// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Annotate Ref in Prog with C types by parsing gcc debug output. // Conversion of debug output to Go types. package main import ( "bytes" "debug/dwarf" "debug/elf" "debug/macho" "debug/pe" "encoding/binary" "errors" "flag" "fmt" "go/ast" "go/parser" "go/token" "os" "strconv" "strings" "unicode" "unicode/utf8" ) var debugDefine = flag.Bool("debug-define", false, "print relevant #defines") var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations") var nameToC = map[string]string{ "schar": "signed char", "uchar": "unsigned char", "ushort": "unsigned short", "uint": "unsigned int", "ulong": "unsigned long", "longlong": "long long", "ulonglong": "unsigned long long", "complexfloat": "float _Complex", "complexdouble": "double _Complex", } // cname returns the C name to use for C.s. // The expansions are listed in nameToC and also // struct_foo becomes "struct foo", and similarly for // union and enum. func cname(s string) string { if t, ok := nameToC[s]; ok { return t } if strings.HasPrefix(s, "struct_") { return "struct " + s[len("struct_"):] } if strings.HasPrefix(s, "union_") { return "union " + s[len("union_"):] } if strings.HasPrefix(s, "enum_") { return "enum " + s[len("enum_"):] } if strings.HasPrefix(s, "sizeof_") { return "sizeof(" + cname(s[len("sizeof_"):]) + ")" } return s } // DiscardCgoDirectives processes the import C preamble, and discards // all #cgo CFLAGS and LDFLAGS directives, so they don't make their // way into _cgo_export.h. func (f *File) DiscardCgoDirectives() { linesIn := strings.Split(f.Preamble, "\n") linesOut := make([]string, 0, len(linesIn)) for _, line := range linesIn { l := strings.TrimSpace(line) if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) { linesOut = append(linesOut, line) } else { linesOut = append(linesOut, "") } } f.Preamble = strings.Join(linesOut, "\n") } // addToFlag appends args to flag. All flags are later written out onto the // _cgo_flags file for the build system to use. func (p *Package) addToFlag(flag string, args []string) { p.CgoFlags[flag] = append(p.CgoFlags[flag], args...) if flag == "CFLAGS" { // We'll also need these when preprocessing for dwarf information. p.GccOptions = append(p.GccOptions, args...) } } // splitQuoted splits the string s around each instance of one or more consecutive // white space characters while taking into account quotes and escaping, and // returns an array of substrings of s or an empty list if s contains only white space. // Single quotes and double quotes are recognized to prevent splitting within the // quoted region, and are removed from the resulting substrings. If a quote in s // isn't closed err will be set and r will have the unclosed argument as the // last element. The backslash is used for escaping. // // For example, the following string: // // `a b:"c d" 'e''f' "g\""` // // Would be parsed as: // // []string{"a", "b:c d", "ef", `g"`} // func splitQuoted(s string) (r []string, err error) { var args []string arg := make([]rune, len(s)) escaped := false quoted := false quote := '\x00' i := 0 for _, r := range s { switch { case escaped: escaped = false case r == '\\': escaped = true continue case quote != 0: if r == quote { quote = 0 continue } case r == '"' || r == '\'': quoted = true quote = r continue case unicode.IsSpace(r): if quoted || i > 0 { quoted = false args = append(args, string(arg[:i])) i = 0 } continue } arg[i] = r i++ } if quoted || i > 0 { args = append(args, string(arg[:i])) } if quote != 0 { err = errors.New("unclosed quote") } else if escaped { err = errors.New("unfinished escaping") } return args, err } // Translate rewrites f.AST, the original Go input, to remove // references to the imported package C, replacing them with // references to the equivalent Go types, functions, and variables. func (p *Package) Translate(f *File) { for _, cref := range f.Ref { // Convert C.ulong to C.unsigned long, etc. cref.Name.C = cname(cref.Name.Go) } p.loadDefines(f) needType := p.guessKinds(f) if len(needType) > 0 { p.loadDWARF(f, needType) } if p.rewriteCalls(f) { // Add `import _cgo_unsafe "unsafe"` as the first decl // after the package statement. imp := &ast.GenDecl{ Tok: token.IMPORT, Specs: []ast.Spec{ &ast.ImportSpec{ Name: ast.NewIdent("_cgo_unsafe"), Path: &ast.BasicLit{ Kind: token.STRING, Value: `"unsafe"`, }, }, }, } f.AST.Decls = append([]ast.Decl{imp}, f.AST.Decls...) } p.rewriteRef(f) } // loadDefines coerces gcc into spitting out the #defines in use // in the file f and saves relevant renamings in f.Name[name].Define. func (p *Package) loadDefines(f *File) { var b bytes.Buffer b.WriteString(f.Preamble) b.WriteString(builtinProlog) stdout := p.gccDefines(b.Bytes()) for _, line := range strings.Split(stdout, "\n") { if len(line) < 9 || line[0:7] != "#define" { continue } line = strings.TrimSpace(line[8:]) var key, val string spaceIndex := strings.Index(line, " ") tabIndex := strings.Index(line, "\t") if spaceIndex == -1 && tabIndex == -1 { continue } else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) { key = line[0:spaceIndex] val = strings.TrimSpace(line[spaceIndex:]) } else { key = line[0:tabIndex] val = strings.TrimSpace(line[tabIndex:]) } if key == "__clang__" { p.GccIsClang = true } if n := f.Name[key]; n != nil { if *debugDefine { fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val) } n.Define = val } } } // guessKinds tricks gcc into revealing the kind of each // name xxx for the references C.xxx in the Go input. // The kind is either a constant, type, or variable. func (p *Package) guessKinds(f *File) []*Name { // Determine kinds for names we already know about, // like #defines or 'struct foo', before bothering with gcc. var names, needType []*Name for _, key := range nameKeys(f.Name) { n := f.Name[key] // If we've already found this name as a #define // and we can translate it as a constant value, do so. if n.Define != "" { isConst := false if _, err := strconv.Atoi(n.Define); err == nil { isConst = true } else if n.Define[0] == '"' || n.Define[0] == '\'' { if _, err := parser.ParseExpr(n.Define); err == nil { isConst = true } } if isConst { n.Kind = "const" // Turn decimal into hex, just for consistency // with enum-derived constants. Otherwise // in the cgo -godefs output half the constants // are in hex and half are in whatever the #define used. i, err := strconv.ParseInt(n.Define, 0, 64) if err == nil { n.Const = fmt.Sprintf("%#x", i) } else { n.Const = n.Define } continue } if isName(n.Define) { n.C = n.Define } } needType = append(needType, n) // If this is a struct, union, or enum type name, no need to guess the kind. if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") { n.Kind = "type" continue } // Otherwise, we'll need to find out from gcc. names = append(names, n) } // Bypass gcc if there's nothing left to find out. if len(names) == 0 { return needType } // Coerce gcc into telling us whether each name is a type, a value, or undeclared. // For names, find out whether they are integer constants. // We used to look at specific warning or error messages here, but that tied the // behavior too closely to specific versions of the compilers. // Instead, arrange that we can infer what we need from only the presence or absence // of an error on a specific line. // // For each name, we generate these lines, where xxx is the index in toSniff plus one. // // #line xxx "not-declared" // void __cgo_f_xxx_1(void) { __typeof__(name) *__cgo_undefined__; } // #line xxx "not-type" // void __cgo_f_xxx_2(void) { name *__cgo_undefined__; } // #line xxx "not-const" // void __cgo_f_xxx_3(void) { enum { __cgo_undefined__ = (name)*1 }; } // // If we see an error at not-declared:xxx, the corresponding name is not declared. // If we see an error at not-type:xxx, the corresponding name is a type. // If we see an error at not-const:xxx, the corresponding name is not an integer constant. // If we see no errors, we assume the name is an expression but not a constant // (so a variable or a function). // // The specific input forms are chosen so that they are valid C syntax regardless of // whether name denotes a type or an expression. var b bytes.Buffer b.WriteString(f.Preamble) b.WriteString(builtinProlog) for i, n := range names { fmt.Fprintf(&b, "#line %d \"not-declared\"\n"+ "void __cgo_f_%d_1(void) { __typeof__(%s) *__cgo_undefined__; }\n"+ "#line %d \"not-type\"\n"+ "void __cgo_f_%d_2(void) { %s *__cgo_undefined__; }\n"+ "#line %d \"not-const\"\n"+ "void __cgo_f_%d_3(void) { enum { __cgo__undefined__ = (%s)*1 }; }\n", i+1, i+1, n.C, i+1, i+1, n.C, i+1, i+1, n.C) } fmt.Fprintf(&b, "#line 1 \"completed\"\n"+ "int __cgo__1 = __cgo__2;\n") stderr := p.gccErrors(b.Bytes()) if stderr == "" { fatalf("%s produced no output\non input:\n%s", p.gccBaseCmd()[0], b.Bytes()) } completed := false sniff := make([]int, len(names)) const ( notType = 1 << iota notConst notDeclared ) for _, line := range strings.Split(stderr, "\n") { if !strings.Contains(line, ": error:") { // we only care about errors. // we tried to turn off warnings on the command line, but one never knows. continue } c1 := strings.Index(line, ":") if c1 < 0 { continue } c2 := strings.Index(line[c1+1:], ":") if c2 < 0 { continue } c2 += c1 + 1 filename := line[:c1] i, _ := strconv.Atoi(line[c1+1 : c2]) i-- if i < 0 || i >= len(names) { continue } switch filename { case "completed": // Strictly speaking, there is no guarantee that seeing the error at completed:1 // (at the end of the file) means we've seen all the errors from earlier in the file, // but usually it does. Certainly if we don't see the completed:1 error, we did // not get all the errors we expected. completed = true case "not-declared": sniff[i] |= notDeclared case "not-type": sniff[i] |= notType case "not-const": sniff[i] |= notConst } } if !completed { fatalf("%s did not produce error at completed:1\non input:\n%s\nfull error output:\n%s", p.gccBaseCmd()[0], b.Bytes(), stderr) } for i, n := range names { switch sniff[i] { default: error_(token.NoPos, "could not determine kind of name for C.%s", fixGo(n.Go)) case notType: n.Kind = "const" case notConst: n.Kind = "type" case notConst | notType: n.Kind = "not-type" } } if nerrors > 0 { // Check if compiling the preamble by itself causes any errors, // because the messages we've printed out so far aren't helpful // to users debugging preamble mistakes. See issue 8442. preambleErrors := p.gccErrors([]byte(f.Preamble)) if len(preambleErrors) > 0 { error_(token.NoPos, "\n%s errors for preamble:\n%s", p.gccBaseCmd()[0], preambleErrors) } fatalf("unresolved names") } needType = append(needType, names...) return needType } // loadDWARF parses the DWARF debug information generated // by gcc to learn the details of the constants, variables, and types // being referred to as C.xxx. func (p *Package) loadDWARF(f *File, names []*Name) { // Extract the types from the DWARF section of an object // from a well-formed C program. Gcc only generates DWARF info // for symbols in the object file, so it is not enough to print the // preamble and hope the symbols we care about will be there. // Instead, emit // __typeof__(names[i]) *__cgo__i; // for each entry in names and then dereference the type we // learn for __cgo__i. var b bytes.Buffer b.WriteString(f.Preamble) b.WriteString(builtinProlog) b.WriteString("#line 1 \"cgo-dwarf-inference\"\n") for i, n := range names { fmt.Fprintf(&b, "__typeof__(%s) *__cgo__%d;\n", n.C, i) if n.Kind == "const" { fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C) } } // Apple's LLVM-based gcc does not include the enumeration // names and values in its DWARF debug output. In case we're // using such a gcc, create a data block initialized with the values. // We can read them out of the object file. fmt.Fprintf(&b, "long long __cgodebug_data[] = {\n") for _, n := range names { if n.Kind == "const" { fmt.Fprintf(&b, "\t%s,\n", n.C) } else { fmt.Fprintf(&b, "\t0,\n") } } // for the last entry, we cannot use 0, otherwise // in case all __cgodebug_data is zero initialized, // LLVM-based gcc will place the it in the __DATA.__common // zero-filled section (our debug/macho doesn't support // this) fmt.Fprintf(&b, "\t1\n") fmt.Fprintf(&b, "};\n") d, bo, debugData := p.gccDebug(b.Bytes()) enumVal := make([]int64, len(debugData)/8) for i := range enumVal { enumVal[i] = int64(bo.Uint64(debugData[i*8:])) } // Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i. types := make([]dwarf.Type, len(names)) enums := make([]dwarf.Offset, len(names)) nameToIndex := make(map[*Name]int) for i, n := range names { nameToIndex[n] = i } nameToRef := make(map[*Name]*Ref) for _, ref := range f.Ref { nameToRef[ref.Name] = ref } r := d.Reader() for { e, err := r.Next() if err != nil { fatalf("reading DWARF entry: %s", err) } if e == nil { break } switch e.Tag { case dwarf.TagEnumerationType: offset := e.Offset for { e, err := r.Next() if err != nil { fatalf("reading DWARF entry: %s", err) } if e.Tag == 0 { break } if e.Tag == dwarf.TagEnumerator { entryName := e.Val(dwarf.AttrName).(string) if strings.HasPrefix(entryName, "__cgo_enum__") { n, _ := strconv.Atoi(entryName[len("__cgo_enum__"):]) if 0 <= n && n < len(names) { enums[n] = offset } } } } case dwarf.TagVariable: name, _ := e.Val(dwarf.AttrName).(string) typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset) if name == "" || typOff == 0 { if e.Val(dwarf.AttrSpecification) != nil { // Since we are reading all the DWARF, // assume we will see the variable elsewhere. break } fatalf("malformed DWARF TagVariable entry") } if !strings.HasPrefix(name, "__cgo__") { break } typ, err := d.Type(typOff) if err != nil { fatalf("loading DWARF type: %s", err) } t, ok := typ.(*dwarf.PtrType) if !ok || t == nil { fatalf("internal error: %s has non-pointer type", name) } i, err := strconv.Atoi(name[7:]) if err != nil { fatalf("malformed __cgo__ name: %s", name) } if enums[i] != 0 { t, err := d.Type(enums[i]) if err != nil { fatalf("loading DWARF type: %s", err) } types[i] = t } else { types[i] = t.Type } } if e.Tag != dwarf.TagCompileUnit { r.SkipChildren() } } // Record types and typedef information. var conv typeConv conv.Init(p.PtrSize, p.IntSize) for i, n := range names { if types[i] == nil { continue } pos := token.NoPos if ref, ok := nameToRef[n]; ok { pos = ref.Pos() } f, fok := types[i].(*dwarf.FuncType) if n.Kind != "type" && fok { n.Kind = "func" n.FuncType = conv.FuncType(f, pos) } else { n.Type = conv.Type(types[i], pos) if enums[i] != 0 && n.Type.EnumValues != nil { k := fmt.Sprintf("__cgo_enum__%d", i) n.Kind = "const" n.Const = fmt.Sprintf("%#x", n.Type.EnumValues[k]) // Remove injected enum to ensure the value will deep-compare // equally in future loads of the same constant. delete(n.Type.EnumValues, k) } // Prefer debug data over DWARF debug output, if we have it. if n.Kind == "const" && i < len(enumVal) { n.Const = fmt.Sprintf("%#x", enumVal[i]) } } conv.FinishType(pos) } } // mangleName does name mangling to translate names // from the original Go source files to the names // used in the final Go files generated by cgo. func (p *Package) mangleName(n *Name) { // When using gccgo variables have to be // exported so that they become global symbols // that the C code can refer to. prefix := "_C" if *gccgo && n.IsVar() { prefix = "C" } n.Mangle = prefix + n.Kind + "_" + n.Go } // rewriteCalls rewrites all calls that pass pointers to check that // they follow the rules for passing pointers between Go and C. // This returns whether the package needs to import unsafe as _cgo_unsafe. func (p *Package) rewriteCalls(f *File) bool { needsUnsafe := false for _, call := range f.Calls { // This is a call to C.xxx; set goname to "xxx". goname := call.Call.Fun.(*ast.SelectorExpr).Sel.Name if goname == "malloc" { continue } name := f.Name[goname] if name.Kind != "func" { // Probably a type conversion. continue } if p.rewriteCall(f, call, name) { needsUnsafe = true } } return needsUnsafe } // rewriteCall rewrites one call to add pointer checks. // If any pointer checks are required, we rewrite the call into a // function literal that calls _cgoCheckPointer for each pointer // argument and then calls the original function. // This returns whether the package needs to import unsafe as _cgo_unsafe. func (p *Package) rewriteCall(f *File, call *Call, name *Name) bool { // Avoid a crash if the number of arguments is // less than the number of parameters. // This will be caught when the generated file is compiled. if len(call.Call.Args) < len(name.FuncType.Params) { return false } any := false for i, param := range name.FuncType.Params { if p.needsPointerCheck(f, param.Go, call.Call.Args[i]) { any = true break } } if !any { return false } // We need to rewrite this call. // // We are going to rewrite C.f(p) to // func (_cgo0 ptype) { // _cgoCheckPointer(_cgo0) // C.f(_cgo0) // }(p) // Using a function literal like this lets us do correct // argument type checking, and works correctly if the call is // deferred. needsUnsafe := false params := make([]*ast.Field, len(name.FuncType.Params)) nargs := make([]ast.Expr, len(name.FuncType.Params)) var stmts []ast.Stmt for i, param := range name.FuncType.Params { // params is going to become the parameters of the // function literal. // nargs is going to become the list of arguments made // by the call within the function literal. // nparam is the parameter of the function literal that // corresponds to param. origArg := call.Call.Args[i] nparam := ast.NewIdent(fmt.Sprintf("_cgo%d", i)) nargs[i] = nparam // The Go version of the C type might use unsafe.Pointer, // but the file might not import unsafe. // Rewrite the Go type if necessary to use _cgo_unsafe. ptype := p.rewriteUnsafe(param.Go) if ptype != param.Go { needsUnsafe = true } params[i] = &ast.Field{ Names: []*ast.Ident{nparam}, Type: ptype, } if !p.needsPointerCheck(f, param.Go, origArg) { continue } // Run the cgo pointer checks on nparam. // Change the function literal to call the real function // with the parameter passed through _cgoCheckPointer. c := &ast.CallExpr{ Fun: ast.NewIdent("_cgoCheckPointer"), Args: []ast.Expr{ nparam, }, } // Add optional additional arguments for an address // expression. c.Args = p.checkAddrArgs(f, c.Args, origArg) stmt := &ast.ExprStmt{ X: c, } stmts = append(stmts, stmt) } fcall := &ast.CallExpr{ Fun: call.Call.Fun, Args: nargs, } ftype := &ast.FuncType{ Params: &ast.FieldList{ List: params, }, } if name.FuncType.Result != nil { rtype := p.rewriteUnsafe(name.FuncType.Result.Go) if rtype != name.FuncType.Result.Go { needsUnsafe = true } ftype.Results = &ast.FieldList{ List: []*ast.Field{ &ast.Field{ Type: rtype, }, }, } } // There is a Ref pointing to the old call.Call.Fun. for _, ref := range f.Ref { if ref.Expr == &call.Call.Fun { ref.Expr = &fcall.Fun // If this call expects two results, we have to // adjust the results of the function we generated. if ref.Context == "call2" { if ftype.Results == nil { // An explicit void argument // looks odd but it seems to // be how cgo has worked historically. ftype.Results = &ast.FieldList{ List: []*ast.Field{ &ast.Field{ Type: ast.NewIdent("_Ctype_void"), }, }, } } ftype.Results.List = append(ftype.Results.List, &ast.Field{ Type: ast.NewIdent("error"), }) } } } var fbody ast.Stmt if ftype.Results == nil { fbody = &ast.ExprStmt{ X: fcall, } } else { fbody = &ast.ReturnStmt{ Results: []ast.Expr{fcall}, } } call.Call.Fun = &ast.FuncLit{ Type: ftype, Body: &ast.BlockStmt{ List: append(stmts, fbody), }, } call.Call.Lparen = token.NoPos call.Call.Rparen = token.NoPos return needsUnsafe } // needsPointerCheck returns whether the type t needs a pointer check. // This is true if t is a pointer and if the value to which it points // might contain a pointer. func (p *Package) needsPointerCheck(f *File, t ast.Expr, arg ast.Expr) bool { // An untyped nil does not need a pointer check, and when // _cgoCheckPointer returns the untyped nil the type assertion we // are going to insert will fail. Easier to just skip nil arguments. // TODO: Note that this fails if nil is shadowed. if id, ok := arg.(*ast.Ident); ok && id.Name == "nil" { return false } return p.hasPointer(f, t, true) } // hasPointer is used by needsPointerCheck. If top is true it returns // whether t is or contains a pointer that might point to a pointer. // If top is false it returns whether t is or contains a pointer. // f may be nil. func (p *Package) hasPointer(f *File, t ast.Expr, top bool) bool { switch t := t.(type) { case *ast.ArrayType: if t.Len == nil { if !top { return true } return p.hasPointer(f, t.Elt, false) } return p.hasPointer(f, t.Elt, top) case *ast.StructType: for _, field := range t.Fields.List { if p.hasPointer(f, field.Type, top) { return true } } return false case *ast.StarExpr: // Pointer type. if !top { return true } // Check whether this is a pointer to a C union (or class) // type that contains a pointer. if unionWithPointer[t.X] { return true } return p.hasPointer(f, t.X, false) case *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType: return true case *ast.Ident: // TODO: Handle types defined within function. for _, d := range p.Decl { gd, ok := d.(*ast.GenDecl) if !ok || gd.Tok != token.TYPE { continue } for _, spec := range gd.Specs { ts, ok := spec.(*ast.TypeSpec) if !ok { continue } if ts.Name.Name == t.Name { return p.hasPointer(f, ts.Type, top) } } } if def := typedef[t.Name]; def != nil { return p.hasPointer(f, def.Go, top) } if t.Name == "string" { return !top } if t.Name == "error" { return true } if goTypes[t.Name] != nil { return false } // We can't figure out the type. Conservative // approach is to assume it has a pointer. return true case *ast.SelectorExpr: if l, ok := t.X.(*ast.Ident); !ok || l.Name != "C" { // Type defined in a different package. // Conservative approach is to assume it has a // pointer. return true } if f == nil { // Conservative approach: assume pointer. return true } name := f.Name[t.Sel.Name] if name != nil && name.Kind == "type" && name.Type != nil && name.Type.Go != nil { return p.hasPointer(f, name.Type.Go, top) } // We can't figure out the type. Conservative // approach is to assume it has a pointer. return true default: error_(t.Pos(), "could not understand type %s", gofmt(t)) return true } } // checkAddrArgs tries to add arguments to the call of // _cgoCheckPointer when the argument is an address expression. We // pass true to mean that the argument is an address operation of // something other than a slice index, which means that it's only // necessary to check the specific element pointed to, not the entire // object. This is for &s.f, where f is a field in a struct. We can // pass a slice or array, meaning that we should check the entire // slice or array but need not check any other part of the object. // This is for &s.a[i], where we need to check all of a. However, we // only pass the slice or array if we can refer to it without side // effects. func (p *Package) checkAddrArgs(f *File, args []ast.Expr, x ast.Expr) []ast.Expr { // Strip type conversions. for { c, ok := x.(*ast.CallExpr) if !ok || len(c.Args) != 1 || !p.isType(c.Fun) { break } x = c.Args[0] } u, ok := x.(*ast.UnaryExpr) if !ok || u.Op != token.AND { return args } index, ok := u.X.(*ast.IndexExpr) if !ok { // This is the address of something that is not an // index expression. We only need to examine the // single value to which it points. // TODO: what if true is shadowed? return append(args, ast.NewIdent("true")) } if !p.hasSideEffects(f, index.X) { // Examine the entire slice. return append(args, index.X) } // Treat the pointer as unknown. return args } // hasSideEffects returns whether the expression x has any side // effects. x is an expression, not a statement, so the only side // effect is a function call. func (p *Package) hasSideEffects(f *File, x ast.Expr) bool { found := false f.walk(x, "expr", func(f *File, x interface{}, context string) { switch x.(type) { case *ast.CallExpr: found = true } }) return found } // isType returns whether the expression is definitely a type. // This is conservative--it returns false for an unknown identifier. func (p *Package) isType(t ast.Expr) bool { switch t := t.(type) { case *ast.SelectorExpr: id, ok := t.X.(*ast.Ident) if !ok { return false } if id.Name == "unsafe" && t.Sel.Name == "Pointer" { return true } if id.Name == "C" && typedef["_Ctype_"+t.Sel.Name] != nil { return true } return false case *ast.Ident: // TODO: This ignores shadowing. switch t.Name { case "unsafe.Pointer", "bool", "byte", "complex64", "complex128", "error", "float32", "float64", "int", "int8", "int16", "int32", "int64", "rune", "string", "uint", "uint8", "uint16", "uint32", "uint64", "uintptr": return true } case *ast.StarExpr: return p.isType(t.X) case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType: return true } return false } // rewriteUnsafe returns a version of t with references to unsafe.Pointer // rewritten to use _cgo_unsafe.Pointer instead. func (p *Package) rewriteUnsafe(t ast.Expr) ast.Expr { switch t := t.(type) { case *ast.Ident: // We don't see a SelectorExpr for unsafe.Pointer; // this is created by code in this file. if t.Name == "unsafe.Pointer" { return ast.NewIdent("_cgo_unsafe.Pointer") } case *ast.ArrayType: t1 := p.rewriteUnsafe(t.Elt) if t1 != t.Elt { r := *t r.Elt = t1 return &r } case *ast.StructType: changed := false fields := *t.Fields fields.List = nil for _, f := range t.Fields.List { ft := p.rewriteUnsafe(f.Type) if ft == f.Type { fields.List = append(fields.List, f) } else { fn := *f fn.Type = ft fields.List = append(fields.List, &fn) changed = true } } if changed { r := *t r.Fields = &fields return &r } case *ast.StarExpr: // Pointer type. x1 := p.rewriteUnsafe(t.X) if x1 != t.X { r := *t r.X = x1 return &r } } return t } // rewriteRef rewrites all the C.xxx references in f.AST to refer to the // Go equivalents, now that we have figured out the meaning of all // the xxx. In *godefs mode, rewriteRef replaces the names // with full definitions instead of mangled names. func (p *Package) rewriteRef(f *File) { // Keep a list of all the functions, to remove the ones // only used as expressions and avoid generating bridge // code for them. functions := make(map[string]bool) // Assign mangled names. for _, n := range f.Name { if n.Kind == "not-type" { n.Kind = "var" } if n.Mangle == "" { p.mangleName(n) } if n.Kind == "func" { functions[n.Go] = false } } // Now that we have all the name types filled in, // scan through the Refs to identify the ones that // are trying to do a ,err call. Also check that // functions are only used in calls. for _, r := range f.Ref { if r.Name.Kind == "const" && r.Name.Const == "" { error_(r.Pos(), "unable to find value of constant C.%s", fixGo(r.Name.Go)) } var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default switch r.Context { case "call", "call2": if r.Name.Kind != "func" { if r.Name.Kind == "type" { r.Context = "type" if r.Name.Type == nil { error_(r.Pos(), "invalid conversion to C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) break } expr = r.Name.Type.Go break } error_(r.Pos(), "call of non-function C.%s", fixGo(r.Name.Go)) break } functions[r.Name.Go] = true if r.Context == "call2" { if r.Name.Go == "_CMalloc" { error_(r.Pos(), "no two-result form for C.malloc") break } // Invent new Name for the two-result function. n := f.Name["2"+r.Name.Go] if n == nil { n = new(Name) *n = *r.Name n.AddError = true n.Mangle = "_C2func_" + n.Go f.Name["2"+r.Name.Go] = n } expr = ast.NewIdent(n.Mangle) r.Name = n break } case "expr": if r.Name.Kind == "func" { // Function is being used in an expression, to e.g. pass around a C function pointer. // Create a new Name for this Ref which causes the variable to be declared in Go land. fpName := "fp_" + r.Name.Go name := f.Name[fpName] if name == nil { name = &Name{ Go: fpName, C: r.Name.C, Kind: "fpvar", Type: &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*"), Go: ast.NewIdent("unsafe.Pointer")}, } p.mangleName(name) f.Name[fpName] = name } r.Name = name // Rewrite into call to _Cgo_ptr to prevent assignments. The _Cgo_ptr // function is defined in out.go and simply returns its argument. See // issue 7757. expr = &ast.CallExpr{ Fun: &ast.Ident{NamePos: (*r.Expr).Pos(), Name: "_Cgo_ptr"}, Args: []ast.Expr{ast.NewIdent(name.Mangle)}, } } else if r.Name.Kind == "type" { // Okay - might be new(T) if r.Name.Type == nil { error_(r.Pos(), "expression C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) break } expr = r.Name.Type.Go } else if r.Name.Kind == "var" { expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr} } case "selector": if r.Name.Kind == "var" { expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr} } else { error_(r.Pos(), "only C variables allowed in selector expression %s", fixGo(r.Name.Go)) } case "type": if r.Name.Kind != "type" { error_(r.Pos(), "expression C.%s used as type", fixGo(r.Name.Go)) } else if r.Name.Type == nil { // Use of C.enum_x, C.struct_x or C.union_x without C definition. // GCC won't raise an error when using pointers to such unknown types. error_(r.Pos(), "type C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) } else { expr = r.Name.Type.Go } default: if r.Name.Kind == "func" { error_(r.Pos(), "must call C.%s", fixGo(r.Name.Go)) } } if *godefs { // Substitute definition for mangled type name. if id, ok := expr.(*ast.Ident); ok { if t := typedef[id.Name]; t != nil { expr = t.Go } if id.Name == r.Name.Mangle && r.Name.Const != "" { expr = ast.NewIdent(r.Name.Const) } } } // Copy position information from old expr into new expr, // in case expression being replaced is first on line. // See golang.org/issue/6563. pos := (*r.Expr).Pos() switch x := expr.(type) { case *ast.Ident: expr = &ast.Ident{NamePos: pos, Name: x.Name} } *r.Expr = expr } // Remove functions only used as expressions, so their respective // bridge functions are not generated. for name, used := range functions { if !used { delete(f.Name, name) } } } // gccBaseCmd returns the start of the compiler command line. // It uses $CC if set, or else $GCC, or else the compiler recorded // during the initial build as defaultCC. // defaultCC is defined in zdefaultcc.go, written by cmd/dist. func (p *Package) gccBaseCmd() []string { // Use $CC if set, since that's what the build uses. if ret := strings.Fields(os.Getenv("CC")); len(ret) > 0 { return ret } // Try $GCC if set, since that's what we used to use. if ret := strings.Fields(os.Getenv("GCC")); len(ret) > 0 { return ret } return strings.Fields(defaultCC) } // gccMachine returns the gcc -m flag to use, either "-m32", "-m64" or "-marm". func (p *Package) gccMachine() []string { switch goarch { case "amd64": return []string{"-m64"} case "386": return []string{"-m32"} case "arm": return []string{"-marm"} // not thumb case "s390": return []string{"-m31"} case "s390x": return []string{"-m64"} case "mips64", "mips64le": return []string{"-mabi=64"} case "mips", "mipsle": return []string{"-mabi=32"} } return nil } func gccTmp() string { return *objDir + "_cgo_.o" } // gccCmd returns the gcc command line to use for compiling // the input. func (p *Package) gccCmd() []string { c := append(p.gccBaseCmd(), "-w", // no warnings "-Wno-error", // warnings are not errors "-o"+gccTmp(), // write object to tmp "-gdwarf-2", // generate DWARF v2 debugging symbols "-c", // do not link "-xc", // input language is C ) if p.GccIsClang { c = append(c, "-ferror-limit=0", // Apple clang version 1.7 (tags/Apple/clang-77) (based on LLVM 2.9svn) // doesn't have -Wno-unneeded-internal-declaration, so we need yet another // flag to disable the warning. Yes, really good diagnostics, clang. "-Wno-unknown-warning-option", "-Wno-unneeded-internal-declaration", "-Wno-unused-function", "-Qunused-arguments", // Clang embeds prototypes for some builtin functions, // like malloc and calloc, but all size_t parameters are // incorrectly typed unsigned long. We work around that // by disabling the builtin functions (this is safe as // it won't affect the actual compilation of the C code). // See: https://golang.org/issue/6506. "-fno-builtin", ) } c = append(c, p.GccOptions...) c = append(c, p.gccMachine()...) c = append(c, "-") //read input from standard input return c } // gccDebug runs gcc -gdwarf-2 over the C program stdin and // returns the corresponding DWARF data and, if present, debug data block. func (p *Package) gccDebug(stdin []byte) (*dwarf.Data, binary.ByteOrder, []byte) { runGcc(stdin, p.gccCmd()) isDebugData := func(s string) bool { // Some systems use leading _ to denote non-assembly symbols. return s == "__cgodebug_data" || s == "___cgodebug_data" } if f, err := macho.Open(gccTmp()); err == nil { defer f.Close() d, err := f.DWARF() if err != nil { fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) } var data []byte if f.Symtab != nil { for i := range f.Symtab.Syms { s := &f.Symtab.Syms[i] if isDebugData(s.Name) { // Found it. Now find data section. if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { sect := f.Sections[i] if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { if sdat, err := sect.Data(); err == nil { data = sdat[s.Value-sect.Addr:] } } } } } } return d, f.ByteOrder, data } if f, err := elf.Open(gccTmp()); err == nil { defer f.Close() d, err := f.DWARF() if err != nil { fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) } var data []byte symtab, err := f.Symbols() if err == nil { for i := range symtab { s := &symtab[i] if isDebugData(s.Name) { // Found it. Now find data section. if i := int(s.Section); 0 <= i && i < len(f.Sections) { sect := f.Sections[i] if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { if sdat, err := sect.Data(); err == nil { data = sdat[s.Value-sect.Addr:] } } } } } } return d, f.ByteOrder, data } if f, err := pe.Open(gccTmp()); err == nil { defer f.Close() d, err := f.DWARF() if err != nil { fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) } var data []byte for _, s := range f.Symbols { if isDebugData(s.Name) { if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { sect := f.Sections[i] if s.Value < sect.Size { if sdat, err := sect.Data(); err == nil { data = sdat[s.Value:] } } } } } return d, binary.LittleEndian, data } fatalf("cannot parse gcc output %s as ELF, Mach-O, PE object", gccTmp()) panic("not reached") } // gccDefines runs gcc -E -dM -xc - over the C program stdin // and returns the corresponding standard output, which is the // #defines that gcc encountered while processing the input // and its included files. func (p *Package) gccDefines(stdin []byte) string { base := append(p.gccBaseCmd(), "-E", "-dM", "-xc") base = append(base, p.gccMachine()...) stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-")) return stdout } // gccErrors runs gcc over the C program stdin and returns // the errors that gcc prints. That is, this function expects // gcc to fail. func (p *Package) gccErrors(stdin []byte) string { // TODO(rsc): require failure args := p.gccCmd() // Optimization options can confuse the error messages; remove them. nargs := make([]string, 0, len(args)) for _, arg := range args { if !strings.HasPrefix(arg, "-O") { nargs = append(nargs, arg) } } if *debugGcc { fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(nargs, " ")) os.Stderr.Write(stdin) fmt.Fprint(os.Stderr, "EOF\n") } stdout, stderr, _ := run(stdin, nargs) if *debugGcc { os.Stderr.Write(stdout) os.Stderr.Write(stderr) } return string(stderr) } // runGcc runs the gcc command line args with stdin on standard input. // If the command exits with a non-zero exit status, runGcc prints // details about what was run and exits. // Otherwise runGcc returns the data written to standard output and standard error. // Note that for some of the uses we expect useful data back // on standard error, but for those uses gcc must still exit 0. func runGcc(stdin []byte, args []string) (string, string) { if *debugGcc { fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " ")) os.Stderr.Write(stdin) fmt.Fprint(os.Stderr, "EOF\n") } stdout, stderr, ok := run(stdin, args) if *debugGcc { os.Stderr.Write(stdout) os.Stderr.Write(stderr) } if !ok { os.Stderr.Write(stderr) os.Exit(2) } return string(stdout), string(stderr) } // A typeConv is a translator from dwarf types to Go types // with equivalent memory layout. type typeConv struct { // Cache of already-translated or in-progress types. m map[dwarf.Type]*Type // Map from types to incomplete pointers to those types. ptrs map[dwarf.Type][]*Type // Keys of ptrs in insertion order (deterministic worklist) ptrKeys []dwarf.Type // Predeclared types. bool ast.Expr byte ast.Expr // denotes padding int8, int16, int32, int64 ast.Expr uint8, uint16, uint32, uint64, uintptr ast.Expr float32, float64 ast.Expr complex64, complex128 ast.Expr void ast.Expr string ast.Expr goVoid ast.Expr // _Ctype_void, denotes C's void goVoidPtr ast.Expr // unsafe.Pointer or *byte ptrSize int64 intSize int64 } var tagGen int var typedef = make(map[string]*Type) var goIdent = make(map[string]*ast.Ident) // unionWithPointer is true for a Go type that represents a C union (or class) // that may contain a pointer. This is used for cgo pointer checking. var unionWithPointer = make(map[ast.Expr]bool) func (c *typeConv) Init(ptrSize, intSize int64) { c.ptrSize = ptrSize c.intSize = intSize c.m = make(map[dwarf.Type]*Type) c.ptrs = make(map[dwarf.Type][]*Type) c.bool = c.Ident("bool") c.byte = c.Ident("byte") c.int8 = c.Ident("int8") c.int16 = c.Ident("int16") c.int32 = c.Ident("int32") c.int64 = c.Ident("int64") c.uint8 = c.Ident("uint8") c.uint16 = c.Ident("uint16") c.uint32 = c.Ident("uint32") c.uint64 = c.Ident("uint64") c.uintptr = c.Ident("uintptr") c.float32 = c.Ident("float32") c.float64 = c.Ident("float64") c.complex64 = c.Ident("complex64") c.complex128 = c.Ident("complex128") c.void = c.Ident("void") c.string = c.Ident("string") c.goVoid = c.Ident("_Ctype_void") // Normally cgo translates void* to unsafe.Pointer, // but for historical reasons -godefs uses *byte instead. if *godefs { c.goVoidPtr = &ast.StarExpr{X: c.byte} } else { c.goVoidPtr = c.Ident("unsafe.Pointer") } } // base strips away qualifiers and typedefs to get the underlying type func base(dt dwarf.Type) dwarf.Type { for { if d, ok := dt.(*dwarf.QualType); ok { dt = d.Type continue } if d, ok := dt.(*dwarf.TypedefType); ok { dt = d.Type continue } break } return dt } // unqual strips away qualifiers from a DWARF type. // In general we don't care about top-level qualifiers. func unqual(dt dwarf.Type) dwarf.Type { for { if d, ok := dt.(*dwarf.QualType); ok { dt = d.Type } else { break } } return dt } // Map from dwarf text names to aliases we use in package "C". var dwarfToName = map[string]string{ "long int": "long", "long unsigned int": "ulong", "unsigned int": "uint", "short unsigned int": "ushort", "unsigned short": "ushort", // Used by Clang; issue 13129. "short int": "short", "long long int": "longlong", "long long unsigned int": "ulonglong", "signed char": "schar", "unsigned char": "uchar", } const signedDelta = 64 // String returns the current type representation. Format arguments // are assembled within this method so that any changes in mutable // values are taken into account. func (tr *TypeRepr) String() string { if len(tr.Repr) == 0 { return "" } if len(tr.FormatArgs) == 0 { return tr.Repr } return fmt.Sprintf(tr.Repr, tr.FormatArgs...) } // Empty reports whether the result of String would be "". func (tr *TypeRepr) Empty() bool { return len(tr.Repr) == 0 } // Set modifies the type representation. // If fargs are provided, repr is used as a format for fmt.Sprintf. // Otherwise, repr is used unprocessed as the type representation. func (tr *TypeRepr) Set(repr string, fargs ...interface{}) { tr.Repr = repr tr.FormatArgs = fargs } // FinishType completes any outstanding type mapping work. // In particular, it resolves incomplete pointer types. func (c *typeConv) FinishType(pos token.Pos) { // Completing one pointer type might produce more to complete. // Keep looping until they're all done. for len(c.ptrKeys) > 0 { dtype := c.ptrKeys[0] c.ptrKeys = c.ptrKeys[1:] // Note Type might invalidate c.ptrs[dtype]. t := c.Type(dtype, pos) for _, ptr := range c.ptrs[dtype] { ptr.Go.(*ast.StarExpr).X = t.Go ptr.C.Set("%s*", t.C) } c.ptrs[dtype] = nil // retain the map key } } // Type returns a *Type with the same memory layout as // dtype when used as the type of a variable or a struct field. func (c *typeConv) Type(dtype dwarf.Type, pos token.Pos) *Type { if t, ok := c.m[dtype]; ok { if t.Go == nil { fatalf("%s: type conversion loop at %s", lineno(pos), dtype) } return t } t := new(Type) t.Size = dtype.Size() // note: wrong for array of pointers, corrected below t.Align = -1 t.C = &TypeRepr{Repr: dtype.Common().Name} c.m[dtype] = t switch dt := dtype.(type) { default: fatalf("%s: unexpected type: %s", lineno(pos), dtype) case *dwarf.AddrType: if t.Size != c.ptrSize { fatalf("%s: unexpected: %d-byte address type - %s", lineno(pos), t.Size, dtype) } t.Go = c.uintptr t.Align = t.Size case *dwarf.ArrayType: if dt.StrideBitSize > 0 { // Cannot represent bit-sized elements in Go. t.Go = c.Opaque(t.Size) break } count := dt.Count if count == -1 { // Indicates flexible array member, which Go doesn't support. // Translate to zero-length array instead. count = 0 } sub := c.Type(dt.Type, pos) t.Align = sub.Align t.Go = &ast.ArrayType{ Len: c.intExpr(count), Elt: sub.Go, } // Recalculate t.Size now that we know sub.Size. t.Size = count * sub.Size t.C.Set("__typeof__(%s[%d])", sub.C, dt.Count) case *dwarf.BoolType: t.Go = c.bool t.Align = 1 case *dwarf.CharType: if t.Size != 1 { fatalf("%s: unexpected: %d-byte char type - %s", lineno(pos), t.Size, dtype) } t.Go = c.int8 t.Align = 1 case *dwarf.EnumType: if t.Align = t.Size; t.Align >= c.ptrSize { t.Align = c.ptrSize } t.C.Set("enum " + dt.EnumName) signed := 0 t.EnumValues = make(map[string]int64) for _, ev := range dt.Val { t.EnumValues[ev.Name] = ev.Val if ev.Val < 0 { signed = signedDelta } } switch t.Size + int64(signed) { default: fatalf("%s: unexpected: %d-byte enum type - %s", lineno(pos), t.Size, dtype) case 1: t.Go = c.uint8 case 2: t.Go = c.uint16 case 4: t.Go = c.uint32 case 8: t.Go = c.uint64 case 1 + signedDelta: t.Go = c.int8 case 2 + signedDelta: t.Go = c.int16 case 4 + signedDelta: t.Go = c.int32 case 8 + signedDelta: t.Go = c.int64 } case *dwarf.FloatType: switch t.Size { default: fatalf("%s: unexpected: %d-byte float type - %s", lineno(pos), t.Size, dtype) case 4: t.Go = c.float32 case 8: t.Go = c.float64 } if t.Align = t.Size; t.Align >= c.ptrSize { t.Align = c.ptrSize } case *dwarf.ComplexType: switch t.Size { default: fatalf("%s: unexpected: %d-byte complex type - %s", lineno(pos), t.Size, dtype) case 8: t.Go = c.complex64 case 16: t.Go = c.complex128 } if t.Align = t.Size / 2; t.Align >= c.ptrSize { t.Align = c.ptrSize } case *dwarf.FuncType: // No attempt at translation: would enable calls // directly between worlds, but we need to moderate those. t.Go = c.uintptr t.Align = c.ptrSize case *dwarf.IntType: if dt.BitSize > 0 { fatalf("%s: unexpected: %d-bit int type - %s", lineno(pos), dt.BitSize, dtype) } switch t.Size { default: fatalf("%s: unexpected: %d-byte int type - %s", lineno(pos), t.Size, dtype) case 1: t.Go = c.int8 case 2: t.Go = c.int16 case 4: t.Go = c.int32 case 8: t.Go = c.int64 case 16: t.Go = &ast.ArrayType{ Len: c.intExpr(t.Size), Elt: c.uint8, } } if t.Align = t.Size; t.Align >= c.ptrSize { t.Align = c.ptrSize } case *dwarf.PtrType: // Clang doesn't emit DW_AT_byte_size for pointer types. if t.Size != c.ptrSize && t.Size != -1 { fatalf("%s: unexpected: %d-byte pointer type - %s", lineno(pos), t.Size, dtype) } t.Size = c.ptrSize t.Align = c.ptrSize if _, ok := base(dt.Type).(*dwarf.VoidType); ok { t.Go = c.goVoidPtr t.C.Set("void*") dq := dt.Type for { if d, ok := dq.(*dwarf.QualType); ok { t.C.Set(d.Qual + " " + t.C.String()) dq = d.Type } else { break } } break } // Placeholder initialization; completed in FinishType. t.Go = &ast.StarExpr{} t.C.Set("<incomplete>*") if _, ok := c.ptrs[dt.Type]; !ok { c.ptrKeys = append(c.ptrKeys, dt.Type) } c.ptrs[dt.Type] = append(c.ptrs[dt.Type], t) case *dwarf.QualType: t1 := c.Type(dt.Type, pos) t.Size = t1.Size t.Align = t1.Align t.Go = t1.Go if unionWithPointer[t1.Go] { unionWithPointer[t.Go] = true } t.EnumValues = nil t.Typedef = "" t.C.Set("%s "+dt.Qual, t1.C) return t case *dwarf.StructType: // Convert to Go struct, being careful about alignment. // Have to give it a name to simulate C "struct foo" references. tag := dt.StructName if dt.ByteSize < 0 && tag == "" { // opaque unnamed struct - should not be possible break } if tag == "" { tag = "__" + strconv.Itoa(tagGen) tagGen++ } else if t.C.Empty() { t.C.Set(dt.Kind + " " + tag) } name := c.Ident("_Ctype_" + dt.Kind + "_" + tag) t.Go = name // publish before recursive calls goIdent[name.Name] = name if dt.ByteSize < 0 { // Size calculation in c.Struct/c.Opaque will die with size=-1 (unknown), // so execute the basic things that the struct case would do // other than try to determine a Go representation. tt := *t tt.C = &TypeRepr{"%s %s", []interface{}{dt.Kind, tag}} tt.Go = c.Ident("struct{}") typedef[name.Name] = &tt break } switch dt.Kind { case "class", "union": t.Go = c.Opaque(t.Size) if c.dwarfHasPointer(dt, pos) { unionWithPointer[t.Go] = true } if t.C.Empty() { t.C.Set("__typeof__(unsigned char[%d])", t.Size) } t.Align = 1 // TODO: should probably base this on field alignment. typedef[name.Name] = t case "struct": g, csyntax, align := c.Struct(dt, pos) if t.C.Empty() { t.C.Set(csyntax) } t.Align = align tt := *t if tag != "" { tt.C = &TypeRepr{"struct %s", []interface{}{tag}} } tt.Go = g typedef[name.Name] = &tt } case *dwarf.TypedefType: // Record typedef for printing. if dt.Name == "_GoString_" { // Special C name for Go string type. // Knows string layout used by compilers: pointer plus length, // which rounds up to 2 pointers after alignment. t.Go = c.string t.Size = c.ptrSize * 2 t.Align = c.ptrSize break } if dt.Name == "_GoBytes_" { // Special C name for Go []byte type. // Knows slice layout used by compilers: pointer, length, cap. t.Go = c.Ident("[]byte") t.Size = c.ptrSize + 4 + 4 t.Align = c.ptrSize break } name := c.Ident("_Ctype_" + dt.Name) goIdent[name.Name] = name sub := c.Type(dt.Type, pos) t.Go = name if unionWithPointer[sub.Go] { unionWithPointer[t.Go] = true } t.Size = sub.Size t.Align = sub.Align oldType := typedef[name.Name] if oldType == nil { tt := *t tt.Go = sub.Go typedef[name.Name] = &tt } // If sub.Go.Name is "_Ctype_struct_foo" or "_Ctype_union_foo" or "_Ctype_class_foo", // use that as the Go form for this typedef too, so that the typedef will be interchangeable // with the base type. // In -godefs mode, do this for all typedefs. if isStructUnionClass(sub.Go) || *godefs { t.Go = sub.Go if isStructUnionClass(sub.Go) { // Use the typedef name for C code. typedef[sub.Go.(*ast.Ident).Name].C = t.C } // If we've seen this typedef before, and it // was an anonymous struct/union/class before // too, use the old definition. // TODO: it would be safer to only do this if // we verify that the types are the same. if oldType != nil && isStructUnionClass(oldType.Go) { t.Go = oldType.Go } } case *dwarf.UcharType: if t.Size != 1 { fatalf("%s: unexpected: %d-byte uchar type - %s", lineno(pos), t.Size, dtype) } t.Go = c.uint8 t.Align = 1 case *dwarf.UintType: if dt.BitSize > 0 { fatalf("%s: unexpected: %d-bit uint type - %s", lineno(pos), dt.BitSize, dtype) } switch t.Size { default: fatalf("%s: unexpected: %d-byte uint type - %s", lineno(pos), t.Size, dtype) case 1: t.Go = c.uint8 case 2: t.Go = c.uint16 case 4: t.Go = c.uint32 case 8: t.Go = c.uint64 case 16: t.Go = &ast.ArrayType{ Len: c.intExpr(t.Size), Elt: c.uint8, } } if t.Align = t.Size; t.Align >= c.ptrSize { t.Align = c.ptrSize } case *dwarf.VoidType: t.Go = c.goVoid t.C.Set("void") t.Align = 1 } switch dtype.(type) { case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.ComplexType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType: s := dtype.Common().Name if s != "" { if ss, ok := dwarfToName[s]; ok { s = ss } s = strings.Join(strings.Split(s, " "), "") // strip spaces name := c.Ident("_Ctype_" + s) tt := *t typedef[name.Name] = &tt if !*godefs { t.Go = name } } } if t.Size < 0 { // Unsized types are [0]byte, unless they're typedefs of other types // or structs with tags. // if so, use the name we've already defined. t.Size = 0 switch dt := dtype.(type) { case *dwarf.TypedefType: // ok case *dwarf.StructType: if dt.StructName != "" { break } t.Go = c.Opaque(0) default: t.Go = c.Opaque(0) } if t.C.Empty() { t.C.Set("void") } } if t.C.Empty() { fatalf("%s: internal error: did not create C name for %s", lineno(pos), dtype) } return t } // isStructUnionClass reports whether the type described by the Go syntax x // is a struct, union, or class with a tag. func isStructUnionClass(x ast.Expr) bool { id, ok := x.(*ast.Ident) if !ok { return false } name := id.Name return strings.HasPrefix(name, "_Ctype_struct_") || strings.HasPrefix(name, "_Ctype_union_") || strings.HasPrefix(name, "_Ctype_class_") } // FuncArg returns a Go type with the same memory layout as // dtype when used as the type of a C function argument. func (c *typeConv) FuncArg(dtype dwarf.Type, pos token.Pos) *Type { t := c.Type(unqual(dtype), pos) switch dt := dtype.(type) { case *dwarf.ArrayType: // Arrays are passed implicitly as pointers in C. // In Go, we must be explicit. tr := &TypeRepr{} tr.Set("%s*", t.C) return &Type{ Size: c.ptrSize, Align: c.ptrSize, Go: &ast.StarExpr{X: t.Go}, C: tr, } case *dwarf.TypedefType: // C has much more relaxed rules than Go for // implicit type conversions. When the parameter // is type T defined as *X, simulate a little of the // laxness of C by making the argument *X instead of T. if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok { // Unless the typedef happens to point to void* since // Go has special rules around using unsafe.Pointer. if _, void := base(ptr.Type).(*dwarf.VoidType); void { break } t = c.Type(ptr, pos) if t == nil { return nil } // For a struct/union/class, remember the C spelling, // in case it has __attribute__((unavailable)). // See issue 2888. if isStructUnionClass(t.Go) { t.Typedef = dt.Name } } } return t } // FuncType returns the Go type analogous to dtype. // There is no guarantee about matching memory layout. func (c *typeConv) FuncType(dtype *dwarf.FuncType, pos token.Pos) *FuncType { p := make([]*Type, len(dtype.ParamType)) gp := make([]*ast.Field, len(dtype.ParamType)) for i, f := range dtype.ParamType { // gcc's DWARF generator outputs a single DotDotDotType parameter for // function pointers that specify no parameters (e.g. void // (*__cgo_0)()). Treat this special case as void. This case is // invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not // legal). if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 { p, gp = nil, nil break } p[i] = c.FuncArg(f, pos) gp[i] = &ast.Field{Type: p[i].Go} } var r *Type var gr []*ast.Field if _, ok := dtype.ReturnType.(*dwarf.VoidType); ok { gr = []*ast.Field{{Type: c.goVoid}} } else if dtype.ReturnType != nil { r = c.Type(unqual(dtype.ReturnType), pos) gr = []*ast.Field{{Type: r.Go}} } return &FuncType{ Params: p, Result: r, Go: &ast.FuncType{ Params: &ast.FieldList{List: gp}, Results: &ast.FieldList{List: gr}, }, } } // Identifier func (c *typeConv) Ident(s string) *ast.Ident { return ast.NewIdent(s) } // Opaque type of n bytes. func (c *typeConv) Opaque(n int64) ast.Expr { return &ast.ArrayType{ Len: c.intExpr(n), Elt: c.byte, } } // Expr for integer n. func (c *typeConv) intExpr(n int64) ast.Expr { return &ast.BasicLit{ Kind: token.INT, Value: strconv.FormatInt(n, 10), } } // Add padding of given size to fld. func (c *typeConv) pad(fld []*ast.Field, sizes []int64, size int64) ([]*ast.Field, []int64) { n := len(fld) fld = fld[0 : n+1] fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)} sizes = sizes[0 : n+1] sizes[n] = size return fld, sizes } // Struct conversion: return Go and (gc) C syntax for type. func (c *typeConv) Struct(dt *dwarf.StructType, pos token.Pos) (expr *ast.StructType, csyntax string, align int64) { // Minimum alignment for a struct is 1 byte. align = 1 var buf bytes.Buffer buf.WriteString("struct {") fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field sizes := make([]int64, 0, 2*len(dt.Field)+1) off := int64(0) // Rename struct fields that happen to be named Go keywords into // _{keyword}. Create a map from C ident -> Go ident. The Go ident will // be mangled. Any existing identifier that already has the same name on // the C-side will cause the Go-mangled version to be prefixed with _. // (e.g. in a struct with fields '_type' and 'type', the latter would be // rendered as '__type' in Go). ident := make(map[string]string) used := make(map[string]bool) for _, f := range dt.Field { ident[f.Name] = f.Name used[f.Name] = true } if !*godefs { for cid, goid := range ident { if token.Lookup(goid).IsKeyword() { // Avoid keyword goid = "_" + goid // Also avoid existing fields for _, exist := used[goid]; exist; _, exist = used[goid] { goid = "_" + goid } used[goid] = true ident[cid] = goid } } } anon := 0 for _, f := range dt.Field { if f.ByteOffset > off { fld, sizes = c.pad(fld, sizes, f.ByteOffset-off) off = f.ByteOffset } name := f.Name ft := f.Type // In godefs mode, if this field is a C11 // anonymous union then treat the first field in the // union as the field in the struct. This handles // cases like the glibc <sys/resource.h> file; see // issue 6677. if *godefs { if st, ok := f.Type.(*dwarf.StructType); ok && name == "" && st.Kind == "union" && len(st.Field) > 0 && !used[st.Field[0].Name] { name = st.Field[0].Name ident[name] = name ft = st.Field[0].Type } } // TODO: Handle fields that are anonymous structs by // promoting the fields of the inner struct. t := c.Type(ft, pos) tgo := t.Go size := t.Size talign := t.Align if f.BitSize > 0 { if f.BitSize%8 != 0 { continue } size = f.BitSize / 8 name := tgo.(*ast.Ident).String() if strings.HasPrefix(name, "int") { name = "int" } else { name = "uint" } tgo = ast.NewIdent(name + fmt.Sprint(f.BitSize)) talign = size } if talign > 0 && f.ByteOffset%talign != 0 { // Drop misaligned fields, the same way we drop integer bit fields. // The goal is to make available what can be made available. // Otherwise one bad and unneeded field in an otherwise okay struct // makes the whole program not compile. Much of the time these // structs are in system headers that cannot be corrected. continue } n := len(fld) fld = fld[0 : n+1] if name == "" { name = fmt.Sprintf("anon%d", anon) anon++ ident[name] = name } fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo} sizes = sizes[0 : n+1] sizes[n] = size off += size buf.WriteString(t.C.String()) buf.WriteString(" ") buf.WriteString(name) buf.WriteString("; ") if talign > align { align = talign } } if off < dt.ByteSize { fld, sizes = c.pad(fld, sizes, dt.ByteSize-off) off = dt.ByteSize } // If the last field in a non-zero-sized struct is zero-sized // the compiler is going to pad it by one (see issue 9401). // We can't permit that, because then the size of the Go // struct will not be the same as the size of the C struct. // Our only option in such a case is to remove the field, // which means that it cannot be referenced from Go. for off > 0 && sizes[len(sizes)-1] == 0 { n := len(sizes) fld = fld[0 : n-1] sizes = sizes[0 : n-1] } if off != dt.ByteSize { fatalf("%s: struct size calculation error off=%d bytesize=%d", lineno(pos), off, dt.ByteSize) } buf.WriteString("}") csyntax = buf.String() if *godefs { godefsFields(fld) } expr = &ast.StructType{Fields: &ast.FieldList{List: fld}} return } // dwarfHasPointer returns whether the DWARF type dt contains a pointer. func (c *typeConv) dwarfHasPointer(dt dwarf.Type, pos token.Pos) bool { switch dt := dt.(type) { default: fatalf("%s: unexpected type: %s", lineno(pos), dt) return false case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.EnumType, *dwarf.FloatType, *dwarf.ComplexType, *dwarf.FuncType, *dwarf.IntType, *dwarf.UcharType, *dwarf.UintType, *dwarf.VoidType: return false case *dwarf.ArrayType: return c.dwarfHasPointer(dt.Type, pos) case *dwarf.PtrType: return true case *dwarf.QualType: return c.dwarfHasPointer(dt.Type, pos) case *dwarf.StructType: for _, f := range dt.Field { if c.dwarfHasPointer(f.Type, pos) { return true } } return false case *dwarf.TypedefType: if dt.Name == "_GoString_" || dt.Name == "_GoBytes_" { return true } return c.dwarfHasPointer(dt.Type, pos) } } func upper(s string) string { if s == "" { return "" } r, size := utf8.DecodeRuneInString(s) if r == '_' { return "X" + s } return string(unicode.ToUpper(r)) + s[size:] } // godefsFields rewrites field names for use in Go or C definitions. // It strips leading common prefixes (like tv_ in tv_sec, tv_usec) // converts names to upper case, and rewrites _ into Pad_godefs_n, // so that all fields are exported. func godefsFields(fld []*ast.Field) { prefix := fieldPrefix(fld) npad := 0 for _, f := range fld { for _, n := range f.Names { if n.Name != prefix { n.Name = strings.TrimPrefix(n.Name, prefix) } if n.Name == "_" { // Use exported name instead. n.Name = "Pad_cgo_" + strconv.Itoa(npad) npad++ } n.Name = upper(n.Name) } } } // fieldPrefix returns the prefix that should be removed from all the // field names when generating the C or Go code. For generated // C, we leave the names as is (tv_sec, tv_usec), since that's what // people are used to seeing in C. For generated Go code, such as // package syscall's data structures, we drop a common prefix // (so sec, usec, which will get turned into Sec, Usec for exporting). func fieldPrefix(fld []*ast.Field) string { prefix := "" for _, f := range fld { for _, n := range f.Names { // Ignore field names that don't have the prefix we're // looking for. It is common in C headers to have fields // named, say, _pad in an otherwise prefixed header. // If the struct has 3 fields tv_sec, tv_usec, _pad1, then we // still want to remove the tv_ prefix. // The check for "orig_" here handles orig_eax in the // x86 ptrace register sets, which otherwise have all fields // with reg_ prefixes. if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") { continue } i := strings.Index(n.Name, "_") if i < 0 { continue } if prefix == "" { prefix = n.Name[:i+1] } else if prefix != n.Name[:i+1] { return "" } } } return prefix }