// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "textflag.h" DATA p256ordK0<>+0x00(SB)/4, $0xee00bc4f DATA p256ord<>+0x00(SB)/8, $0xffffffff00000000 DATA p256ord<>+0x08(SB)/8, $0xffffffffffffffff DATA p256ord<>+0x10(SB)/8, $0xbce6faada7179e84 DATA p256ord<>+0x18(SB)/8, $0xf3b9cac2fc632551 DATA p256<>+0x00(SB)/8, $0xffffffff00000001 // P256 DATA p256<>+0x08(SB)/8, $0x0000000000000000 // P256 DATA p256<>+0x10(SB)/8, $0x00000000ffffffff // P256 DATA p256<>+0x18(SB)/8, $0xffffffffffffffff // P256 DATA p256<>+0x20(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 DATA p256<>+0x28(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 DATA p256<>+0x30(SB)/8, $0x0000000010111213 // SEL 0 d1 d0 0 DATA p256<>+0x38(SB)/8, $0x1415161700000000 // SEL 0 d1 d0 0 DATA p256<>+0x40(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0 DATA p256<>+0x48(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0 DATA p256mul<>+0x00(SB)/8, $0xffffffff00000001 // P256 DATA p256mul<>+0x08(SB)/8, $0x0000000000000000 // P256 DATA p256mul<>+0x10(SB)/8, $0x00000000ffffffff // P256 DATA p256mul<>+0x18(SB)/8, $0xffffffffffffffff // P256 DATA p256mul<>+0x20(SB)/8, $0x1c1d1e1f00000000 // SEL d0 0 0 d0 DATA p256mul<>+0x28(SB)/8, $0x000000001c1d1e1f // SEL d0 0 0 d0 DATA p256mul<>+0x30(SB)/8, $0x0001020304050607 // SEL d0 0 d1 d0 DATA p256mul<>+0x38(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL d0 0 d1 d0 DATA p256mul<>+0x40(SB)/8, $0x040506071c1d1e1f // SEL 0 d1 d0 d1 DATA p256mul<>+0x48(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL 0 d1 d0 d1 DATA p256mul<>+0x50(SB)/8, $0x0405060704050607 // SEL 0 0 d1 d0 DATA p256mul<>+0x58(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL 0 0 d1 d0 DATA p256mul<>+0x60(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 DATA p256mul<>+0x68(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 DATA p256mul<>+0x70(SB)/8, $0x141516170c0d0e0f // SEL 0 d1 d0 0 DATA p256mul<>+0x78(SB)/8, $0x1c1d1e1f14151617 // SEL 0 d1 d0 0 DATA p256mul<>+0x80(SB)/8, $0x00000000fffffffe // (1*2^256)%P256 DATA p256mul<>+0x88(SB)/8, $0xffffffffffffffff // (1*2^256)%P256 DATA p256mul<>+0x90(SB)/8, $0xffffffff00000000 // (1*2^256)%P256 DATA p256mul<>+0x98(SB)/8, $0x0000000000000001 // (1*2^256)%P256 GLOBL p256ordK0<>(SB), 8, $4 GLOBL p256ord<>(SB), 8, $32 GLOBL p256<>(SB), 8, $80 GLOBL p256mul<>(SB), 8, $160 // func hasVectorFacility() bool TEXT ·hasVectorFacility(SB), NOSPLIT, $24-1 MOVD $x-24(SP), R1 XC $24, 0(R1), 0(R1) // clear the storage MOVD $2, R0 // R0 is the number of double words stored -1 WORD $0xB2B01000 // STFLE 0(R1) XOR R0, R0 // reset the value of R0 MOVBZ z-8(SP), R1 AND $0x40, R1 BEQ novector vectorinstalled: // check if the vector instruction has been enabled VLEIB $0, $0xF, V16 VLGVB $0, V16, R1 CMPBNE R1, $0xF, novector MOVB $1, ret+0(FP) // have vx RET novector: MOVB $0, ret+0(FP) // no vx RET // --------------------------------------- // iff cond == 1 val <- -val // func p256NegCond(val *p256Point, cond int) #define P1ptr R1 #define CPOOL R4 #define Y1L V0 #define Y1H V1 #define T1L V2 #define T1H V3 #define PL V30 #define PH V31 #define ZER V4 #define SEL1 V5 #define CAR1 V6 TEXT ·p256NegCond(SB), NOSPLIT, $0 MOVD val+0(FP), P1ptr MOVD $p256mul<>+0x00(SB), CPOOL VL 16(CPOOL), PL VL 0(CPOOL), PH VL 32(P1ptr), Y1H VL 48(P1ptr), Y1L VLREPG cond+8(FP), SEL1 VZERO ZER VCEQG SEL1, ZER, SEL1 VSCBIQ Y1L, PL, CAR1 VSQ Y1L, PL, T1L VSBIQ PH, Y1H, CAR1, T1H VSEL Y1L, T1L, SEL1, Y1L VSEL Y1H, T1H, SEL1, Y1H VST Y1H, 32(P1ptr) VST Y1L, 48(P1ptr) RET #undef P1ptr #undef CPOOL #undef Y1L #undef Y1H #undef T1L #undef T1H #undef PL #undef PH #undef ZER #undef SEL1 #undef CAR1 // --------------------------------------- // if cond == 0 res <- b; else res <- a // func p256MovCond(res, a, b *p256Point, cond int) #define P3ptr R1 #define P1ptr R2 #define P2ptr R3 #define X1L V0 #define X1H V1 #define Y1L V2 #define Y1H V3 #define Z1L V4 #define Z1H V5 #define X2L V6 #define X2H V7 #define Y2L V8 #define Y2H V9 #define Z2L V10 #define Z2H V11 #define ZER V18 #define SEL1 V19 TEXT ·p256MovCond(SB), NOSPLIT, $0 MOVD res+0(FP), P3ptr MOVD a+8(FP), P1ptr MOVD b+16(FP), P2ptr VLREPG cond+24(FP), SEL1 VZERO ZER VCEQG SEL1, ZER, SEL1 VL 0(P1ptr), X1H VL 16(P1ptr), X1L VL 32(P1ptr), Y1H VL 48(P1ptr), Y1L VL 64(P1ptr), Z1H VL 80(P1ptr), Z1L VL 0(P2ptr), X2H VL 16(P2ptr), X2L VL 32(P2ptr), Y2H VL 48(P2ptr), Y2L VL 64(P2ptr), Z2H VL 80(P2ptr), Z2L VSEL X2L, X1L, SEL1, X1L VSEL X2H, X1H, SEL1, X1H VSEL Y2L, Y1L, SEL1, Y1L VSEL Y2H, Y1H, SEL1, Y1H VSEL Z2L, Z1L, SEL1, Z1L VSEL Z2H, Z1H, SEL1, Z1H VST X1H, 0(P3ptr) VST X1L, 16(P3ptr) VST Y1H, 32(P3ptr) VST Y1L, 48(P3ptr) VST Z1H, 64(P3ptr) VST Z1L, 80(P3ptr) RET #undef P3ptr #undef P1ptr #undef P2ptr #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef ZER #undef SEL1 // --------------------------------------- // Constant time table access // Indexed from 1 to 15, with -1 offset // (index 0 is implicitly point at infinity) // func p256Select(point *p256Point, table []p256Point, idx int) #define P3ptr R1 #define P1ptr R2 #define COUNT R4 #define X1L V0 #define X1H V1 #define Y1L V2 #define Y1H V3 #define Z1L V4 #define Z1H V5 #define X2L V6 #define X2H V7 #define Y2L V8 #define Y2H V9 #define Z2L V10 #define Z2H V11 #define ONE V18 #define IDX V19 #define SEL1 V20 #define SEL2 V21 TEXT ·p256Select(SB), NOSPLIT, $0 MOVD point+0(FP), P3ptr MOVD table+8(FP), P1ptr VLREPB idx+(32+7)(FP), IDX VREPIB $1, ONE VREPIB $1, SEL2 MOVD $1, COUNT VZERO X1H VZERO X1L VZERO Y1H VZERO Y1L VZERO Z1H VZERO Z1L loop_select: VL 0(P1ptr), X2H VL 16(P1ptr), X2L VL 32(P1ptr), Y2H VL 48(P1ptr), Y2L VL 64(P1ptr), Z2H VL 80(P1ptr), Z2L VCEQG SEL2, IDX, SEL1 VSEL X2L, X1L, SEL1, X1L VSEL X2H, X1H, SEL1, X1H VSEL Y2L, Y1L, SEL1, Y1L VSEL Y2H, Y1H, SEL1, Y1H VSEL Z2L, Z1L, SEL1, Z1L VSEL Z2H, Z1H, SEL1, Z1H VAB SEL2, ONE, SEL2 ADDW $1, COUNT ADD $96, P1ptr CMPW COUNT, $17 BLT loop_select VST X1H, 0(P3ptr) VST X1L, 16(P3ptr) VST Y1H, 32(P3ptr) VST Y1L, 48(P3ptr) VST Z1H, 64(P3ptr) VST Z1L, 80(P3ptr) RET #undef P3ptr #undef P1ptr #undef COUNT #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef ONE #undef IDX #undef SEL1 #undef SEL2 // --------------------------------------- // Constant time table access // Indexed from 1 to 15, with -1 offset // (index 0 is implicitly point at infinity) // func p256SelectBase(point *p256Point, table []p256Point, idx int) #define P3ptr R1 #define P1ptr R2 #define COUNT R4 #define X1L V0 #define X1H V1 #define Y1L V2 #define Y1H V3 #define Z1L V4 #define Z1H V5 #define X2L V6 #define X2H V7 #define Y2L V8 #define Y2H V9 #define Z2L V10 #define Z2H V11 #define ONE V18 #define IDX V19 #define SEL1 V20 #define SEL2 V21 TEXT ·p256SelectBase(SB), NOSPLIT, $0 MOVD point+0(FP), P3ptr MOVD table+8(FP), P1ptr VLREPB idx+(32+7)(FP), IDX VREPIB $1, ONE VREPIB $1, SEL2 MOVD $1, COUNT VZERO X1H VZERO X1L VZERO Y1H VZERO Y1L VZERO Z1H VZERO Z1L loop_select: VL 0(P1ptr), X2H VL 16(P1ptr), X2L VL 32(P1ptr), Y2H VL 48(P1ptr), Y2L VL 64(P1ptr), Z2H VL 80(P1ptr), Z2L VCEQG SEL2, IDX, SEL1 VSEL X2L, X1L, SEL1, X1L VSEL X2H, X1H, SEL1, X1H VSEL Y2L, Y1L, SEL1, Y1L VSEL Y2H, Y1H, SEL1, Y1H VSEL Z2L, Z1L, SEL1, Z1L VSEL Z2H, Z1H, SEL1, Z1H VAB SEL2, ONE, SEL2 ADDW $1, COUNT ADD $96, P1ptr CMPW COUNT, $65 BLT loop_select VST X1H, 0(P3ptr) VST X1L, 16(P3ptr) VST Y1H, 32(P3ptr) VST Y1L, 48(P3ptr) VST Z1H, 64(P3ptr) VST Z1L, 80(P3ptr) RET #undef P3ptr #undef P1ptr #undef COUNT #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef ONE #undef IDX #undef SEL1 #undef SEL2 // --------------------------------------- // func p256FromMont(res, in []byte) #define res_ptr R1 #define x_ptr R2 #define CPOOL R4 #define T0 V0 #define T1 V1 #define T2 V2 #define TT0 V3 #define TT1 V4 #define ZER V6 #define SEL1 V7 #define SEL2 V8 #define CAR1 V9 #define CAR2 V10 #define RED1 V11 #define RED2 V12 #define PL V13 #define PH V14 TEXT ·p256FromMont(SB), NOSPLIT, $0 MOVD res+0(FP), res_ptr MOVD in+24(FP), x_ptr VZERO T2 VZERO ZER MOVD $p256<>+0x00(SB), CPOOL VL 16(CPOOL), PL VL 0(CPOOL), PH VL 48(CPOOL), SEL2 VL 64(CPOOL), SEL1 VL (1*16)(x_ptr), T0 VL (0*16)(x_ptr), T1 // First round VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 VSQ RED1, RED2, RED2 // Guaranteed not to underflow VSLDB $8, T1, T0, T0 VSLDB $8, T2, T1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // Second round VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 VSQ RED1, RED2, RED2 // Guaranteed not to underflow VSLDB $8, T1, T0, T0 VSLDB $8, T2, T1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // Third round VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 VSQ RED1, RED2, RED2 // Guaranteed not to underflow VSLDB $8, T1, T0, T0 VSLDB $8, T2, T1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // Last round VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 VSQ RED1, RED2, RED2 // Guaranteed not to underflow VSLDB $8, T1, T0, T0 VSLDB $8, T2, T1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // --------------------------------------------------- VSCBIQ PL, T0, CAR1 VSQ PL, T0, TT0 VSBCBIQ T1, PH, CAR1, CAR2 VSBIQ T1, PH, CAR1, TT1 VSBIQ T2, ZER, CAR2, T2 // what output to use, TT1||TT0 or T1||T0? VSEL T0, TT0, T2, T0 VSEL T1, TT1, T2, T1 VST T0, (1*16)(res_ptr) VST T1, (0*16)(res_ptr) RET #undef res_ptr #undef x_ptr #undef CPOOL #undef T0 #undef T1 #undef T2 #undef TT0 #undef TT1 #undef ZER #undef SEL1 #undef SEL2 #undef CAR1 #undef CAR2 #undef RED1 #undef RED2 #undef PL #undef PH // --------------------------------------- // func p256OrdMul(res, in1, in2 []byte) #define res_ptr R1 #define x_ptr R2 #define y_ptr R3 #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define M0 V4 #define M1 V5 #define T0 V6 #define T1 V7 #define T2 V8 #define YDIG V9 #define ADD1 V16 #define ADD1H V17 #define ADD2 V18 #define ADD2H V19 #define RED1 V20 #define RED1H V21 #define RED2 V22 #define RED2H V23 #define CAR1 V24 #define CAR1M V25 #define MK0 V30 #define K0 V31 TEXT ·p256OrdMul(SB), NOSPLIT, $0 MOVD res+0(FP), res_ptr MOVD in1+24(FP), x_ptr MOVD in2+48(FP), y_ptr VZERO T2 MOVD $p256ordK0<>+0x00(SB), R4 // VLEF $3, 0(R4), K0 WORD $0xE7F40000 BYTE $0x38 BYTE $0x03 MOVD $p256ord<>+0x00(SB), R4 VL 16(R4), M0 VL 0(R4), M1 VL (1*16)(x_ptr), X0 VL (0*16)(x_ptr), X1 VL (1*16)(y_ptr), Y0 VL (0*16)(y_ptr), Y1 // ---------------------------------------------------------------------------/ VREPF $3, Y0, YDIG VMLF X0, YDIG, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMLF X1, YDIG, ADD2 VMLHF X0, YDIG, ADD1H VMLHF X1, YDIG, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- /* * * ---+--------+--------+ * T2| T1 | T0 | * ---+--------+--------+ * *(add)* * +--------+--------+ * | X1 | X0 | * +--------+--------+ * *(mul)* * +--------+--------+ * | YDIG | YDIG | * +--------+--------+ * *(add)* * +--------+--------+ * | M1 | M0 | * +--------+--------+ * *(mul)* * +--------+--------+ * | MK0 | MK0 | * +--------+--------+ * * --------------------- * * +--------+--------+ * | ADD2 | ADD1 | * +--------+--------+ * +--------+--------+ * | ADD2H | ADD1H | * +--------+--------+ * +--------+--------+ * | RED2 | RED1 | * +--------+--------+ * +--------+--------+ * | RED2H | RED1H | * +--------+--------+ */ VREPF $2, Y0, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $1, Y0, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $0, Y0, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $3, Y1, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $2, Y1, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $1, Y1, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $0, Y1, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VZERO RED1 VSCBIQ M0, T0, CAR1 VSQ M0, T0, ADD1 VSBCBIQ T1, M1, CAR1, CAR1M VSBIQ T1, M1, CAR1, ADD2 VSBIQ T2, RED1, CAR1M, T2 // what output to use, ADD2||ADD1 or T1||T0? VSEL T0, ADD1, T2, T0 VSEL T1, ADD2, T2, T1 VST T0, (1*16)(res_ptr) VST T1, (0*16)(res_ptr) RET #undef res_ptr #undef x_ptr #undef y_ptr #undef X0 #undef X1 #undef Y0 #undef Y1 #undef M0 #undef M1 #undef T0 #undef T1 #undef T2 #undef YDIG #undef ADD1 #undef ADD1H #undef ADD2 #undef ADD2H #undef RED1 #undef RED1H #undef RED2 #undef RED2H #undef CAR1 #undef CAR1M #undef MK0 #undef K0 // --------------------------------------- // p256MulInternal // V0-V3,V30,V31 - Not Modified // V4-V15 - Volatile #define CPOOL R4 // Parameters #define X0 V0 // Not modified #define X1 V1 // Not modified #define Y0 V2 // Not modified #define Y1 V3 // Not modified #define T0 V4 #define T1 V5 #define P0 V30 // Not modified #define P1 V31 // Not modified // Temporaries #define YDIG V6 // Overloaded with CAR2, ZER #define ADD1H V7 // Overloaded with ADD3H #define ADD2H V8 // Overloaded with ADD4H #define ADD3 V9 // Overloaded with SEL2,SEL5 #define ADD4 V10 // Overloaded with SEL3,SEL6 #define RED1 V11 // Overloaded with CAR2 #define RED2 V12 #define RED3 V13 // Overloaded with SEL1 #define T2 V14 // Overloaded temporaries #define ADD1 V4 // Overloaded with T0 #define ADD2 V5 // Overloaded with T1 #define ADD3H V7 // Overloaded with ADD1H #define ADD4H V8 // Overloaded with ADD2H #define ZER V6 // Overloaded with YDIG, CAR2 #define CAR1 V6 // Overloaded with YDIG, ZER #define CAR2 V11 // Overloaded with RED1 // Constant Selects #define SEL1 V13 // Overloaded with RED3 #define SEL2 V9 // Overloaded with ADD3,SEL5 #define SEL3 V10 // Overloaded with ADD4,SEL6 #define SEL4 V6 // Overloaded with YDIG,CAR2,ZER #define SEL5 V9 // Overloaded with ADD3,SEL2 #define SEL6 V10 // Overloaded with ADD4,SEL3 /* * * To follow the flow of bits, for your own sanity a stiff drink, need you shall. * Of a single round, a 'helpful' picture, here is. Meaning, column position has. * With you, SIMD be... * * +--------+--------+ * +--------| RED2 | RED1 | * | +--------+--------+ * | ---+--------+--------+ * | +---- T2| T1 | T0 |--+ * | | ---+--------+--------+ | * | | | * | | ======================= | * | | | * | | +--------+--------+<-+ * | +-------| ADD2 | ADD1 |--|-----+ * | | +--------+--------+ | | * | | +--------+--------+<---+ | * | | | ADD2H | ADD1H |--+ | * | | +--------+--------+ | | * | | +--------+--------+<-+ | * | | | ADD4 | ADD3 |--|-+ | * | | +--------+--------+ | | | * | | +--------+--------+<---+ | | * | | | ADD4H | ADD3H |------|-+ |(+vzero) * | | +--------+--------+ | | V * | | ------------------------ | | +--------+ * | | | | | RED3 | [d0 0 0 d0] * | | | | +--------+ * | +---->+--------+--------+ | | | * (T2[1w]||ADD2[4w]||ADD1[3w]) +--------| T1 | T0 | | | | * | +--------+--------+ | | | * +---->---+--------+--------+ | | | * T2| T1 | T0 |----+ | | * ---+--------+--------+ | | | * ---+--------+--------+<---+ | | * +--- T2| T1 | T0 |----------+ * | ---+--------+--------+ | | * | +--------+--------+<-------------+ * | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0] * | +--------+--------+ | | | * | +--------+<----------------------+ * | | RED3 |--------------+ | [0 0 d1 d0] * | +--------+ | | * +--->+--------+--------+ | | * | T1 | T0 |--------+ * +--------+--------+ | | * --------------------------- | | * | | * +--------+--------+<----+ | * | RED2 | RED1 | | * +--------+--------+ | * ---+--------+--------+<-------+ * T2| T1 | T0 | (H1P-H1P-H00RRAY!) * ---+--------+--------+ * * *Mi obra de arte de siglo XXI @vpaprots * * * First group is special, doesnt get the two inputs: * +--------+--------+<-+ * +-------| ADD2 | ADD1 |--|-----+ * | +--------+--------+ | | * | +--------+--------+<---+ | * | | ADD2H | ADD1H |--+ | * | +--------+--------+ | | * | +--------+--------+<-+ | * | | ADD4 | ADD3 |--|-+ | * | +--------+--------+ | | | * | +--------+--------+<---+ | | * | | ADD4H | ADD3H |------|-+ |(+vzero) * | +--------+--------+ | | V * | ------------------------ | | +--------+ * | | | | RED3 | [d0 0 0 d0] * | | | +--------+ * +---->+--------+--------+ | | | * (T2[1w]||ADD2[4w]||ADD1[3w]) | T1 | T0 |----+ | | * +--------+--------+ | | | * ---+--------+--------+<---+ | | * +--- T2| T1 | T0 |----------+ * | ---+--------+--------+ | | * | +--------+--------+<-------------+ * | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0] * | +--------+--------+ | | | * | +--------+<----------------------+ * | | RED3 |--------------+ | [0 0 d1 d0] * | +--------+ | | * +--->+--------+--------+ | | * | T1 | T0 |--------+ * +--------+--------+ | | * --------------------------- | | * | | * +--------+--------+<----+ | * | RED2 | RED1 | | * +--------+--------+ | * ---+--------+--------+<-------+ * T2| T1 | T0 | (H1P-H1P-H00RRAY!) * ---+--------+--------+ * * Last 'group' needs to RED2||RED1 shifted less */ TEXT p256MulInternal<>(SB), NOSPLIT, $0-0 VL 32(CPOOL), SEL1 VL 48(CPOOL), SEL2 VL 64(CPOOL), SEL3 VL 80(CPOOL), SEL4 // --------------------------------------------------- VREPF $3, Y0, YDIG VMLHF X0, YDIG, ADD1H VMLHF X1, YDIG, ADD2H VMLF X0, YDIG, ADD1 VMLF X1, YDIG, ADD2 VREPF $2, Y0, YDIG VMALF X0, YDIG, ADD1H, ADD3 VMALF X1, YDIG, ADD2H, ADD4 VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free VZERO ZER VL 32(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDB $12, ADD2, ADD1, T0 // ADD1 Free VSLDB $12, ZER, ADD2, T1 // ADD2 Free VACCQ T0, ADD3, CAR1 VAQ T0, ADD3, T0 // ADD3 Free VACCCQ T1, ADD4, CAR1, T2 VACQ T1, ADD4, CAR1, T1 // ADD4 Free VL 48(CPOOL), SEL2 VL 64(CPOOL), SEL3 VL 80(CPOOL), SEL4 VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0] VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1] VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0] VSQ RED3, RED2, RED2 // Guaranteed not to underflow VSLDB $12, T1, T0, T0 VSLDB $12, T2, T1, T1 VACCQ T0, ADD3H, CAR1 VAQ T0, ADD3H, T0 VACCCQ T1, ADD4H, CAR1, T2 VACQ T1, ADD4H, CAR1, T1 // --------------------------------------------------- VREPF $1, Y0, YDIG VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF X0, YDIG, T0, ADD1 // T0 Free->ADD1 VMALF X1, YDIG, T1, ADD2 // T1 Free->ADD2 VREPF $0, Y0, YDIG VMALF X0, YDIG, ADD1H, ADD3 VMALF X1, YDIG, ADD2H, ADD4 VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free->ADD3H VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free->ADD4H , YDIG Free->ZER VZERO ZER VL 32(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDB $12, ADD2, ADD1, T0 // ADD1 Free->T0 VSLDB $12, T2, ADD2, T1 // ADD2 Free->T1, T2 Free VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, T2 VACQ T1, RED2, CAR1, T1 VACCQ T0, ADD3, CAR1 VAQ T0, ADD3, T0 VACCCQ T1, ADD4, CAR1, CAR2 VACQ T1, ADD4, CAR1, T1 VAQ T2, CAR2, T2 VL 48(CPOOL), SEL2 VL 64(CPOOL), SEL3 VL 80(CPOOL), SEL4 VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0] VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1] VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0] VSQ RED3, RED2, RED2 // Guaranteed not to underflow VSLDB $12, T1, T0, T0 VSLDB $12, T2, T1, T1 VACCQ T0, ADD3H, CAR1 VAQ T0, ADD3H, T0 VACCCQ T1, ADD4H, CAR1, T2 VACQ T1, ADD4H, CAR1, T1 // --------------------------------------------------- VREPF $3, Y1, YDIG VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF X0, YDIG, T0, ADD1 VMALF X1, YDIG, T1, ADD2 VREPF $2, Y1, YDIG VMALF X0, YDIG, ADD1H, ADD3 VMALF X1, YDIG, ADD2H, ADD4 VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free VZERO ZER VL 32(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDB $12, ADD2, ADD1, T0 // ADD1 Free VSLDB $12, T2, ADD2, T1 // ADD2 Free VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, T2 VACQ T1, RED2, CAR1, T1 VACCQ T0, ADD3, CAR1 VAQ T0, ADD3, T0 VACCCQ T1, ADD4, CAR1, CAR2 VACQ T1, ADD4, CAR1, T1 VAQ T2, CAR2, T2 VL 48(CPOOL), SEL2 VL 64(CPOOL), SEL3 VL 80(CPOOL), SEL4 VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0] VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1] VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0] VSQ RED3, RED2, RED2 // Guaranteed not to underflow VSLDB $12, T1, T0, T0 VSLDB $12, T2, T1, T1 VACCQ T0, ADD3H, CAR1 VAQ T0, ADD3H, T0 VACCCQ T1, ADD4H, CAR1, T2 VACQ T1, ADD4H, CAR1, T1 // --------------------------------------------------- VREPF $1, Y1, YDIG VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF X0, YDIG, T0, ADD1 VMALF X1, YDIG, T1, ADD2 VREPF $0, Y1, YDIG VMALF X0, YDIG, ADD1H, ADD3 VMALF X1, YDIG, ADD2H, ADD4 VMALHF X0, YDIG, ADD1H, ADD3H VMALHF X1, YDIG, ADD2H, ADD4H VZERO ZER VL 32(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDB $12, ADD2, ADD1, T0 VSLDB $12, T2, ADD2, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, T2 VACQ T1, RED2, CAR1, T1 VACCQ T0, ADD3, CAR1 VAQ T0, ADD3, T0 VACCCQ T1, ADD4, CAR1, CAR2 VACQ T1, ADD4, CAR1, T1 VAQ T2, CAR2, T2 VL 96(CPOOL), SEL5 VL 112(CPOOL), SEL6 VPERM T0, RED3, SEL5, RED2 // [d1 d0 d1 d0] VPERM T0, RED3, SEL6, RED1 // [ 0 d1 d0 0] VSQ RED1, RED2, RED2 // Guaranteed not to underflow VSLDB $12, T1, T0, T0 VSLDB $12, T2, T1, T1 VACCQ T0, ADD3H, CAR1 VAQ T0, ADD3H, T0 VACCCQ T1, ADD4H, CAR1, T2 VACQ T1, ADD4H, CAR1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // --------------------------------------------------- VZERO RED3 VSCBIQ P0, T0, CAR1 VSQ P0, T0, ADD1H VSBCBIQ T1, P1, CAR1, CAR2 VSBIQ T1, P1, CAR1, ADD2H VSBIQ T2, RED3, CAR2, T2 // what output to use, ADD2H||ADD1H or T1||T0? VSEL T0, ADD1H, T2, T0 VSEL T1, ADD2H, T2, T1 RET #undef CPOOL #undef X0 #undef X1 #undef Y0 #undef Y1 #undef T0 #undef T1 #undef P0 #undef P1 #undef SEL1 #undef SEL2 #undef SEL3 #undef SEL4 #undef SEL5 #undef SEL6 #undef YDIG #undef ADD1H #undef ADD2H #undef ADD3 #undef ADD4 #undef RED1 #undef RED2 #undef RED3 #undef T2 #undef ADD1 #undef ADD2 #undef ADD3H #undef ADD4H #undef ZER #undef CAR1 #undef CAR2 #define p256SubInternal(T1, T0, X1, X0, Y1, Y0) \ VZERO ZER \ VSCBIQ Y0, X0, CAR1 \ VSQ Y0, X0, T0 \ VSBCBIQ X1, Y1, CAR1, SEL1 \ VSBIQ X1, Y1, CAR1, T1 \ VSQ SEL1, ZER, SEL1 \ \ VACCQ T0, PL, CAR1 \ VAQ T0, PL, TT0 \ VACQ T1, PH, CAR1, TT1 \ \ VSEL T0, TT0, SEL1, T0 \ VSEL T1, TT1, SEL1, T1 \ #define p256AddInternal(T1, T0, X1, X0, Y1, Y0) \ VACCQ X0, Y0, CAR1 \ VAQ X0, Y0, T0 \ VACCCQ X1, Y1, CAR1, T2 \ VACQ X1, Y1, CAR1, T1 \ \ VZERO ZER \ VSCBIQ PL, T0, CAR1 \ VSQ PL, T0, TT0 \ VSBCBIQ T1, PH, CAR1, CAR2 \ VSBIQ T1, PH, CAR1, TT1 \ VSBIQ T2, ZER, CAR2, SEL1 \ \ VSEL T0, TT0, SEL1, T0 \ VSEL T1, TT1, SEL1, T1 #define p256HalfInternal(T1, T0, X1, X0) \ VZERO ZER \ VSBIQ ZER, ZER, X0, SEL1 \ \ VACCQ X0, PL, CAR1 \ VAQ X0, PL, T0 \ VACCCQ X1, PH, CAR1, T2 \ VACQ X1, PH, CAR1, T1 \ \ VSEL X0, T0, SEL1, T0 \ VSEL X1, T1, SEL1, T1 \ VSEL ZER, T2, SEL1, T2 \ \ VSLDB $15, T2, ZER, TT1 \ VSLDB $15, T1, ZER, TT0 \ VREPIB $1, SEL1 \ VSRL SEL1, T0, T0 \ VSRL SEL1, T1, T1 \ VREPIB $7, SEL1 \ VSL SEL1, TT0, TT0 \ VSL SEL1, TT1, TT1 \ VO T0, TT0, T0 \ VO T1, TT1, T1 // --------------------------------------- // func p256MulAsm(res, in1, in2 []byte) #define res_ptr R1 #define x_ptr R2 #define y_ptr R3 #define CPOOL R4 // Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define T0 V4 #define T1 V5 // Constants #define P0 V30 #define P1 V31 TEXT ·p256MulAsm(SB), NOSPLIT, $0 MOVD res+0(FP), res_ptr MOVD in1+24(FP), x_ptr MOVD in2+48(FP), y_ptr VL (1*16)(x_ptr), X0 VL (0*16)(x_ptr), X1 VL (1*16)(y_ptr), Y0 VL (0*16)(y_ptr), Y1 MOVD $p256mul<>+0x00(SB), CPOOL VL 16(CPOOL), P0 VL 0(CPOOL), P1 CALL p256MulInternal<>(SB) VST T0, (1*16)(res_ptr) VST T1, (0*16)(res_ptr) RET #undef res_ptr #undef x_ptr #undef y_ptr #undef CPOOL #undef X0 #undef X1 #undef Y0 #undef Y1 #undef T0 #undef T1 #undef P0 #undef P1 // Point add with P2 being affine point // If sign == 1 -> P2 = -P2 // If sel == 0 -> P3 = P1 // if zero == 0 -> P3 = P2 // p256PointAddAffineAsm(P3, P1, P2 *p256Point, sign, sel, zero int) #define P3ptr R1 #define P1ptr R2 #define P2ptr R3 #define CPOOL R4 // Temporaries in REGs #define Y2L V15 #define Y2H V16 #define T1L V17 #define T1H V18 #define T2L V19 #define T2H V20 #define T3L V21 #define T3H V22 #define T4L V23 #define T4H V24 // Temps for Sub and Add #define TT0 V11 #define TT1 V12 #define T2 V13 // p256MulAsm Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define T0 V4 #define T1 V5 #define PL V30 #define PH V31 // Names for zero/sel selects #define X1L V0 #define X1H V1 #define Y1L V2 // p256MulAsmParmY #define Y1H V3 // p256MulAsmParmY #define Z1L V4 #define Z1H V5 #define X2L V0 #define X2H V1 #define Z2L V4 #define Z2H V5 #define X3L V17 // T1L #define X3H V18 // T1H #define Y3L V21 // T3L #define Y3H V22 // T3H #define Z3L V28 #define Z3H V29 #define ZER V6 #define SEL1 V7 #define CAR1 V8 #define CAR2 V9 /* * * Three operand formula: * Source: 2004 Hankerson–Menezes–Vanstone, page 91. * T1 = Z1² * T2 = T1*Z1 * T1 = T1*X2 * T2 = T2*Y2 * T1 = T1-X1 * T2 = T2-Y1 * Z3 = Z1*T1 * T3 = T1² * T4 = T3*T1 * T3 = T3*X1 * T1 = 2*T3 * X3 = T2² * X3 = X3-T1 * X3 = X3-T4 * T3 = T3-X3 * T3 = T3*T2 * T4 = T4*Y1 * Y3 = T3-T4 * Three operand formulas, but with MulInternal X,Y used to store temps X=Z1; Y=Z1; MUL;T- // T1 = Z1² T1 X=T ; Y- ; MUL;T2=T // T2 = T1*Z1 T1 T2 X- ; Y=X2; MUL;T1=T // T1 = T1*X2 T1 T2 X=T2; Y=Y2; MUL;T- // T2 = T2*Y2 T1 T2 SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2 SUB(Y<T1-X1) // T1 = T1-X1 T1 T2 X=Z1; Y- ; MUL;Z3:=T// Z3 = Z1*T1 T2 X=Y; Y- ; MUL;X=T // T3 = T1*T1 T2 X- ; Y- ; MUL;T4=T // T4 = T3*T1 T2 T4 X- ; Y=X1; MUL;T3=T // T3 = T3*X1 T2 T3 T4 ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4 X=T2; Y=T2; MUL;T- // X3 = T2*T2 T1 T2 T3 T4 SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4 SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4 SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4 X- ; Y- ; MUL;T3=T // T3 = T3*T2 T2 T3 T4 X=T4; Y=Y1; MUL;T- // T4 = T4*Y1 T3 T4 SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4 */ TEXT ·p256PointAddAffineAsm(SB), NOSPLIT, $0 MOVD P3+0(FP), P3ptr MOVD P1+8(FP), P1ptr MOVD P2+16(FP), P2ptr MOVD $p256mul<>+0x00(SB), CPOOL VL 16(CPOOL), PL VL 0(CPOOL), PH // if (sign == 1) { // Y2 = fromBig(new(big.Int).Mod(new(big.Int).Sub(p256.P, new(big.Int).SetBytes(Y2)), p256.P)) // Y2 = P-Y2 // } VL 32(P2ptr), Y2H VL 48(P2ptr), Y2L VLREPG sign+24(FP), SEL1 VZERO ZER VCEQG SEL1, ZER, SEL1 VSCBIQ Y2L, PL, CAR1 VSQ Y2L, PL, T1L VSBIQ PH, Y2H, CAR1, T1H VSEL Y2L, T1L, SEL1, Y2L VSEL Y2H, T1H, SEL1, Y2H /* * * Three operand formula: * Source: 2004 Hankerson–Menezes–Vanstone, page 91. */ // X=Z1; Y=Z1; MUL; T- // T1 = Z1² T1 VL 64(P1ptr), X1 // Z1H VL 80(P1ptr), X0 // Z1L VLR X0, Y0 VLR X1, Y1 CALL p256MulInternal<>(SB) // X=T ; Y- ; MUL; T2=T // T2 = T1*Z1 T1 T2 VLR T0, X0 VLR T1, X1 CALL p256MulInternal<>(SB) VLR T0, T2L VLR T1, T2H // X- ; Y=X2; MUL; T1=T // T1 = T1*X2 T1 T2 VL 0(P2ptr), Y1 // X2H VL 16(P2ptr), Y0 // X2L CALL p256MulInternal<>(SB) VLR T0, T1L VLR T1, T1H // X=T2; Y=Y2; MUL; T- // T2 = T2*Y2 T1 T2 VLR T2L, X0 VLR T2H, X1 VLR Y2L, Y0 VLR Y2H, Y1 CALL p256MulInternal<>(SB) // SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2 VL 32(P1ptr), Y1H VL 48(P1ptr), Y1L p256SubInternal(T2H,T2L,T1,T0,Y1H,Y1L) // SUB(Y<T1-X1) // T1 = T1-X1 T1 T2 VL 0(P1ptr), X1H VL 16(P1ptr), X1L p256SubInternal(Y1,Y0,T1H,T1L,X1H,X1L) // X=Z1; Y- ; MUL; Z3:=T// Z3 = Z1*T1 T2 VL 64(P1ptr), X1 // Z1H VL 80(P1ptr), X0 // Z1L CALL p256MulInternal<>(SB) // VST T1, 64(P3ptr) // VST T0, 80(P3ptr) VLR T0, Z3L VLR T1, Z3H // X=Y; Y- ; MUL; X=T // T3 = T1*T1 T2 VLR Y0, X0 VLR Y1, X1 CALL p256MulInternal<>(SB) VLR T0, X0 VLR T1, X1 // X- ; Y- ; MUL; T4=T // T4 = T3*T1 T2 T4 CALL p256MulInternal<>(SB) VLR T0, T4L VLR T1, T4H // X- ; Y=X1; MUL; T3=T // T3 = T3*X1 T2 T3 T4 VL 0(P1ptr), Y1 // X1H VL 16(P1ptr), Y0 // X1L CALL p256MulInternal<>(SB) VLR T0, T3L VLR T1, T3H // ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4 p256AddInternal(T1H,T1L, T1,T0,T1,T0) // X=T2; Y=T2; MUL; T- // X3 = T2*T2 T1 T2 T3 T4 VLR T2L, X0 VLR T2H, X1 VLR T2L, Y0 VLR T2H, Y1 CALL p256MulInternal<>(SB) // SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4 (T1 = X3) p256SubInternal(T1,T0,T1,T0,T1H,T1L) // SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4 p256SubInternal(T1,T0,T1,T0,T4H,T4L) VLR T0, X3L VLR T1, X3H // SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4 p256SubInternal(X1,X0,T3H,T3L,T1,T0) // X- ; Y- ; MUL; T3=T // T3 = T3*T2 T2 T3 T4 CALL p256MulInternal<>(SB) VLR T0, T3L VLR T1, T3H // X=T4; Y=Y1; MUL; T- // T4 = T4*Y1 T3 T4 VLR T4L, X0 VLR T4H, X1 VL 32(P1ptr), Y1 // Y1H VL 48(P1ptr), Y0 // Y1L CALL p256MulInternal<>(SB) // SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4 (T3 = Y3) p256SubInternal(Y3H,Y3L,T3H,T3L,T1,T0) // if (sel == 0) { // copy(P3.x[:], X1) // copy(P3.y[:], Y1) // copy(P3.z[:], Z1) // } VL 0(P1ptr), X1H VL 16(P1ptr), X1L // Y1 already loaded, left over from addition VL 64(P1ptr), Z1H VL 80(P1ptr), Z1L VLREPG sel+32(FP), SEL1 VZERO ZER VCEQG SEL1, ZER, SEL1 VSEL X1L, X3L, SEL1, X3L VSEL X1H, X3H, SEL1, X3H VSEL Y1L, Y3L, SEL1, Y3L VSEL Y1H, Y3H, SEL1, Y3H VSEL Z1L, Z3L, SEL1, Z3L VSEL Z1H, Z3H, SEL1, Z3H // if (zero == 0) { // copy(P3.x[:], X2) // copy(P3.y[:], Y2) // copy(P3.z[:], []byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}) //(p256.z*2^256)%p // } VL 0(P2ptr), X2H VL 16(P2ptr), X2L // Y2 already loaded VL 128(CPOOL), Z2H VL 144(CPOOL), Z2L VLREPG zero+40(FP), SEL1 VZERO ZER VCEQG SEL1, ZER, SEL1 VSEL X2L, X3L, SEL1, X3L VSEL X2H, X3H, SEL1, X3H VSEL Y2L, Y3L, SEL1, Y3L VSEL Y2H, Y3H, SEL1, Y3H VSEL Z2L, Z3L, SEL1, Z3L VSEL Z2H, Z3H, SEL1, Z3H // All done, store out the result!!! VST X3H, 0(P3ptr) VST X3L, 16(P3ptr) VST Y3H, 32(P3ptr) VST Y3L, 48(P3ptr) VST Z3H, 64(P3ptr) VST Z3L, 80(P3ptr) RET #undef P3ptr #undef P1ptr #undef P2ptr #undef CPOOL #undef Y2L #undef Y2H #undef T1L #undef T1H #undef T2L #undef T2H #undef T3L #undef T3H #undef T4L #undef T4H #undef TT0 #undef TT1 #undef T2 #undef X0 #undef X1 #undef Y0 #undef Y1 #undef T0 #undef T1 #undef PL #undef PH #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Z2L #undef Z2H #undef X3L #undef X3H #undef Y3L #undef Y3H #undef Z3L #undef Z3H #undef ZER #undef SEL1 #undef CAR1 #undef CAR2 // p256PointDoubleAsm(P3, P1 *p256Point) // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl // http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-projective-3.html #define P3ptr R1 #define P1ptr R2 #define CPOOL R4 // Temporaries in REGs #define X3L V15 #define X3H V16 #define Y3L V17 #define Y3H V18 #define T1L V19 #define T1H V20 #define T2L V21 #define T2H V22 #define T3L V23 #define T3H V24 #define X1L V6 #define X1H V7 #define Y1L V8 #define Y1H V9 #define Z1L V10 #define Z1H V11 // Temps for Sub and Add #define TT0 V11 #define TT1 V12 #define T2 V13 // p256MulAsm Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define T0 V4 #define T1 V5 #define PL V30 #define PH V31 #define Z3L V23 #define Z3H V24 #define ZER V26 #define SEL1 V27 #define CAR1 V28 #define CAR2 V29 /* * http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2004-hmv * Cost: 4M + 4S + 1*half + 5add + 2*2 + 1*3. * Source: 2004 Hankerson–Menezes–Vanstone, page 91. * A = 3(X₁-Z₁²)×(X₁+Z₁²) * B = 2Y₁ * Z₃ = B×Z₁ * C = B² * D = C×X₁ * X₃ = A²-2D * Y₃ = (D-X₃)×A-C²/2 * * Three-operand formula: * T1 = Z1² * T2 = X1-T1 * T1 = X1+T1 * T2 = T2*T1 * T2 = 3*T2 * Y3 = 2*Y1 * Z3 = Y3*Z1 * Y3 = Y3² * T3 = Y3*X1 * Y3 = Y3² * Y3 = half*Y3 * X3 = T2² * T1 = 2*T3 * X3 = X3-T1 * T1 = T3-X3 * T1 = T1*T2 * Y3 = T1-Y3 */ TEXT ·p256PointDoubleAsm(SB), NOSPLIT, $0 MOVD P3+0(FP), P3ptr MOVD P1+8(FP), P1ptr MOVD $p256mul<>+0x00(SB), CPOOL VL 16(CPOOL), PL VL 0(CPOOL), PH // X=Z1; Y=Z1; MUL; T- // T1 = Z1² VL 64(P1ptr), X1 // Z1H VL 80(P1ptr), X0 // Z1L VLR X0, Y0 VLR X1, Y1 CALL p256MulInternal<>(SB) // SUB(X<X1-T) // T2 = X1-T1 VL 0(P1ptr), X1H VL 16(P1ptr), X1L p256SubInternal(X1,X0,X1H,X1L,T1,T0) // ADD(Y<X1+T) // T1 = X1+T1 p256AddInternal(Y1,Y0,X1H,X1L,T1,T0) // X- ; Y- ; MUL; T- // T2 = T2*T1 CALL p256MulInternal<>(SB) // ADD(T2<T+T); ADD(T2<T2+T) // T2 = 3*T2 p256AddInternal(T2H,T2L,T1,T0,T1,T0) p256AddInternal(T2H,T2L,T2H,T2L,T1,T0) // ADD(X<Y1+Y1) // Y3 = 2*Y1 VL 32(P1ptr), Y1H VL 48(P1ptr), Y1L p256AddInternal(X1,X0,Y1H,Y1L,Y1H,Y1L) // X- ; Y=Z1; MUL; Z3:=T // Z3 = Y3*Z1 VL 64(P1ptr), Y1 // Z1H VL 80(P1ptr), Y0 // Z1L CALL p256MulInternal<>(SB) VST T1, 64(P3ptr) VST T0, 80(P3ptr) // X- ; Y=X ; MUL; T- // Y3 = Y3² VLR X0, Y0 VLR X1, Y1 CALL p256MulInternal<>(SB) // X=T ; Y=X1; MUL; T3=T // T3 = Y3*X1 VLR T0, X0 VLR T1, X1 VL 0(P1ptr), Y1 VL 16(P1ptr), Y0 CALL p256MulInternal<>(SB) VLR T0, T3L VLR T1, T3H // X- ; Y=X ; MUL; T- // Y3 = Y3² VLR X0, Y0 VLR X1, Y1 CALL p256MulInternal<>(SB) // HAL(Y3<T) // Y3 = half*Y3 p256HalfInternal(Y3H,Y3L, T1,T0) // X=T2; Y=T2; MUL; T- // X3 = T2² VLR T2L, X0 VLR T2H, X1 VLR T2L, Y0 VLR T2H, Y1 CALL p256MulInternal<>(SB) // ADD(T1<T3+T3) // T1 = 2*T3 p256AddInternal(T1H,T1L,T3H,T3L,T3H,T3L) // SUB(X3<T-T1) X3:=X3 // X3 = X3-T1 p256SubInternal(X3H,X3L,T1,T0,T1H,T1L) VST X3H, 0(P3ptr) VST X3L, 16(P3ptr) // SUB(X<T3-X3) // T1 = T3-X3 p256SubInternal(X1,X0,T3H,T3L,X3H,X3L) // X- ; Y- ; MUL; T- // T1 = T1*T2 CALL p256MulInternal<>(SB) // SUB(Y3<T-Y3) // Y3 = T1-Y3 p256SubInternal(Y3H,Y3L,T1,T0,Y3H,Y3L) VST Y3H, 32(P3ptr) VST Y3L, 48(P3ptr) RET #undef P3ptr #undef P1ptr #undef CPOOL #undef X3L #undef X3H #undef Y3L #undef Y3H #undef T1L #undef T1H #undef T2L #undef T2H #undef T3L #undef T3H #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef TT0 #undef TT1 #undef T2 #undef X0 #undef X1 #undef Y0 #undef Y1 #undef T0 #undef T1 #undef PL #undef PH #undef Z3L #undef Z3H #undef ZER #undef SEL1 #undef CAR1 #undef CAR2 // p256PointAddAsm(P3, P1, P2 *p256Point) #define P3ptr R1 #define P1ptr R2 #define P2ptr R3 #define CPOOL R4 // Temporaries in REGs #define T1L V16 #define T1H V17 #define T2L V18 #define T2H V19 #define U1L V20 #define U1H V21 #define S1L V22 #define S1H V23 #define HL V24 #define HH V25 #define RL V26 #define RH V27 // Temps for Sub and Add #define ZER V6 #define SEL1 V7 #define CAR1 V8 #define CAR2 V9 #define TT0 V11 #define TT1 V12 #define T2 V13 // p256MulAsm Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define T0 V4 #define T1 V5 #define PL V30 #define PH V31 /* * https://choucroutage.com/Papers/SideChannelAttacks/ctrsa-2011-brown.pdf "Software Implementation of the NIST Elliptic Curves Over Prime Fields" * * A = X₁×Z₂² * B = Y₁×Z₂³ * C = X₂×Z₁²-A * D = Y₂×Z₁³-B * X₃ = D² - 2A×C² - C³ * Y₃ = D×(A×C² - X₃) - B×C³ * Z₃ = Z₁×Z₂×C * * Three-operand formula (adopted): http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 * Temp storage: T1,T2,U1,H,Z3=X3=Y3,S1,R * * T1 = Z1*Z1 * T2 = Z2*Z2 * U1 = X1*T2 * H = X2*T1 * H = H-U1 * Z3 = Z1*Z2 * Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array * * S1 = Z2*T2 * S1 = Y1*S1 * R = Z1*T1 * R = Y2*R * R = R-S1 * * T1 = H*H * T2 = H*T1 * U1 = U1*T1 * * X3 = R*R * X3 = X3-T2 * T1 = 2*U1 * X3 = X3-T1 << store-out X3 result reg * * T2 = S1*T2 * Y3 = U1-X3 * Y3 = R*Y3 * Y3 = Y3-T2 << store-out Y3 result reg // X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1 // X- ; Y=T ; MUL; R=T // R = Z1*T1 // X=X2; Y- ; MUL; H=T // H = X2*T1 // X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2 // X- ; Y=T ; MUL; S1=T // S1 = Z2*T2 // X=X1; Y- ; MUL; U1=T // U1 = X1*T2 // SUB(H<H-T) // H = H-U1 // X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2 // X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array // X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1 // X=Y2; Y=R ; MUL; T- // R = Y2*R // SUB(R<T-S1) // R = R-S1 // X=H ; Y=H ; MUL; T- // T1 = H*H // X- ; Y=T ; MUL; T2=T // T2 = H*T1 // X=U1; Y- ; MUL; U1=T // U1 = U1*T1 // X=R ; Y=R ; MUL; T- // X3 = R*R // SUB(T<T-T2) // X3 = X3-T2 // ADD(X<U1+U1) // T1 = 2*U1 // SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg // SUB(Y<U1-T) // Y3 = U1-X3 // X=R ; Y- ; MUL; U1=T // Y3 = R*Y3 // X=S1; Y=T2; MUL; T- // T2 = S1*T2 // SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg */ TEXT ·p256PointAddAsm(SB), NOSPLIT, $0 MOVD P3+0(FP), P3ptr MOVD P1+8(FP), P1ptr MOVD P2+16(FP), P2ptr MOVD $p256mul<>+0x00(SB), CPOOL VL 16(CPOOL), PL VL 0(CPOOL), PH // X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1 VL 64(P1ptr), X1 // Z1H VL 80(P1ptr), X0 // Z1L VLR X0, Y0 VLR X1, Y1 CALL p256MulInternal<>(SB) // X- ; Y=T ; MUL; R=T // R = Z1*T1 VLR T0, Y0 VLR T1, Y1 CALL p256MulInternal<>(SB) VLR T0, RL VLR T1, RH // X=X2; Y- ; MUL; H=T // H = X2*T1 VL 0(P2ptr), X1 // X2H VL 16(P2ptr), X0 // X2L CALL p256MulInternal<>(SB) VLR T0, HL VLR T1, HH // X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2 VL 64(P2ptr), X1 // Z2H VL 80(P2ptr), X0 // Z2L VLR X0, Y0 VLR X1, Y1 CALL p256MulInternal<>(SB) // X- ; Y=T ; MUL; S1=T // S1 = Z2*T2 VLR T0, Y0 VLR T1, Y1 CALL p256MulInternal<>(SB) VLR T0, S1L VLR T1, S1H // X=X1; Y- ; MUL; U1=T // U1 = X1*T2 VL 0(P1ptr), X1 // X1H VL 16(P1ptr), X0 // X1L CALL p256MulInternal<>(SB) VLR T0, U1L VLR T1, U1H // SUB(H<H-T) // H = H-U1 p256SubInternal(HH,HL,HH,HL,T1,T0) // X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2 VL 64(P1ptr), X1 // Z1H VL 80(P1ptr), X0 // Z1L VL 64(P2ptr), Y1 // Z2H VL 80(P2ptr), Y0 // Z2L CALL p256MulInternal<>(SB) // X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H VLR T0, X0 VLR T1, X1 VLR HL, Y0 VLR HH, Y1 CALL p256MulInternal<>(SB) VST T1, 64(P3ptr) VST T0, 80(P3ptr) // X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1 VL 32(P1ptr), X1 VL 48(P1ptr), X0 VLR S1L, Y0 VLR S1H, Y1 CALL p256MulInternal<>(SB) VLR T0, S1L VLR T1, S1H // X=Y2; Y=R ; MUL; T- // R = Y2*R VL 32(P2ptr), X1 VL 48(P2ptr), X0 VLR RL, Y0 VLR RH, Y1 CALL p256MulInternal<>(SB) // SUB(R<T-S1) // R = T-S1 p256SubInternal(RH,RL,T1,T0,S1H,S1L) // X=H ; Y=H ; MUL; T- // T1 = H*H VLR HL, X0 VLR HH, X1 VLR HL, Y0 VLR HH, Y1 CALL p256MulInternal<>(SB) // X- ; Y=T ; MUL; T2=T // T2 = H*T1 VLR T0, Y0 VLR T1, Y1 CALL p256MulInternal<>(SB) VLR T0, T2L VLR T1, T2H // X=U1; Y- ; MUL; U1=T // U1 = U1*T1 VLR U1L, X0 VLR U1H, X1 CALL p256MulInternal<>(SB) VLR T0, U1L VLR T1, U1H // X=R ; Y=R ; MUL; T- // X3 = R*R VLR RL, X0 VLR RH, X1 VLR RL, Y0 VLR RH, Y1 CALL p256MulInternal<>(SB) // SUB(T<T-T2) // X3 = X3-T2 p256SubInternal(T1,T0,T1,T0,T2H,T2L) // ADD(X<U1+U1) // T1 = 2*U1 p256AddInternal(X1,X0,U1H,U1L,U1H,U1L) // SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg p256SubInternal(T1,T0,T1,T0,X1,X0) VST T1, 0(P3ptr) VST T0, 16(P3ptr) // SUB(Y<U1-T) // Y3 = U1-X3 p256SubInternal(Y1,Y0,U1H,U1L,T1,T0) // X=R ; Y- ; MUL; U1=T // Y3 = R*Y3 VLR RL, X0 VLR RH, X1 CALL p256MulInternal<>(SB) VLR T0, U1L VLR T1, U1H // X=S1; Y=T2; MUL; T- // T2 = S1*T2 VLR S1L, X0 VLR S1H, X1 VLR T2L, Y0 VLR T2H, Y1 CALL p256MulInternal<>(SB) // SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg p256SubInternal(T1,T0,U1H,U1L,T1,T0) VST T1, 32(P3ptr) VST T0, 48(P3ptr) RET