// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package aes import ( "crypto/cipher" "crypto/subtle" "errors" ) // gcmCount represents a 16-byte big-endian count value. type gcmCount [16]byte // inc increments the rightmost 32-bits of the count value by 1. func (x *gcmCount) inc() { // The compiler should optimize this to a 32-bit addition. n := uint32(x[15]) | uint32(x[14])<<8 | uint32(x[13])<<16 | uint32(x[12])<<24 n += 1 x[12] = byte(n >> 24) x[13] = byte(n >> 16) x[14] = byte(n >> 8) x[15] = byte(n) } // gcmLengths writes len0 || len1 as big-endian values to a 16-byte array. func gcmLengths(len0, len1 uint64) [16]byte { return [16]byte{ byte(len0 >> 56), byte(len0 >> 48), byte(len0 >> 40), byte(len0 >> 32), byte(len0 >> 24), byte(len0 >> 16), byte(len0 >> 8), byte(len0), byte(len1 >> 56), byte(len1 >> 48), byte(len1 >> 40), byte(len1 >> 32), byte(len1 >> 24), byte(len1 >> 16), byte(len1 >> 8), byte(len1), } } // gcmHashKey represents the 16-byte hash key required by the GHASH algorithm. type gcmHashKey [16]byte type gcmAsm struct { block *aesCipherAsm hashKey gcmHashKey nonceSize int } const ( gcmBlockSize = 16 gcmTagSize = 16 gcmStandardNonceSize = 12 ) var errOpen = errors.New("cipher: message authentication failed") // Assert that aesCipherAsm implements the gcmAble interface. var _ gcmAble = (*aesCipherAsm)(nil) // NewGCM returns the AES cipher wrapped in Galois Counter Mode. This is only // called by crypto/cipher.NewGCM via the gcmAble interface. func (c *aesCipherAsm) NewGCM(nonceSize int) (cipher.AEAD, error) { var hk gcmHashKey c.Encrypt(hk[:], hk[:]) g := &gcmAsm{ block: c, hashKey: hk, nonceSize: nonceSize, } return g, nil } func (g *gcmAsm) NonceSize() int { return g.nonceSize } func (*gcmAsm) Overhead() int { return gcmTagSize } // sliceForAppend takes a slice and a requested number of bytes. It returns a // slice with the contents of the given slice followed by that many bytes and a // second slice that aliases into it and contains only the extra bytes. If the // original slice has sufficient capacity then no allocation is performed. func sliceForAppend(in []byte, n int) (head, tail []byte) { if total := len(in) + n; cap(in) >= total { head = in[:total] } else { head = make([]byte, total) copy(head, in) } tail = head[len(in):] return } // ghash uses the GHASH algorithm to hash data with the given key. The initial // hash value is given by hash which will be updated with the new hash value. // The length of data must be a multiple of 16-bytes. //go:noescape func ghash(key *gcmHashKey, hash *[16]byte, data []byte) // paddedGHASH pads data with zeroes until its length is a multiple of // 16-bytes. It then calculates a new value for hash using the GHASH algorithm. func (g *gcmAsm) paddedGHASH(hash *[16]byte, data []byte) { siz := len(data) &^ 0xf // align size to 16-bytes if siz > 0 { ghash(&g.hashKey, hash, data[:siz]) data = data[siz:] } if len(data) > 0 { var s [16]byte copy(s[:], data) ghash(&g.hashKey, hash, s[:]) } } // cryptBlocksGCM encrypts src using AES in counter mode using the given // function code and key. The rightmost 32-bits of the counter are incremented // between each block as required by the GCM spec. The initial counter value // is given by cnt, which is updated with the value of the next counter value // to use. // // The lengths of both dst and buf must be greater than or equal to the length // of src. buf may be partially or completely overwritten during the execution // of the function. //go:noescape func cryptBlocksGCM(fn code, key, dst, src, buf []byte, cnt *gcmCount) // counterCrypt encrypts src using AES in counter mode and places the result // into dst. cnt is the initial count value and will be updated with the next // count value. The length of dst must be greater than or equal to the length // of src. func (g *gcmAsm) counterCrypt(dst, src []byte, cnt *gcmCount) { // Copying src into a buffer improves performance on some models when // src and dst point to the same underlying array. We also need a // buffer for counter values. var ctrbuf, srcbuf [2048]byte for len(src) >= 16 { siz := len(src) if len(src) > len(ctrbuf) { siz = len(ctrbuf) } siz &^= 0xf // align siz to 16-bytes copy(srcbuf[:], src[:siz]) cryptBlocksGCM(g.block.function, g.block.key, dst[:siz], srcbuf[:siz], ctrbuf[:], cnt) src = src[siz:] dst = dst[siz:] } if len(src) > 0 { var x [16]byte g.block.Encrypt(x[:], cnt[:]) for i := range src { dst[i] = src[i] ^ x[i] } cnt.inc() } } // deriveCounter computes the initial GCM counter state from the given nonce. // See NIST SP 800-38D, section 7.1. func (g *gcmAsm) deriveCounter(nonce []byte) gcmCount { // GCM has two modes of operation with respect to the initial counter // state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path" // for nonces of other lengths. For a 96-bit nonce, the nonce, along // with a four-byte big-endian counter starting at one, is used // directly as the starting counter. For other nonce sizes, the counter // is computed by passing it through the GHASH function. var counter gcmCount if len(nonce) == gcmStandardNonceSize { copy(counter[:], nonce) counter[gcmBlockSize-1] = 1 } else { var hash [16]byte g.paddedGHASH(&hash, nonce) lens := gcmLengths(0, uint64(len(nonce))*8) g.paddedGHASH(&hash, lens[:]) copy(counter[:], hash[:]) } return counter } // auth calculates GHASH(ciphertext, additionalData), masks the result with // tagMask and writes the result to out. func (g *gcmAsm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) { var hash [16]byte g.paddedGHASH(&hash, additionalData) g.paddedGHASH(&hash, ciphertext) lens := gcmLengths(uint64(len(additionalData))*8, uint64(len(ciphertext))*8) g.paddedGHASH(&hash, lens[:]) copy(out, hash[:]) for i := range out { out[i] ^= tagMask[i] } } // Seal encrypts and authenticates plaintext. See the cipher.AEAD interface for // details. func (g *gcmAsm) Seal(dst, nonce, plaintext, data []byte) []byte { if len(nonce) != g.nonceSize { panic("cipher: incorrect nonce length given to GCM") } if uint64(len(plaintext)) > ((1<<32)-2)*BlockSize { panic("cipher: message too large for GCM") } ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize) counter := g.deriveCounter(nonce) var tagMask [gcmBlockSize]byte g.block.Encrypt(tagMask[:], counter[:]) counter.inc() g.counterCrypt(out, plaintext, &counter) g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask) return ret } // Open authenticates and decrypts ciphertext. See the cipher.AEAD interface // for details. func (g *gcmAsm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { if len(nonce) != g.nonceSize { panic("cipher: incorrect nonce length given to GCM") } if len(ciphertext) < gcmTagSize { return nil, errOpen } if uint64(len(ciphertext)) > ((1<<32)-2)*BlockSize+gcmTagSize { return nil, errOpen } tag := ciphertext[len(ciphertext)-gcmTagSize:] ciphertext = ciphertext[:len(ciphertext)-gcmTagSize] counter := g.deriveCounter(nonce) var tagMask [gcmBlockSize]byte g.block.Encrypt(tagMask[:], counter[:]) counter.inc() var expectedTag [gcmTagSize]byte g.auth(expectedTag[:], ciphertext, data, &tagMask) ret, out := sliceForAppend(dst, len(ciphertext)) if subtle.ConstantTimeCompare(expectedTag[:], tag) != 1 { // The AESNI code decrypts and authenticates concurrently, and // so overwrites dst in the event of a tag mismatch. That // behavior is mimicked here in order to be consistent across // platforms. for i := range out { out[i] = 0 } return nil, errOpen } g.counterCrypt(out, ciphertext, &counter) return ret, nil }