// Derived from Inferno utils/6l/l.h and related files. // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/l.h // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package obj import ( "bufio" "cmd/internal/sys" "fmt" ) // An Addr is an argument to an instruction. // The general forms and their encodings are: // // sym±offset(symkind)(reg)(index*scale) // Memory reference at address &sym(symkind) + offset + reg + index*scale. // Any of sym(symkind), ±offset, (reg), (index*scale), and *scale can be omitted. // If (reg) and *scale are both omitted, the resulting expression (index) is parsed as (reg). // To force a parsing as index*scale, write (index*1). // Encoding: // type = TYPE_MEM // name = symkind (NAME_AUTO, ...) or 0 (NAME_NONE) // sym = sym // offset = ±offset // reg = reg (REG_*) // index = index (REG_*) // scale = scale (1, 2, 4, 8) // // $<mem> // Effective address of memory reference <mem>, defined above. // Encoding: same as memory reference, but type = TYPE_ADDR. // // $<±integer value> // This is a special case of $<mem>, in which only ±offset is present. // It has a separate type for easy recognition. // Encoding: // type = TYPE_CONST // offset = ±integer value // // *<mem> // Indirect reference through memory reference <mem>, defined above. // Only used on x86 for CALL/JMP *sym(SB), which calls/jumps to a function // pointer stored in the data word sym(SB), not a function named sym(SB). // Encoding: same as above, but type = TYPE_INDIR. // // $*$<mem> // No longer used. // On machines with actual SB registers, $*$<mem> forced the // instruction encoding to use a full 32-bit constant, never a // reference relative to SB. // // $<floating point literal> // Floating point constant value. // Encoding: // type = TYPE_FCONST // val = floating point value // // $<string literal, up to 8 chars> // String literal value (raw bytes used for DATA instruction). // Encoding: // type = TYPE_SCONST // val = string // // <register name> // Any register: integer, floating point, control, segment, and so on. // If looking for specific register kind, must check type and reg value range. // Encoding: // type = TYPE_REG // reg = reg (REG_*) // // x(PC) // Encoding: // type = TYPE_BRANCH // val = Prog* reference OR ELSE offset = target pc (branch takes priority) // // $±x-±y // Final argument to TEXT, specifying local frame size x and argument size y. // In this form, x and y are integer literals only, not arbitrary expressions. // This avoids parsing ambiguities due to the use of - as a separator. // The ± are optional. // If the final argument to TEXT omits the -±y, the encoding should still // use TYPE_TEXTSIZE (not TYPE_CONST), with u.argsize = ArgsSizeUnknown. // Encoding: // type = TYPE_TEXTSIZE // offset = x // val = int32(y) // // reg<<shift, reg>>shift, reg->shift, reg@>shift // Shifted register value, for ARM and ARM64. // In this form, reg must be a register and shift can be a register or an integer constant. // Encoding: // type = TYPE_SHIFT // On ARM: // offset = (reg&15) | shifttype<<5 | count // shifttype = 0, 1, 2, 3 for <<, >>, ->, @> // count = (reg&15)<<8 | 1<<4 for a register shift count, (n&31)<<7 for an integer constant. // On ARM64: // offset = (reg&31)<<16 | shifttype<<22 | (count&63)<<10 // shifttype = 0, 1, 2 for <<, >>, -> // // (reg, reg) // A destination register pair. When used as the last argument of an instruction, // this form makes clear that both registers are destinations. // Encoding: // type = TYPE_REGREG // reg = first register // offset = second register // // [reg, reg, reg-reg] // Register list for ARM. // Encoding: // type = TYPE_REGLIST // offset = bit mask of registers in list; R0 is low bit. // // reg, reg // Register pair for ARM. // TYPE_REGREG2 // // (reg+reg) // Register pair for PPC64. // Encoding: // type = TYPE_MEM // reg = first register // index = second register // scale = 1 // type Addr struct { Reg int16 Index int16 Scale int16 // Sometimes holds a register. Type AddrType Name int8 Class int8 Offset int64 Sym *LSym // argument value: // for TYPE_SCONST, a string // for TYPE_FCONST, a float64 // for TYPE_BRANCH, a *Prog (optional) // for TYPE_TEXTSIZE, an int32 (optional) Val interface{} Node interface{} // for use by compiler } type AddrType uint8 const ( NAME_NONE = 0 + iota NAME_EXTERN NAME_STATIC NAME_AUTO NAME_PARAM // A reference to name@GOT(SB) is a reference to the entry in the global offset // table for 'name'. NAME_GOTREF ) const ( TYPE_NONE AddrType = 0 TYPE_BRANCH AddrType = 5 + iota TYPE_TEXTSIZE TYPE_MEM TYPE_CONST TYPE_FCONST TYPE_SCONST TYPE_REG TYPE_ADDR TYPE_SHIFT TYPE_REGREG TYPE_REGREG2 TYPE_INDIR TYPE_REGLIST ) // Prog describes a single machine instruction. // // The general instruction form is: // // As.Scond From, Reg, From3, To, RegTo2 // // where As is an opcode and the others are arguments: // From, Reg, From3 are sources, and To, RegTo2 are destinations. // Usually, not all arguments are present. // For example, MOVL R1, R2 encodes using only As=MOVL, From=R1, To=R2. // The Scond field holds additional condition bits for systems (like arm) // that have generalized conditional execution. // // Jump instructions use the Pcond field to point to the target instruction, // which must be in the same linked list as the jump instruction. // // The Progs for a given function are arranged in a list linked through the Link field. // // Each Prog is charged to a specific source line in the debug information, // specified by Lineno, an index into the line history (see LineHist). // Every Prog has a Ctxt field that defines various context, including the current LineHist. // Progs should be allocated using ctxt.NewProg(), not new(Prog). // // The other fields not yet mentioned are for use by the back ends and should // be left zeroed by creators of Prog lists. type Prog struct { Ctxt *Link // linker context Link *Prog // next Prog in linked list From Addr // first source operand From3 *Addr // third source operand (second is Reg below) To Addr // destination operand (second is RegTo2 below) Pcond *Prog // target of conditional jump Opt interface{} // available to optimization passes to hold per-Prog state Forwd *Prog // for x86 back end Rel *Prog // for x86, arm back ends Pc int64 // for back ends or assembler: virtual or actual program counter, depending on phase Lineno int32 // line number of this instruction Spadj int32 // effect of instruction on stack pointer (increment or decrement amount) As As // assembler opcode Reg int16 // 2nd source operand RegTo2 int16 // 2nd destination operand Mark uint16 // bitmask of arch-specific items Optab uint16 // arch-specific opcode index Scond uint8 // condition bits for conditional instruction (e.g., on ARM) Back uint8 // for x86 back end: backwards branch state Ft uint8 // for x86 back end: type index of Prog.From Tt uint8 // for x86 back end: type index of Prog.To Isize uint8 // for x86 back end: size of the instruction in bytes Mode int8 // for x86 back end: 32- or 64-bit mode } // From3Type returns From3.Type, or TYPE_NONE when From3 is nil. func (p *Prog) From3Type() AddrType { if p.From3 == nil { return TYPE_NONE } return p.From3.Type } // From3Offset returns From3.Offset, or 0 when From3 is nil. func (p *Prog) From3Offset() int64 { if p.From3 == nil { return 0 } return p.From3.Offset } // An As denotes an assembler opcode. // There are some portable opcodes, declared here in package obj, // that are common to all architectures. // However, the majority of opcodes are arch-specific // and are declared in their respective architecture's subpackage. type As int16 // These are the portable opcodes. const ( AXXX As = iota ACALL ADUFFCOPY ADUFFZERO AEND AFUNCDATA AJMP ANOP APCDATA ARET ATEXT ATYPE AUNDEF AUSEFIELD AVARDEF AVARKILL AVARLIVE A_ARCHSPECIFIC ) // Each architecture is allotted a distinct subspace of opcode values // for declaring its arch-specific opcodes. // Within this subspace, the first arch-specific opcode should be // at offset A_ARCHSPECIFIC. // // Subspaces are aligned to a power of two so opcodes can be masked // with AMask and used as compact array indices. const ( ABase386 = (1 + iota) << 10 ABaseARM ABaseAMD64 ABasePPC64 ABaseARM64 ABaseMIPS ABaseS390X AllowedOpCodes = 1 << 10 // The number of opcodes available for any given architecture. AMask = AllowedOpCodes - 1 // AND with this to use the opcode as an array index. ) // An LSym is the sort of symbol that is written to an object file. type LSym struct { Name string Type SymKind Version int16 Attribute RefIdx int // Index of this symbol in the symbol reference list. Args int32 Locals int32 Size int64 Gotype *LSym Autom *Auto Text *Prog Pcln *Pcln P []byte R []Reloc } // Attribute is a set of symbol attributes. type Attribute int16 const ( AttrDuplicateOK Attribute = 1 << iota AttrCFunc AttrNoSplit AttrLeaf AttrSeenGlobl AttrOnList // MakeTypelink means that the type should have an entry in the typelink table. AttrMakeTypelink // ReflectMethod means the function may call reflect.Type.Method or // reflect.Type.MethodByName. Matching is imprecise (as reflect.Type // can be used through a custom interface), so ReflectMethod may be // set in some cases when the reflect package is not called. // // Used by the linker to determine what methods can be pruned. AttrReflectMethod // Local means make the symbol local even when compiling Go code to reference Go // symbols in other shared libraries, as in this mode symbols are global by // default. "local" here means in the sense of the dynamic linker, i.e. not // visible outside of the module (shared library or executable) that contains its // definition. (When not compiling to support Go shared libraries, all symbols are // local in this sense unless there is a cgo_export_* directive). AttrLocal ) func (a Attribute) DuplicateOK() bool { return a&AttrDuplicateOK != 0 } func (a Attribute) MakeTypelink() bool { return a&AttrMakeTypelink != 0 } func (a Attribute) CFunc() bool { return a&AttrCFunc != 0 } func (a Attribute) NoSplit() bool { return a&AttrNoSplit != 0 } func (a Attribute) Leaf() bool { return a&AttrLeaf != 0 } func (a Attribute) SeenGlobl() bool { return a&AttrSeenGlobl != 0 } func (a Attribute) OnList() bool { return a&AttrOnList != 0 } func (a Attribute) ReflectMethod() bool { return a&AttrReflectMethod != 0 } func (a Attribute) Local() bool { return a&AttrLocal != 0 } func (a *Attribute) Set(flag Attribute, value bool) { if value { *a |= flag } else { *a &^= flag } } // The compiler needs LSym to satisfy fmt.Stringer, because it stores // an LSym in ssa.ExternSymbol. func (s *LSym) String() string { return s.Name } type Pcln struct { Pcsp Pcdata Pcfile Pcdata Pcline Pcdata Pcdata []Pcdata Funcdata []*LSym Funcdataoff []int64 File []*LSym Lastfile *LSym Lastindex int } // A SymKind describes the kind of memory represented by a symbol. type SymKind int16 // Defined SymKind values. // // TODO(rsc): Give idiomatic Go names. // TODO(rsc): Reduce the number of symbol types in the object files. //go:generate stringer -type=SymKind const ( Sxxx SymKind = iota STEXT SELFRXSECT // Read-only sections. STYPE SSTRING SGOSTRING SGOFUNC SGCBITS SRODATA SFUNCTAB SELFROSECT SMACHOPLT // Read-only sections with relocations. // // Types STYPE-SFUNCTAB above are written to the .rodata section by default. // When linking a shared object, some conceptually "read only" types need to // be written to by relocations and putting them in a section called // ".rodata" interacts poorly with the system linkers. The GNU linkers // support this situation by arranging for sections of the name // ".data.rel.ro.XXX" to be mprotected read only by the dynamic linker after // relocations have applied, so when the Go linker is creating a shared // object it checks all objects of the above types and bumps any object that // has a relocation to it to the corresponding type below, which are then // written to sections with appropriate magic names. STYPERELRO SSTRINGRELRO SGOSTRINGRELRO SGOFUNCRELRO SGCBITSRELRO SRODATARELRO SFUNCTABRELRO // Part of .data.rel.ro if it exists, otherwise part of .rodata. STYPELINK SITABLINK SSYMTAB SPCLNTAB // Writable sections. SELFSECT SMACHO SMACHOGOT SWINDOWS SELFGOT SNOPTRDATA SINITARR SDATA SBSS SNOPTRBSS STLSBSS SXREF SMACHOSYMSTR SMACHOSYMTAB SMACHOINDIRECTPLT SMACHOINDIRECTGOT SFILE SFILEPATH SCONST SDYNIMPORT SHOSTOBJ SDWARFSECT SDWARFINFO SSUB = SymKind(1 << 8) SMASK = SymKind(SSUB - 1) SHIDDEN = SymKind(1 << 9) SCONTAINER = SymKind(1 << 10) // has a sub-symbol ) // ReadOnly are the symbol kinds that form read-only sections. In some // cases, if they will require relocations, they are transformed into // rel-ro sections using RelROMap. var ReadOnly = []SymKind{ STYPE, SSTRING, SGOSTRING, SGOFUNC, SGCBITS, SRODATA, SFUNCTAB, } // RelROMap describes the transformation of read-only symbols to rel-ro // symbols. var RelROMap = map[SymKind]SymKind{ STYPE: STYPERELRO, SSTRING: SSTRINGRELRO, SGOSTRING: SGOSTRINGRELRO, SGOFUNC: SGOFUNCRELRO, SGCBITS: SGCBITSRELRO, SRODATA: SRODATARELRO, SFUNCTAB: SFUNCTABRELRO, } type Reloc struct { Off int32 Siz uint8 Type RelocType Add int64 Sym *LSym } type RelocType int32 //go:generate stringer -type=RelocType const ( R_ADDR RelocType = 1 + iota // R_ADDRPOWER relocates a pair of "D-form" instructions (instructions with 16-bit // immediates in the low half of the instruction word), usually addis followed by // another add or a load, inserting the "high adjusted" 16 bits of the address of // the referenced symbol into the immediate field of the first instruction and the // low 16 bits into that of the second instruction. R_ADDRPOWER // R_ADDRARM64 relocates an adrp, add pair to compute the address of the // referenced symbol. R_ADDRARM64 // R_ADDRMIPS (only used on mips/mips64) resolves to the low 16 bits of an external // address, by encoding it into the instruction. R_ADDRMIPS // R_ADDROFF resolves to a 32-bit offset from the beginning of the section // holding the data being relocated to the referenced symbol. R_ADDROFF // R_WEAKADDROFF resolves just like R_ADDROFF but is a weak relocation. // A weak relocation does not make the symbol it refers to reachable, // and is only honored by the linker if the symbol is in some other way // reachable. R_WEAKADDROFF R_SIZE R_CALL R_CALLARM R_CALLARM64 R_CALLIND R_CALLPOWER // R_CALLMIPS (only used on mips64) resolves to non-PC-relative target address // of a CALL (JAL) instruction, by encoding the address into the instruction. R_CALLMIPS R_CONST R_PCREL // R_TLS_LE, used on 386, amd64, and ARM, resolves to the offset of the // thread-local symbol from the thread local base and is used to implement the // "local exec" model for tls access (r.Sym is not set on intel platforms but is // set to a TLS symbol -- runtime.tlsg -- in the linker when externally linking). R_TLS_LE // R_TLS_IE, used 386, amd64, and ARM resolves to the PC-relative offset to a GOT // slot containing the offset from the thread-local symbol from the thread local // base and is used to implemented the "initial exec" model for tls access (r.Sym // is not set on intel platforms but is set to a TLS symbol -- runtime.tlsg -- in // the linker when externally linking). R_TLS_IE R_GOTOFF R_PLT0 R_PLT1 R_PLT2 R_USEFIELD // R_USETYPE resolves to an *rtype, but no relocation is created. The // linker uses this as a signal that the pointed-to type information // should be linked into the final binary, even if there are no other // direct references. (This is used for types reachable by reflection.) R_USETYPE // R_METHODOFF resolves to a 32-bit offset from the beginning of the section // holding the data being relocated to the referenced symbol. // It is a variant of R_ADDROFF used when linking from the uncommonType of a // *rtype, and may be set to zero by the linker if it determines the method // text is unreachable by the linked program. R_METHODOFF R_POWER_TOC R_GOTPCREL // R_JMPMIPS (only used on mips64) resolves to non-PC-relative target address // of a JMP instruction, by encoding the address into the instruction. // The stack nosplit check ignores this since it is not a function call. R_JMPMIPS // R_DWARFREF resolves to the offset of the symbol from its section. R_DWARFREF // Platform dependent relocations. Architectures with fixed width instructions // have the inherent issue that a 32-bit (or 64-bit!) displacement cannot be // stuffed into a 32-bit instruction, so an address needs to be spread across // several instructions, and in turn this requires a sequence of relocations, each // updating a part of an instruction. This leads to relocation codes that are // inherently processor specific. // Arm64. // Set a MOV[NZ] immediate field to bits [15:0] of the offset from the thread // local base to the thread local variable defined by the referenced (thread // local) symbol. Error if the offset does not fit into 16 bits. R_ARM64_TLS_LE // Relocates an ADRP; LD64 instruction sequence to load the offset between // the thread local base and the thread local variable defined by the // referenced (thread local) symbol from the GOT. R_ARM64_TLS_IE // R_ARM64_GOTPCREL relocates an adrp, ld64 pair to compute the address of the GOT // slot of the referenced symbol. R_ARM64_GOTPCREL // PPC64. // R_POWER_TLS_LE is used to implement the "local exec" model for tls // access. It resolves to the offset of the thread-local symbol from the // thread pointer (R13) and inserts this value into the low 16 bits of an // instruction word. R_POWER_TLS_LE // R_POWER_TLS_IE is used to implement the "initial exec" model for tls access. It // relocates a D-form, DS-form instruction sequence like R_ADDRPOWER_DS. It // inserts to the offset of GOT slot for the thread-local symbol from the TOC (the // GOT slot is filled by the dynamic linker with the offset of the thread-local // symbol from the thread pointer (R13)). R_POWER_TLS_IE // R_POWER_TLS marks an X-form instruction such as "MOVD 0(R13)(R31*1), g" as // accessing a particular thread-local symbol. It does not affect code generation // but is used by the system linker when relaxing "initial exec" model code to // "local exec" model code. R_POWER_TLS // R_ADDRPOWER_DS is similar to R_ADDRPOWER above, but assumes the second // instruction is a "DS-form" instruction, which has an immediate field occupying // bits [15:2] of the instruction word. Bits [15:2] of the address of the // relocated symbol are inserted into this field; it is an error if the last two // bits of the address are not 0. R_ADDRPOWER_DS // R_ADDRPOWER_PCREL relocates a D-form, DS-form instruction sequence like // R_ADDRPOWER_DS but inserts the offset of the GOT slot for the referenced symbol // from the TOC rather than the symbol's address. R_ADDRPOWER_GOT // R_ADDRPOWER_PCREL relocates two D-form instructions like R_ADDRPOWER, but // inserts the displacement from the place being relocated to the address of the // the relocated symbol instead of just its address. R_ADDRPOWER_PCREL // R_ADDRPOWER_TOCREL relocates two D-form instructions like R_ADDRPOWER, but // inserts the offset from the TOC to the address of the the relocated symbol // rather than the symbol's address. R_ADDRPOWER_TOCREL // R_ADDRPOWER_TOCREL relocates a D-form, DS-form instruction sequence like // R_ADDRPOWER_DS but inserts the offset from the TOC to the address of the the // relocated symbol rather than the symbol's address. R_ADDRPOWER_TOCREL_DS // R_PCRELDBL relocates s390x 2-byte aligned PC-relative addresses. // TODO(mundaym): remove once variants can be serialized - see issue 14218. R_PCRELDBL // R_ADDRMIPSU (only used on mips/mips64) resolves to the sign-adjusted "upper" 16 // bits (bit 16-31) of an external address, by encoding it into the instruction. R_ADDRMIPSU // R_ADDRMIPSTLS (only used on mips64) resolves to the low 16 bits of a TLS // address (offset from thread pointer), by encoding it into the instruction. R_ADDRMIPSTLS ) // IsDirectJump returns whether r is a relocation for a direct jump. // A direct jump is a CALL or JMP instruction that takes the target address // as immediate. The address is embedded into the instruction, possibly // with limited width. // An indirect jump is a CALL or JMP instruction that takes the target address // in register or memory. func (r RelocType) IsDirectJump() bool { switch r { case R_CALL, R_CALLARM, R_CALLARM64, R_CALLPOWER, R_CALLMIPS, R_JMPMIPS: return true } return false } type Auto struct { Asym *LSym Link *Auto Aoffset int32 Name int16 Gotype *LSym } // Auto.name const ( A_AUTO = 1 + iota A_PARAM ) type Pcdata struct { P []byte } // symbol version, incremented each time a file is loaded. // version==1 is reserved for savehist. const ( HistVersion = 1 ) // Link holds the context for writing object code from a compiler // to be linker input or for reading that input into the linker. type Link struct { Headtype HeadType Arch *LinkArch Debugasm int32 Debugvlog int32 Debugdivmod int32 Debugpcln int32 Flag_shared bool Flag_dynlink bool Flag_optimize bool Bso *bufio.Writer Pathname string Hash map[SymVer]*LSym LineHist LineHist Imports []string Plists []*Plist Sym_div *LSym Sym_divu *LSym Sym_mod *LSym Sym_modu *LSym Plan9privates *LSym Curp *Prog Printp *Prog Blitrl *Prog Elitrl *Prog Rexflag int Vexflag int Rep int Repn int Lock int Asmode int AsmBuf AsmBuf // instruction buffer for x86 Instoffset int64 Autosize int32 Armsize int32 Pc int64 DiagFunc func(string, ...interface{}) Mode int Cursym *LSym Version int Errors int Framepointer_enabled bool // state for writing objects Text []*LSym Data []*LSym // Cache of Progs allocIdx int progs [10000]Prog } func (ctxt *Link) Diag(format string, args ...interface{}) { ctxt.Errors++ ctxt.DiagFunc(format, args...) } func (ctxt *Link) Logf(format string, args ...interface{}) { fmt.Fprintf(ctxt.Bso, format, args...) ctxt.Bso.Flush() } // The smallest possible offset from the hardware stack pointer to a local // variable on the stack. Architectures that use a link register save its value // on the stack in the function prologue and so always have a pointer between // the hardware stack pointer and the local variable area. func (ctxt *Link) FixedFrameSize() int64 { switch ctxt.Arch.Family { case sys.AMD64, sys.I386: return 0 case sys.PPC64: // PIC code on ppc64le requires 32 bytes of stack, and it's easier to // just use that much stack always on ppc64x. return int64(4 * ctxt.Arch.PtrSize) default: return int64(ctxt.Arch.PtrSize) } } type SymVer struct { Name string Version int // TODO: make int16 to match LSym.Version? } // LinkArch is the definition of a single architecture. type LinkArch struct { *sys.Arch Preprocess func(*Link, *LSym) Assemble func(*Link, *LSym) Follow func(*Link, *LSym) Progedit func(*Link, *Prog) UnaryDst map[As]bool // Instruction takes one operand, a destination. } // HeadType is the executable header type. type HeadType uint8 const ( Hunknown HeadType = iota Hdarwin Hdragonfly Hfreebsd Hlinux Hnacl Hnetbsd Hopenbsd Hplan9 Hsolaris Hwindows Hwindowsgui ) func (h *HeadType) Set(s string) error { switch s { case "darwin": *h = Hdarwin case "dragonfly": *h = Hdragonfly case "freebsd": *h = Hfreebsd case "linux", "android": *h = Hlinux case "nacl": *h = Hnacl case "netbsd": *h = Hnetbsd case "openbsd": *h = Hopenbsd case "plan9": *h = Hplan9 case "solaris": *h = Hsolaris case "windows": *h = Hwindows case "windowsgui": *h = Hwindowsgui default: return fmt.Errorf("invalid headtype: %q", s) } return nil } func (h *HeadType) String() string { switch *h { case Hdarwin: return "darwin" case Hdragonfly: return "dragonfly" case Hfreebsd: return "freebsd" case Hlinux: return "linux" case Hnacl: return "nacl" case Hnetbsd: return "netbsd" case Hopenbsd: return "openbsd" case Hplan9: return "plan9" case Hsolaris: return "solaris" case Hwindows: return "windows" case Hwindowsgui: return "windowsgui" } return fmt.Sprintf("HeadType(%d)", *h) } // AsmBuf is a simple buffer to assemble variable-length x86 instructions into. type AsmBuf struct { buf [100]byte off int } // Put1 appends one byte to the end of the buffer. func (a *AsmBuf) Put1(x byte) { a.buf[a.off] = x a.off++ } // Put2 appends two bytes to the end of the buffer. func (a *AsmBuf) Put2(x, y byte) { a.buf[a.off+0] = x a.buf[a.off+1] = y a.off += 2 } // Put3 appends three bytes to the end of the buffer. func (a *AsmBuf) Put3(x, y, z byte) { a.buf[a.off+0] = x a.buf[a.off+1] = y a.buf[a.off+2] = z a.off += 3 } // Put4 appends four bytes to the end of the buffer. func (a *AsmBuf) Put4(x, y, z, w byte) { a.buf[a.off+0] = x a.buf[a.off+1] = y a.buf[a.off+2] = z a.buf[a.off+3] = w a.off += 4 } // PutInt16 writes v into the buffer using little-endian encoding. func (a *AsmBuf) PutInt16(v int16) { a.buf[a.off+0] = byte(v) a.buf[a.off+1] = byte(v >> 8) a.off += 2 } // PutInt32 writes v into the buffer using little-endian encoding. func (a *AsmBuf) PutInt32(v int32) { a.buf[a.off+0] = byte(v) a.buf[a.off+1] = byte(v >> 8) a.buf[a.off+2] = byte(v >> 16) a.buf[a.off+3] = byte(v >> 24) a.off += 4 } // PutInt64 writes v into the buffer using little-endian encoding. func (a *AsmBuf) PutInt64(v int64) { a.buf[a.off+0] = byte(v) a.buf[a.off+1] = byte(v >> 8) a.buf[a.off+2] = byte(v >> 16) a.buf[a.off+3] = byte(v >> 24) a.buf[a.off+4] = byte(v >> 32) a.buf[a.off+5] = byte(v >> 40) a.buf[a.off+6] = byte(v >> 48) a.buf[a.off+7] = byte(v >> 56) a.off += 8 } // Put copies b into the buffer. func (a *AsmBuf) Put(b []byte) { copy(a.buf[a.off:], b) a.off += len(b) } // Insert inserts b at offset i. func (a *AsmBuf) Insert(i int, b byte) { a.off++ copy(a.buf[i+1:a.off], a.buf[i:a.off-1]) a.buf[i] = b } // Last returns the byte at the end of the buffer. func (a *AsmBuf) Last() byte { return a.buf[a.off-1] } // Len returns the length of the buffer. func (a *AsmBuf) Len() int { return a.off } // Bytes returns the contents of the buffer. func (a *AsmBuf) Bytes() []byte { return a.buf[:a.off] } // Reset empties the buffer. func (a *AsmBuf) Reset() { a.off = 0 } // Peek returns the byte at offset i. func (a *AsmBuf) Peek(i int) byte { return a.buf[i] }