// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package flate import ( "io" ) const ( // The largest offset code. offsetCodeCount = 30 // The special code used to mark the end of a block. endBlockMarker = 256 // The first length code. lengthCodesStart = 257 // The number of codegen codes. codegenCodeCount = 19 badCode = 255 // bufferFlushSize indicates the buffer size // after which bytes are flushed to the writer. // Should preferably be a multiple of 6, since // we accumulate 6 bytes between writes to the buffer. bufferFlushSize = 240 // bufferSize is the actual output byte buffer size. // It must have additional headroom for a flush // which can contain up to 8 bytes. bufferSize = bufferFlushSize + 8 ) // The number of extra bits needed by length code X - LENGTH_CODES_START. var lengthExtraBits = []int8{ /* 257 */ 0, 0, 0, /* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, /* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, /* 280 */ 4, 5, 5, 5, 5, 0, } // The length indicated by length code X - LENGTH_CODES_START. var lengthBase = []uint32{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 255, } // offset code word extra bits. var offsetExtraBits = []int8{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* extended window */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, } var offsetBase = []uint32{ /* normal deflate */ 0x000000, 0x000001, 0x000002, 0x000003, 0x000004, 0x000006, 0x000008, 0x00000c, 0x000010, 0x000018, 0x000020, 0x000030, 0x000040, 0x000060, 0x000080, 0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300, 0x000400, 0x000600, 0x000800, 0x000c00, 0x001000, 0x001800, 0x002000, 0x003000, 0x004000, 0x006000, /* extended window */ 0x008000, 0x00c000, 0x010000, 0x018000, 0x020000, 0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000, 0x100000, 0x180000, 0x200000, 0x300000, } // The odd order in which the codegen code sizes are written. var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15} type huffmanBitWriter struct { // writer is the underlying writer. // Do not use it directly; use the write method, which ensures // that Write errors are sticky. writer io.Writer // Data waiting to be written is bytes[0:nbytes] // and then the low nbits of bits. bits uint64 nbits uint bytes [bufferSize]byte codegenFreq [codegenCodeCount]int32 nbytes int literalFreq []int32 offsetFreq []int32 codegen []uint8 literalEncoding *huffmanEncoder offsetEncoding *huffmanEncoder codegenEncoding *huffmanEncoder err error } func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter { return &huffmanBitWriter{ writer: w, literalFreq: make([]int32, maxNumLit), offsetFreq: make([]int32, offsetCodeCount), codegen: make([]uint8, maxNumLit+offsetCodeCount+1), literalEncoding: newHuffmanEncoder(maxNumLit), codegenEncoding: newHuffmanEncoder(codegenCodeCount), offsetEncoding: newHuffmanEncoder(offsetCodeCount), } } func (w *huffmanBitWriter) reset(writer io.Writer) { w.writer = writer w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil w.bytes = [bufferSize]byte{} } func (w *huffmanBitWriter) flush() { if w.err != nil { w.nbits = 0 return } n := w.nbytes for w.nbits != 0 { w.bytes[n] = byte(w.bits) w.bits >>= 8 if w.nbits > 8 { // Avoid underflow w.nbits -= 8 } else { w.nbits = 0 } n++ } w.bits = 0 w.write(w.bytes[:n]) w.nbytes = 0 } func (w *huffmanBitWriter) write(b []byte) { if w.err != nil { return } _, w.err = w.writer.Write(b) } func (w *huffmanBitWriter) writeBits(b int32, nb uint) { if w.err != nil { return } w.bits |= uint64(b) << w.nbits w.nbits += nb if w.nbits >= 48 { bits := w.bits w.bits >>= 48 w.nbits -= 48 n := w.nbytes bytes := w.bytes[n : n+6] bytes[0] = byte(bits) bytes[1] = byte(bits >> 8) bytes[2] = byte(bits >> 16) bytes[3] = byte(bits >> 24) bytes[4] = byte(bits >> 32) bytes[5] = byte(bits >> 40) n += 6 if n >= bufferFlushSize { w.write(w.bytes[:n]) n = 0 } w.nbytes = n } } func (w *huffmanBitWriter) writeBytes(bytes []byte) { if w.err != nil { return } n := w.nbytes if w.nbits&7 != 0 { w.err = InternalError("writeBytes with unfinished bits") return } for w.nbits != 0 { w.bytes[n] = byte(w.bits) w.bits >>= 8 w.nbits -= 8 n++ } if n != 0 { w.write(w.bytes[:n]) } w.nbytes = 0 w.write(bytes) } // RFC 1951 3.2.7 specifies a special run-length encoding for specifying // the literal and offset lengths arrays (which are concatenated into a single // array). This method generates that run-length encoding. // // The result is written into the codegen array, and the frequencies // of each code is written into the codegenFreq array. // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional // information. Code badCode is an end marker // // numLiterals The number of literals in literalEncoding // numOffsets The number of offsets in offsetEncoding // litenc, offenc The literal and offset encoder to use func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) { for i := range w.codegenFreq { w.codegenFreq[i] = 0 } // Note that we are using codegen both as a temporary variable for holding // a copy of the frequencies, and as the place where we put the result. // This is fine because the output is always shorter than the input used // so far. codegen := w.codegen // cache // Copy the concatenated code sizes to codegen. Put a marker at the end. cgnl := codegen[:numLiterals] for i := range cgnl { cgnl[i] = uint8(litEnc.codes[i].len) } cgnl = codegen[numLiterals : numLiterals+numOffsets] for i := range cgnl { cgnl[i] = uint8(offEnc.codes[i].len) } codegen[numLiterals+numOffsets] = badCode size := codegen[0] count := 1 outIndex := 0 for inIndex := 1; size != badCode; inIndex++ { // INVARIANT: We have seen "count" copies of size that have not yet // had output generated for them. nextSize := codegen[inIndex] if nextSize == size { count++ continue } // We need to generate codegen indicating "count" of size. if size != 0 { codegen[outIndex] = size outIndex++ w.codegenFreq[size]++ count-- for count >= 3 { n := 6 if n > count { n = count } codegen[outIndex] = 16 outIndex++ codegen[outIndex] = uint8(n - 3) outIndex++ w.codegenFreq[16]++ count -= n } } else { for count >= 11 { n := 138 if n > count { n = count } codegen[outIndex] = 18 outIndex++ codegen[outIndex] = uint8(n - 11) outIndex++ w.codegenFreq[18]++ count -= n } if count >= 3 { // count >= 3 && count <= 10 codegen[outIndex] = 17 outIndex++ codegen[outIndex] = uint8(count - 3) outIndex++ w.codegenFreq[17]++ count = 0 } } count-- for ; count >= 0; count-- { codegen[outIndex] = size outIndex++ w.codegenFreq[size]++ } // Set up invariant for next time through the loop. size = nextSize count = 1 } // Marker indicating the end of the codegen. codegen[outIndex] = badCode } // dynamicSize returns the size of dynamically encoded data in bits. func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) { numCodegens = len(w.codegenFreq) for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 { numCodegens-- } header := 3 + 5 + 5 + 4 + (3 * numCodegens) + w.codegenEncoding.bitLength(w.codegenFreq[:]) + int(w.codegenFreq[16])*2 + int(w.codegenFreq[17])*3 + int(w.codegenFreq[18])*7 size = header + litEnc.bitLength(w.literalFreq) + offEnc.bitLength(w.offsetFreq) + extraBits return size, numCodegens } // fixedSize returns the size of dynamically encoded data in bits. func (w *huffmanBitWriter) fixedSize(extraBits int) int { return 3 + fixedLiteralEncoding.bitLength(w.literalFreq) + fixedOffsetEncoding.bitLength(w.offsetFreq) + extraBits } // storedSize calculates the stored size, including header. // The function returns the size in bits and whether the block // fits inside a single block. func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) { if in == nil { return 0, false } if len(in) <= maxStoreBlockSize { return (len(in) + 5) * 8, true } return 0, false } func (w *huffmanBitWriter) writeCode(c hcode) { if w.err != nil { return } w.bits |= uint64(c.code) << w.nbits w.nbits += uint(c.len) if w.nbits >= 48 { bits := w.bits w.bits >>= 48 w.nbits -= 48 n := w.nbytes bytes := w.bytes[n : n+6] bytes[0] = byte(bits) bytes[1] = byte(bits >> 8) bytes[2] = byte(bits >> 16) bytes[3] = byte(bits >> 24) bytes[4] = byte(bits >> 32) bytes[5] = byte(bits >> 40) n += 6 if n >= bufferFlushSize { w.write(w.bytes[:n]) n = 0 } w.nbytes = n } } // Write the header of a dynamic Huffman block to the output stream. // // numLiterals The number of literals specified in codegen // numOffsets The number of offsets specified in codegen // numCodegens The number of codegens used in codegen func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) { if w.err != nil { return } var firstBits int32 = 4 if isEof { firstBits = 5 } w.writeBits(firstBits, 3) w.writeBits(int32(numLiterals-257), 5) w.writeBits(int32(numOffsets-1), 5) w.writeBits(int32(numCodegens-4), 4) for i := 0; i < numCodegens; i++ { value := uint(w.codegenEncoding.codes[codegenOrder[i]].len) w.writeBits(int32(value), 3) } i := 0 for { var codeWord int = int(w.codegen[i]) i++ if codeWord == badCode { break } w.writeCode(w.codegenEncoding.codes[uint32(codeWord)]) switch codeWord { case 16: w.writeBits(int32(w.codegen[i]), 2) i++ break case 17: w.writeBits(int32(w.codegen[i]), 3) i++ break case 18: w.writeBits(int32(w.codegen[i]), 7) i++ break } } } func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) { if w.err != nil { return } var flag int32 if isEof { flag = 1 } w.writeBits(flag, 3) w.flush() w.writeBits(int32(length), 16) w.writeBits(int32(^uint16(length)), 16) } func (w *huffmanBitWriter) writeFixedHeader(isEof bool) { if w.err != nil { return } // Indicate that we are a fixed Huffman block var value int32 = 2 if isEof { value = 3 } w.writeBits(value, 3) } // writeBlock will write a block of tokens with the smallest encoding. // The original input can be supplied, and if the huffman encoded data // is larger than the original bytes, the data will be written as a // stored block. // If the input is nil, the tokens will always be Huffman encoded. func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) { if w.err != nil { return } tokens = append(tokens, endBlockMarker) numLiterals, numOffsets := w.indexTokens(tokens) var extraBits int storedSize, storable := w.storedSize(input) if storable { // We only bother calculating the costs of the extra bits required by // the length of offset fields (which will be the same for both fixed // and dynamic encoding), if we need to compare those two encodings // against stored encoding. for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ { // First eight length codes have extra size = 0. extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart]) } for offsetCode := 4; offsetCode < numOffsets; offsetCode++ { // First four offset codes have extra size = 0. extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode]) } } // Figure out smallest code. // Fixed Huffman baseline. var literalEncoding = fixedLiteralEncoding var offsetEncoding = fixedOffsetEncoding var size = w.fixedSize(extraBits) // Dynamic Huffman? var numCodegens int // Generate codegen and codegenFrequencies, which indicates how to encode // the literalEncoding and the offsetEncoding. w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding) w.codegenEncoding.generate(w.codegenFreq[:], 7) dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits) if dynamicSize < size { size = dynamicSize literalEncoding = w.literalEncoding offsetEncoding = w.offsetEncoding } // Stored bytes? if storable && storedSize < size { w.writeStoredHeader(len(input), eof) w.writeBytes(input) return } // Huffman. if literalEncoding == fixedLiteralEncoding { w.writeFixedHeader(eof) } else { w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof) } // Write the tokens. w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes) } // writeBlockDynamic encodes a block using a dynamic Huffman table. // This should be used if the symbols used have a disproportionate // histogram distribution. // If input is supplied and the compression savings are below 1/16th of the // input size the block is stored. func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) { if w.err != nil { return } tokens = append(tokens, endBlockMarker) numLiterals, numOffsets := w.indexTokens(tokens) // Generate codegen and codegenFrequencies, which indicates how to encode // the literalEncoding and the offsetEncoding. w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding) w.codegenEncoding.generate(w.codegenFreq[:], 7) size, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, 0) // Store bytes, if we don't get a reasonable improvement. if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) { w.writeStoredHeader(len(input), eof) w.writeBytes(input) return } // Write Huffman table. w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof) // Write the tokens. w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes) } // indexTokens indexes a slice of tokens, and updates // literalFreq and offsetFreq, and generates literalEncoding // and offsetEncoding. // The number of literal and offset tokens is returned. func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) { for i := range w.literalFreq { w.literalFreq[i] = 0 } for i := range w.offsetFreq { w.offsetFreq[i] = 0 } for _, t := range tokens { if t < matchType { w.literalFreq[t.literal()]++ continue } length := t.length() offset := t.offset() w.literalFreq[lengthCodesStart+lengthCode(length)]++ w.offsetFreq[offsetCode(offset)]++ } // get the number of literals numLiterals = len(w.literalFreq) for w.literalFreq[numLiterals-1] == 0 { numLiterals-- } // get the number of offsets numOffsets = len(w.offsetFreq) for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 { numOffsets-- } if numOffsets == 0 { // We haven't found a single match. If we want to go with the dynamic encoding, // we should count at least one offset to be sure that the offset huffman tree could be encoded. w.offsetFreq[0] = 1 numOffsets = 1 } w.literalEncoding.generate(w.literalFreq, 15) w.offsetEncoding.generate(w.offsetFreq, 15) return } // writeTokens writes a slice of tokens to the output. // codes for literal and offset encoding must be supplied. func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) { if w.err != nil { return } for _, t := range tokens { if t < matchType { w.writeCode(leCodes[t.literal()]) continue } // Write the length length := t.length() lengthCode := lengthCode(length) w.writeCode(leCodes[lengthCode+lengthCodesStart]) extraLengthBits := uint(lengthExtraBits[lengthCode]) if extraLengthBits > 0 { extraLength := int32(length - lengthBase[lengthCode]) w.writeBits(extraLength, extraLengthBits) } // Write the offset offset := t.offset() offsetCode := offsetCode(offset) w.writeCode(oeCodes[offsetCode]) extraOffsetBits := uint(offsetExtraBits[offsetCode]) if extraOffsetBits > 0 { extraOffset := int32(offset - offsetBase[offsetCode]) w.writeBits(extraOffset, extraOffsetBits) } } } // huffOffset is a static offset encoder used for huffman only encoding. // It can be reused since we will not be encoding offset values. var huffOffset *huffmanEncoder func init() { w := newHuffmanBitWriter(nil) w.offsetFreq[0] = 1 huffOffset = newHuffmanEncoder(offsetCodeCount) huffOffset.generate(w.offsetFreq, 15) } // writeBlockHuff encodes a block of bytes as either // Huffman encoded literals or uncompressed bytes if the // results only gains very little from compression. func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) { if w.err != nil { return } // Clear histogram for i := range w.literalFreq { w.literalFreq[i] = 0 } // Add everything as literals histogram(input, w.literalFreq) w.literalFreq[endBlockMarker] = 1 const numLiterals = endBlockMarker + 1 const numOffsets = 1 w.literalEncoding.generate(w.literalFreq, 15) // Figure out smallest code. // Always use dynamic Huffman or Store var numCodegens int // Generate codegen and codegenFrequencies, which indicates how to encode // the literalEncoding and the offsetEncoding. w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset) w.codegenEncoding.generate(w.codegenFreq[:], 7) size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0) // Store bytes, if we don't get a reasonable improvement. if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) { w.writeStoredHeader(len(input), eof) w.writeBytes(input) return } // Huffman. w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof) encoding := w.literalEncoding.codes[:257] n := w.nbytes for _, t := range input { // Bitwriting inlined, ~30% speedup c := encoding[t] w.bits |= uint64(c.code) << w.nbits w.nbits += uint(c.len) if w.nbits < 48 { continue } // Store 6 bytes bits := w.bits w.bits >>= 48 w.nbits -= 48 bytes := w.bytes[n : n+6] bytes[0] = byte(bits) bytes[1] = byte(bits >> 8) bytes[2] = byte(bits >> 16) bytes[3] = byte(bits >> 24) bytes[4] = byte(bits >> 32) bytes[5] = byte(bits >> 40) n += 6 if n < bufferFlushSize { continue } w.write(w.bytes[:n]) if w.err != nil { return // Return early in the event of write failures } n = 0 } w.nbytes = n w.writeCode(encoding[endBlockMarker]) } // histogram accumulates a histogram of b in h. // // len(h) must be >= 256, and h's elements must be all zeroes. func histogram(b []byte, h []int32) { h = h[:256] for _, t := range b { h[t]++ } }