00008000 /* fat header */ ld.Lputb(uint32(magic)) /* magic */ ld.Lputb(uint32(ld.Segtext.Filelen)) /* sizes */ ld.Lputb(uint32(ld.Segdata.Filelen)) ld.Lputb(uint32(ld.Segdata.Length - ld.Segdata.Filelen)) ld.Lputb(uint32(ld.Symsize)) /* nsyms */ vl := ld.Entryvalue(ctxt) ld.Lputb(PADDR(uint32(vl))) /* va of entry */ ld.Lputb(uint32(ld.Spsize)) /* sp offsets */ ld.Lputb(uint32(ld.Lcsize)) /* line offsets */ ld.Vputb(uint64(vl)) /* va of entry */ case obj.Hdarwin: ld.Asmbmacho(ctxt) case obj.Hlinux, obj.Hfreebsd, obj.Hnetbsd, obj.Hopenbsd, obj.Hdragonfly, obj.Hsolaris, obj.Hnacl: ld.Asmbelf(ctxt, symo) case obj.Hwindows, obj.Hwindowsgui: ld.Asmbpe(ctxt) } ld.Cflush() } func tlsIEtoLE(s *ld.Symbol, off, size int) { // Transform the PC-relative instruction into a constant load. // That is, // // MOVQ X(IP), REG -> MOVQ $Y, REG // // To determine the instruction and register, we study the op codes. // Consult an AMD64 instruction encoding guide to decipher this. if off < 3 { log.Fatal("R_X86_64_GOTTPOFF reloc not preceded by MOVQ or ADDQ instruction") } op := s.P[off-3 : off] reg := op[2] >> 3 if op[1] == 0x8b || reg == 4 { // MOVQ if op[0] == 0x4c { op[0] = 0x49 } else if size == 4 && op[0] == 0x44 { op[0] = 0x41 } if op[1] == 0x8b { op[1] = 0xc7 } else { op[1] = 0x81 // special case for SP } op[2] = 0xc0 | reg } else { // An alternate op is ADDQ. This is handled by GNU gold, // but right now is not generated by the Go compiler: // ADDQ X(IP), REG -> ADDQ $Y, REG // Consider adding support for it here. log.Fatalf("expected TLS IE op to be MOVQ, got %v", op) } }