/****************************************************************************** * * Copyright (C) 2016 The Android Open Source Project * Copyright (C) 2009-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #define LOG_TAG "bt_btif_a2dp_source" #include <base/logging.h> #include <limits.h> #include <string.h> #include <algorithm> #include "audio_a2dp_hw/include/audio_a2dp_hw.h" #include "bt_common.h" #include "bta_av_ci.h" #include "btcore/include/bdaddr.h" #include "btif_a2dp.h" #include "btif_a2dp_control.h" #include "btif_a2dp_source.h" #include "btif_av.h" #include "btif_av_co.h" #include "btif_util.h" #include "osi/include/fixed_queue.h" #include "osi/include/log.h" #include "osi/include/metrics.h" #include "osi/include/mutex.h" #include "osi/include/osi.h" #include "osi/include/thread.h" #include "osi/include/time.h" #include "uipc.h" using system_bt_osi::BluetoothMetricsLogger; using system_bt_osi::A2dpSessionMetrics; /** * The typical runlevel of the tx queue size is ~1 buffer * but due to link flow control or thread preemption in lower * layers we might need to temporarily buffer up data. */ #define MAX_OUTPUT_A2DP_FRAME_QUEUE_SZ (MAX_PCM_FRAME_NUM_PER_TICK * 2) enum { BTIF_A2DP_SOURCE_STATE_OFF, BTIF_A2DP_SOURCE_STATE_STARTING_UP, BTIF_A2DP_SOURCE_STATE_RUNNING, BTIF_A2DP_SOURCE_STATE_SHUTTING_DOWN }; /* BTIF Media Source event definition */ enum { BTIF_MEDIA_AUDIO_TX_START = 1, BTIF_MEDIA_AUDIO_TX_STOP, BTIF_MEDIA_AUDIO_TX_FLUSH, BTIF_MEDIA_SOURCE_ENCODER_INIT, BTIF_MEDIA_SOURCE_ENCODER_USER_CONFIG_UPDATE, BTIF_MEDIA_AUDIO_FEEDING_UPDATE }; /* tBTIF_A2DP_SOURCE_ENCODER_INIT msg structure */ typedef struct { BT_HDR hdr; tA2DP_ENCODER_INIT_PEER_PARAMS peer_params; } tBTIF_A2DP_SOURCE_ENCODER_INIT; /* tBTIF_A2DP_SOURCE_ENCODER_USER_CONFIG_UPDATE msg structure */ typedef struct { BT_HDR hdr; btav_a2dp_codec_config_t user_config; } tBTIF_A2DP_SOURCE_ENCODER_USER_CONFIG_UPDATE; /* tBTIF_A2DP_AUDIO_FEEDING_UPDATE msg structure */ typedef struct { BT_HDR hdr; btav_a2dp_codec_config_t feeding_params; } tBTIF_A2DP_AUDIO_FEEDING_UPDATE; typedef struct { // Counter for total updates size_t total_updates; // Last update timestamp (in us) uint64_t last_update_us; // Counter for overdue scheduling size_t overdue_scheduling_count; // Accumulated overdue scheduling deviations (in us) uint64_t total_overdue_scheduling_delta_us; // Max. overdue scheduling delta time (in us) uint64_t max_overdue_scheduling_delta_us; // Counter for premature scheduling size_t premature_scheduling_count; // Accumulated premature scheduling deviations (in us) uint64_t total_premature_scheduling_delta_us; // Max. premature scheduling delta time (in us) uint64_t max_premature_scheduling_delta_us; // Counter for exact scheduling size_t exact_scheduling_count; // Accumulated and counted scheduling time (in us) uint64_t total_scheduling_time_us; } scheduling_stats_t; typedef struct { uint64_t session_start_us; uint64_t session_end_us; scheduling_stats_t tx_queue_enqueue_stats; scheduling_stats_t tx_queue_dequeue_stats; size_t tx_queue_total_frames; size_t tx_queue_max_frames_per_packet; uint64_t tx_queue_total_queueing_time_us; uint64_t tx_queue_max_queueing_time_us; size_t tx_queue_total_readbuf_calls; uint64_t tx_queue_last_readbuf_us; size_t tx_queue_total_flushed_messages; uint64_t tx_queue_last_flushed_us; size_t tx_queue_total_dropped_messages; size_t tx_queue_max_dropped_messages; size_t tx_queue_dropouts; uint64_t tx_queue_last_dropouts_us; size_t media_read_total_underflow_bytes; size_t media_read_total_underflow_count; uint64_t media_read_last_underflow_us; } btif_media_stats_t; typedef struct { thread_t* worker_thread; fixed_queue_t* cmd_msg_queue; fixed_queue_t* tx_audio_queue; bool tx_flush; /* Discards any outgoing data when true */ alarm_t* media_alarm; const tA2DP_ENCODER_INTERFACE* encoder_interface; period_ms_t encoder_interval_ms; /* Local copy of the encoder interval */ btif_media_stats_t stats; btif_media_stats_t accumulated_stats; } tBTIF_A2DP_SOURCE_CB; static tBTIF_A2DP_SOURCE_CB btif_a2dp_source_cb; static int btif_a2dp_source_state = BTIF_A2DP_SOURCE_STATE_OFF; static void btif_a2dp_source_command_ready(fixed_queue_t* queue, void* context); static void btif_a2dp_source_startup_delayed(void* context); static void btif_a2dp_source_shutdown_delayed(void* context); static void btif_a2dp_source_audio_tx_start_event(void); static void btif_a2dp_source_audio_tx_stop_event(void); static void btif_a2dp_source_audio_tx_flush_event(BT_HDR* p_msg); static void btif_a2dp_source_encoder_init_event(BT_HDR* p_msg); static void btif_a2dp_source_encoder_user_config_update_event(BT_HDR* p_msg); static void btif_a2dp_source_audio_feeding_update_event(BT_HDR* p_msg); static void btif_a2dp_source_encoder_init(void); static void btif_a2dp_source_encoder_init_req( tBTIF_A2DP_SOURCE_ENCODER_INIT* p_msg); static bool btif_a2dp_source_audio_tx_flush_req(void); static void btif_a2dp_source_alarm_cb(void* context); static void btif_a2dp_source_audio_handle_timer(void* context); static uint32_t btif_a2dp_source_read_callback(uint8_t* p_buf, uint32_t len); static bool btif_a2dp_source_enqueue_callback(BT_HDR* p_buf, size_t frames_n); static void log_tstamps_us(const char* comment, uint64_t timestamp_us); static void update_scheduling_stats(scheduling_stats_t* stats, uint64_t now_us, uint64_t expected_delta); static void btm_read_rssi_cb(void* data); UNUSED_ATTR static const char* dump_media_event(uint16_t event) { switch (event) { CASE_RETURN_STR(BTIF_MEDIA_AUDIO_TX_START) CASE_RETURN_STR(BTIF_MEDIA_AUDIO_TX_STOP) CASE_RETURN_STR(BTIF_MEDIA_AUDIO_TX_FLUSH) CASE_RETURN_STR(BTIF_MEDIA_SOURCE_ENCODER_INIT) CASE_RETURN_STR(BTIF_MEDIA_SOURCE_ENCODER_USER_CONFIG_UPDATE) CASE_RETURN_STR(BTIF_MEDIA_AUDIO_FEEDING_UPDATE) default: break; } return "UNKNOWN A2DP SOURCE EVENT"; } void btif_a2dp_source_accumulate_scheduling_stats(scheduling_stats_t* src, scheduling_stats_t* dst) { dst->total_updates += src->total_updates; dst->last_update_us = src->last_update_us; dst->overdue_scheduling_count += src->overdue_scheduling_count; dst->total_overdue_scheduling_delta_us += src->total_overdue_scheduling_delta_us; dst->max_overdue_scheduling_delta_us = std::max(dst->max_overdue_scheduling_delta_us, src->max_overdue_scheduling_delta_us); dst->premature_scheduling_count += src->premature_scheduling_count; dst->total_premature_scheduling_delta_us += src->total_premature_scheduling_delta_us; dst->max_premature_scheduling_delta_us = std::max(dst->max_premature_scheduling_delta_us, src->max_premature_scheduling_delta_us); dst->exact_scheduling_count += src->exact_scheduling_count; dst->total_scheduling_time_us += src->total_scheduling_time_us; } void btif_a2dp_source_accumulate_stats(btif_media_stats_t* src, btif_media_stats_t* dst) { dst->tx_queue_total_frames += src->tx_queue_total_frames; dst->tx_queue_max_frames_per_packet = std::max( dst->tx_queue_max_frames_per_packet, src->tx_queue_max_frames_per_packet); dst->tx_queue_total_queueing_time_us += src->tx_queue_total_queueing_time_us; dst->tx_queue_max_queueing_time_us = std::max( dst->tx_queue_max_queueing_time_us, src->tx_queue_max_queueing_time_us); dst->tx_queue_total_readbuf_calls += src->tx_queue_total_readbuf_calls; dst->tx_queue_last_readbuf_us = src->tx_queue_last_readbuf_us; dst->tx_queue_total_flushed_messages += src->tx_queue_total_flushed_messages; dst->tx_queue_last_flushed_us = src->tx_queue_last_flushed_us; dst->tx_queue_total_dropped_messages += src->tx_queue_total_dropped_messages; dst->tx_queue_max_dropped_messages = std::max( dst->tx_queue_max_dropped_messages, src->tx_queue_max_dropped_messages); dst->tx_queue_dropouts += src->tx_queue_dropouts; dst->tx_queue_last_dropouts_us = src->tx_queue_last_dropouts_us; dst->media_read_total_underflow_bytes += src->media_read_total_underflow_bytes; dst->media_read_total_underflow_count += src->media_read_total_underflow_count; dst->media_read_last_underflow_us = src->media_read_last_underflow_us; btif_a2dp_source_accumulate_scheduling_stats(&src->tx_queue_enqueue_stats, &dst->tx_queue_enqueue_stats); btif_a2dp_source_accumulate_scheduling_stats(&src->tx_queue_dequeue_stats, &dst->tx_queue_dequeue_stats); memset(src, 0, sizeof(btif_media_stats_t)); } bool btif_a2dp_source_startup(void) { if (btif_a2dp_source_state != BTIF_A2DP_SOURCE_STATE_OFF) { APPL_TRACE_ERROR("%s: A2DP Source media task already running", __func__); return false; } memset(&btif_a2dp_source_cb, 0, sizeof(btif_a2dp_source_cb)); btif_a2dp_source_state = BTIF_A2DP_SOURCE_STATE_STARTING_UP; APPL_TRACE_EVENT("## A2DP SOURCE START MEDIA THREAD ##"); /* Start A2DP Source media task */ btif_a2dp_source_cb.worker_thread = thread_new("btif_a2dp_source_worker_thread"); if (btif_a2dp_source_cb.worker_thread == NULL) { APPL_TRACE_ERROR("%s: unable to start up media thread", __func__); btif_a2dp_source_state = BTIF_A2DP_SOURCE_STATE_OFF; return false; } btif_a2dp_source_cb.tx_audio_queue = fixed_queue_new(SIZE_MAX); btif_a2dp_source_cb.cmd_msg_queue = fixed_queue_new(SIZE_MAX); fixed_queue_register_dequeue( btif_a2dp_source_cb.cmd_msg_queue, thread_get_reactor(btif_a2dp_source_cb.worker_thread), btif_a2dp_source_command_ready, NULL); APPL_TRACE_EVENT("## A2DP SOURCE MEDIA THREAD STARTED ##"); /* Schedule the rest of the startup operations */ thread_post(btif_a2dp_source_cb.worker_thread, btif_a2dp_source_startup_delayed, NULL); return true; } static void btif_a2dp_source_startup_delayed(UNUSED_ATTR void* context) { raise_priority_a2dp(TASK_HIGH_MEDIA); btif_a2dp_control_init(); btif_a2dp_source_state = BTIF_A2DP_SOURCE_STATE_RUNNING; BluetoothMetricsLogger::GetInstance()->LogBluetoothSessionStart( system_bt_osi::CONNECTION_TECHNOLOGY_TYPE_BREDR, 0); } void btif_a2dp_source_shutdown(void) { if ((btif_a2dp_source_state == BTIF_A2DP_SOURCE_STATE_OFF) || (btif_a2dp_source_state == BTIF_A2DP_SOURCE_STATE_SHUTTING_DOWN)) { return; } /* Make sure no channels are restarted while shutting down */ btif_a2dp_source_state = BTIF_A2DP_SOURCE_STATE_SHUTTING_DOWN; APPL_TRACE_EVENT("## A2DP SOURCE STOP MEDIA THREAD ##"); // Stop the timer alarm_free(btif_a2dp_source_cb.media_alarm); btif_a2dp_source_cb.media_alarm = NULL; // Exit the thread fixed_queue_free(btif_a2dp_source_cb.cmd_msg_queue, NULL); btif_a2dp_source_cb.cmd_msg_queue = NULL; thread_post(btif_a2dp_source_cb.worker_thread, btif_a2dp_source_shutdown_delayed, NULL); thread_free(btif_a2dp_source_cb.worker_thread); btif_a2dp_source_cb.worker_thread = NULL; } static void btif_a2dp_source_shutdown_delayed(UNUSED_ATTR void* context) { btif_a2dp_control_cleanup(); fixed_queue_free(btif_a2dp_source_cb.tx_audio_queue, NULL); btif_a2dp_source_cb.tx_audio_queue = NULL; btif_a2dp_source_state = BTIF_A2DP_SOURCE_STATE_OFF; BluetoothMetricsLogger::GetInstance()->LogBluetoothSessionEnd( system_bt_osi::DISCONNECT_REASON_UNKNOWN, 0); } bool btif_a2dp_source_media_task_is_running(void) { return (btif_a2dp_source_state == BTIF_A2DP_SOURCE_STATE_RUNNING); } bool btif_a2dp_source_media_task_is_shutting_down(void) { return (btif_a2dp_source_state == BTIF_A2DP_SOURCE_STATE_SHUTTING_DOWN); } bool btif_a2dp_source_is_streaming(void) { return alarm_is_scheduled(btif_a2dp_source_cb.media_alarm); } static void btif_a2dp_source_command_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) { BT_HDR* p_msg = (BT_HDR*)fixed_queue_dequeue(queue); LOG_VERBOSE(LOG_TAG, "%s: event %d %s", __func__, p_msg->event, dump_media_event(p_msg->event)); switch (p_msg->event) { case BTIF_MEDIA_AUDIO_TX_START: btif_a2dp_source_audio_tx_start_event(); break; case BTIF_MEDIA_AUDIO_TX_STOP: btif_a2dp_source_audio_tx_stop_event(); break; case BTIF_MEDIA_AUDIO_TX_FLUSH: btif_a2dp_source_audio_tx_flush_event(p_msg); break; case BTIF_MEDIA_SOURCE_ENCODER_INIT: btif_a2dp_source_encoder_init_event(p_msg); break; case BTIF_MEDIA_SOURCE_ENCODER_USER_CONFIG_UPDATE: btif_a2dp_source_encoder_user_config_update_event(p_msg); break; case BTIF_MEDIA_AUDIO_FEEDING_UPDATE: btif_a2dp_source_audio_feeding_update_event(p_msg); break; default: APPL_TRACE_ERROR("ERROR in %s unknown event %d", __func__, p_msg->event); break; } osi_free(p_msg); LOG_VERBOSE(LOG_TAG, "%s: %s DONE", __func__, dump_media_event(p_msg->event)); } void btif_a2dp_source_setup_codec(void) { APPL_TRACE_EVENT("## A2DP SOURCE SETUP CODEC ##"); mutex_global_lock(); /* Init the encoding task */ btif_a2dp_source_encoder_init(); mutex_global_unlock(); } void btif_a2dp_source_start_audio_req(void) { BT_HDR* p_buf = (BT_HDR*)osi_malloc(sizeof(BT_HDR)); p_buf->event = BTIF_MEDIA_AUDIO_TX_START; fixed_queue_enqueue(btif_a2dp_source_cb.cmd_msg_queue, p_buf); memset(&btif_a2dp_source_cb.stats, 0, sizeof(btif_media_stats_t)); // Assign session_start_us to 1 when time_get_os_boottime_us() is 0 to // indicate btif_a2dp_source_start_audio_req() has been called btif_a2dp_source_cb.stats.session_start_us = time_get_os_boottime_us(); if (btif_a2dp_source_cb.stats.session_start_us == 0) { btif_a2dp_source_cb.stats.session_start_us = 1; } btif_a2dp_source_cb.stats.session_end_us = 0; } void btif_a2dp_source_stop_audio_req(void) { BT_HDR* p_buf = (BT_HDR*)osi_malloc(sizeof(BT_HDR)); p_buf->event = BTIF_MEDIA_AUDIO_TX_STOP; /* * Explicitly check whether btif_a2dp_source_cb.cmd_msg_queue is not NULL * to avoid a race condition during shutdown of the Bluetooth stack. * This race condition is triggered when A2DP audio is streaming on * shutdown: * "btif_a2dp_source_on_stopped() -> btif_a2dp_source_stop_audio_req()" * is called to stop the particular audio stream, and this happens right * after the "BTIF_AV_CLEANUP_REQ_EVT -> btif_a2dp_source_shutdown()" * processing during the shutdown of the Bluetooth stack. */ if (btif_a2dp_source_cb.cmd_msg_queue != NULL) { fixed_queue_enqueue(btif_a2dp_source_cb.cmd_msg_queue, p_buf); } btif_a2dp_source_cb.stats.session_end_us = time_get_os_boottime_us(); btif_a2dp_source_update_metrics(); btif_a2dp_source_accumulate_stats(&btif_a2dp_source_cb.stats, &btif_a2dp_source_cb.accumulated_stats); } static void btif_a2dp_source_encoder_init(void) { tBTIF_A2DP_SOURCE_ENCODER_INIT msg; // Check to make sure the platform has 8 bits/byte since // we're using that in frame size calculations now. CHECK(CHAR_BIT == 8); APPL_TRACE_DEBUG("%s", __func__); bta_av_co_get_peer_params(&msg.peer_params); btif_a2dp_source_encoder_init_req(&msg); } static void btif_a2dp_source_encoder_init_req( tBTIF_A2DP_SOURCE_ENCODER_INIT* p_msg) { tBTIF_A2DP_SOURCE_ENCODER_INIT* p_buf = (tBTIF_A2DP_SOURCE_ENCODER_INIT*)osi_malloc( sizeof(tBTIF_A2DP_SOURCE_ENCODER_INIT)); memcpy(p_buf, p_msg, sizeof(tBTIF_A2DP_SOURCE_ENCODER_INIT)); p_buf->hdr.event = BTIF_MEDIA_SOURCE_ENCODER_INIT; fixed_queue_enqueue(btif_a2dp_source_cb.cmd_msg_queue, p_buf); } static void btif_a2dp_source_encoder_init_event(BT_HDR* p_msg) { tBTIF_A2DP_SOURCE_ENCODER_INIT* p_encoder_init = (tBTIF_A2DP_SOURCE_ENCODER_INIT*)p_msg; APPL_TRACE_DEBUG("%s", __func__); btif_a2dp_source_cb.encoder_interface = bta_av_co_get_encoder_interface(); if (btif_a2dp_source_cb.encoder_interface == NULL) { APPL_TRACE_ERROR("%s: Cannot stream audio: no source encoder interface", __func__); return; } A2dpCodecConfig* a2dp_codec_config = bta_av_get_a2dp_current_codec(); if (a2dp_codec_config == nullptr) { APPL_TRACE_ERROR("%s: Cannot stream audio: current codec is not set", __func__); return; } btif_a2dp_source_cb.encoder_interface->encoder_init( &p_encoder_init->peer_params, a2dp_codec_config, btif_a2dp_source_read_callback, btif_a2dp_source_enqueue_callback); // Save a local copy of the encoder_interval_ms btif_a2dp_source_cb.encoder_interval_ms = btif_a2dp_source_cb.encoder_interface->get_encoder_interval_ms(); } void btif_a2dp_source_encoder_user_config_update_req( const btav_a2dp_codec_config_t& codec_user_config) { tBTIF_A2DP_SOURCE_ENCODER_USER_CONFIG_UPDATE* p_buf = (tBTIF_A2DP_SOURCE_ENCODER_USER_CONFIG_UPDATE*)osi_malloc( sizeof(tBTIF_A2DP_SOURCE_ENCODER_USER_CONFIG_UPDATE)); p_buf->user_config = codec_user_config; p_buf->hdr.event = BTIF_MEDIA_SOURCE_ENCODER_USER_CONFIG_UPDATE; fixed_queue_enqueue(btif_a2dp_source_cb.cmd_msg_queue, p_buf); } static void btif_a2dp_source_encoder_user_config_update_event(BT_HDR* p_msg) { tBTIF_A2DP_SOURCE_ENCODER_USER_CONFIG_UPDATE* p_user_config = (tBTIF_A2DP_SOURCE_ENCODER_USER_CONFIG_UPDATE*)p_msg; APPL_TRACE_DEBUG("%s", __func__); if (!bta_av_co_set_codec_user_config(p_user_config->user_config)) { APPL_TRACE_ERROR("%s: cannot update codec user configuration", __func__); } } void btif_a2dp_source_feeding_update_req( const btav_a2dp_codec_config_t& codec_audio_config) { tBTIF_A2DP_AUDIO_FEEDING_UPDATE* p_buf = (tBTIF_A2DP_AUDIO_FEEDING_UPDATE*)osi_malloc( sizeof(tBTIF_A2DP_AUDIO_FEEDING_UPDATE)); p_buf->feeding_params = codec_audio_config; p_buf->hdr.event = BTIF_MEDIA_AUDIO_FEEDING_UPDATE; fixed_queue_enqueue(btif_a2dp_source_cb.cmd_msg_queue, p_buf); } static void btif_a2dp_source_audio_feeding_update_event(BT_HDR* p_msg) { tBTIF_A2DP_AUDIO_FEEDING_UPDATE* p_feeding = (tBTIF_A2DP_AUDIO_FEEDING_UPDATE*)p_msg; APPL_TRACE_DEBUG("%s", __func__); if (!bta_av_co_set_codec_audio_config(p_feeding->feeding_params)) { APPL_TRACE_ERROR("%s: cannot update codec audio feeding parameters", __func__); } } void btif_a2dp_source_on_idle(void) { if (btif_a2dp_source_state == BTIF_A2DP_SOURCE_STATE_OFF) return; /* Make sure media task is stopped */ btif_a2dp_source_stop_audio_req(); } void btif_a2dp_source_on_stopped(tBTA_AV_SUSPEND* p_av_suspend) { APPL_TRACE_EVENT("## ON A2DP SOURCE STOPPED ##"); if (btif_a2dp_source_state == BTIF_A2DP_SOURCE_STATE_OFF) return; /* allow using this api for other than suspend */ if (p_av_suspend != NULL) { if (p_av_suspend->status != BTA_AV_SUCCESS) { APPL_TRACE_EVENT("AV STOP FAILED (%d)", p_av_suspend->status); if (p_av_suspend->initiator) { APPL_TRACE_WARNING("%s: A2DP stop request failed: status = %d", __func__, p_av_suspend->status); btif_a2dp_command_ack(A2DP_CTRL_ACK_FAILURE); } return; } } /* ensure tx frames are immediately suspended */ btif_a2dp_source_cb.tx_flush = true; /* request to stop media task */ btif_a2dp_source_audio_tx_flush_req(); btif_a2dp_source_stop_audio_req(); /* once stream is fully stopped we will ack back */ } void btif_a2dp_source_on_suspended(tBTA_AV_SUSPEND* p_av_suspend) { APPL_TRACE_EVENT("## ON A2DP SOURCE SUSPENDED ##"); if (btif_a2dp_source_state == BTIF_A2DP_SOURCE_STATE_OFF) return; /* check for status failures */ if (p_av_suspend->status != BTA_AV_SUCCESS) { if (p_av_suspend->initiator) { APPL_TRACE_WARNING("%s: A2DP suspend request failed: status = %d", __func__, p_av_suspend->status); btif_a2dp_command_ack(A2DP_CTRL_ACK_FAILURE); } } /* once stream is fully stopped we will ack back */ /* ensure tx frames are immediately flushed */ btif_a2dp_source_cb.tx_flush = true; /* stop timer tick */ btif_a2dp_source_stop_audio_req(); } /* when true media task discards any tx frames */ void btif_a2dp_source_set_tx_flush(bool enable) { APPL_TRACE_EVENT("## DROP TX %d ##", enable); btif_a2dp_source_cb.tx_flush = enable; } static void btif_a2dp_source_audio_tx_start_event(void) { APPL_TRACE_DEBUG( "%s media_alarm is %srunning, streaming %s", __func__, alarm_is_scheduled(btif_a2dp_source_cb.media_alarm) ? "" : "not ", btif_a2dp_source_is_streaming() ? "true" : "false"); /* Reset the media feeding state */ CHECK(btif_a2dp_source_cb.encoder_interface != NULL); btif_a2dp_source_cb.encoder_interface->feeding_reset(); APPL_TRACE_EVENT( "starting timer %dms", btif_a2dp_source_cb.encoder_interface->get_encoder_interval_ms()); alarm_free(btif_a2dp_source_cb.media_alarm); btif_a2dp_source_cb.media_alarm = alarm_new_periodic("btif.a2dp_source_media_alarm"); if (btif_a2dp_source_cb.media_alarm == NULL) { LOG_ERROR(LOG_TAG, "%s unable to allocate media alarm", __func__); return; } alarm_set(btif_a2dp_source_cb.media_alarm, btif_a2dp_source_cb.encoder_interface->get_encoder_interval_ms(), btif_a2dp_source_alarm_cb, NULL); } static void btif_a2dp_source_audio_tx_stop_event(void) { APPL_TRACE_DEBUG( "%s media_alarm is %srunning, streaming %s", __func__, alarm_is_scheduled(btif_a2dp_source_cb.media_alarm) ? "" : "not ", btif_a2dp_source_is_streaming() ? "true" : "false"); const bool send_ack = btif_a2dp_source_is_streaming(); /* Stop the timer first */ alarm_free(btif_a2dp_source_cb.media_alarm); btif_a2dp_source_cb.media_alarm = NULL; UIPC_Close(UIPC_CH_ID_AV_AUDIO); /* * Try to send acknowldegment once the media stream is * stopped. This will make sure that the A2DP HAL layer is * un-blocked on wait for acknowledgment for the sent command. * This resolves a corner cases AVDTP SUSPEND collision * when the DUT and the remote device issue SUSPEND simultaneously * and due to the processing of the SUSPEND request from the remote, * the media path is torn down. If the A2DP HAL happens to wait * for ACK for the initiated SUSPEND, it would never receive it casuing * a block/wait. Due to this acknowledgement, the A2DP HAL is guranteed * to get the ACK for any pending command in such cases. */ if (send_ack) btif_a2dp_command_ack(A2DP_CTRL_ACK_SUCCESS); /* audio engine stopped, reset tx suspended flag */ btif_a2dp_source_cb.tx_flush = false; /* Reset the media feeding state */ if (btif_a2dp_source_cb.encoder_interface != NULL) btif_a2dp_source_cb.encoder_interface->feeding_reset(); } static void btif_a2dp_source_alarm_cb(UNUSED_ATTR void* context) { thread_post(btif_a2dp_source_cb.worker_thread, btif_a2dp_source_audio_handle_timer, NULL); } static void btif_a2dp_source_audio_handle_timer(UNUSED_ATTR void* context) { uint64_t timestamp_us = time_get_os_boottime_us(); log_tstamps_us("A2DP Source tx timer", timestamp_us); if (alarm_is_scheduled(btif_a2dp_source_cb.media_alarm)) { CHECK(btif_a2dp_source_cb.encoder_interface != NULL); if (btif_a2dp_source_cb.encoder_interface->set_transmit_queue_length != NULL) { size_t transmit_queue_length = fixed_queue_length(btif_a2dp_source_cb.tx_audio_queue); btif_a2dp_source_cb.encoder_interface->set_transmit_queue_length( transmit_queue_length); } btif_a2dp_source_cb.encoder_interface->send_frames(timestamp_us); bta_av_ci_src_data_ready(BTA_AV_CHNL_AUDIO); update_scheduling_stats(&btif_a2dp_source_cb.stats.tx_queue_enqueue_stats, timestamp_us, btif_a2dp_source_cb.encoder_interval_ms * 1000); } else { APPL_TRACE_ERROR("ERROR Media task Scheduled after Suspend"); } } static uint32_t btif_a2dp_source_read_callback(uint8_t* p_buf, uint32_t len) { uint16_t event; uint32_t bytes_read = UIPC_Read(UIPC_CH_ID_AV_AUDIO, &event, p_buf, len); if (bytes_read < len) { LOG_WARN(LOG_TAG, "%s: UNDERFLOW: ONLY READ %d BYTES OUT OF %d", __func__, bytes_read, len); btif_a2dp_source_cb.stats.media_read_total_underflow_bytes += (len - bytes_read); btif_a2dp_source_cb.stats.media_read_total_underflow_count++; btif_a2dp_source_cb.stats.media_read_last_underflow_us = time_get_os_boottime_us(); } return bytes_read; } static bool btif_a2dp_source_enqueue_callback(BT_HDR* p_buf, size_t frames_n) { uint64_t now_us = time_get_os_boottime_us(); /* Check if timer was stopped (media task stopped) */ if (!alarm_is_scheduled(btif_a2dp_source_cb.media_alarm)) { osi_free(p_buf); return false; } /* Check if the transmission queue has been flushed */ if (btif_a2dp_source_cb.tx_flush) { LOG_VERBOSE(LOG_TAG, "%s: tx suspended, discarded frame", __func__); btif_a2dp_source_cb.stats.tx_queue_total_flushed_messages += fixed_queue_length(btif_a2dp_source_cb.tx_audio_queue); btif_a2dp_source_cb.stats.tx_queue_last_flushed_us = now_us; fixed_queue_flush(btif_a2dp_source_cb.tx_audio_queue, osi_free); osi_free(p_buf); return false; } // Check for TX queue overflow // TODO: Using frames_n here is probably wrong: should be "+ 1" instead. if (fixed_queue_length(btif_a2dp_source_cb.tx_audio_queue) + frames_n > MAX_OUTPUT_A2DP_FRAME_QUEUE_SZ) { LOG_WARN(LOG_TAG, "%s: TX queue buffer size now=%u adding=%u max=%d", __func__, (uint32_t)fixed_queue_length(btif_a2dp_source_cb.tx_audio_queue), (uint32_t)frames_n, MAX_OUTPUT_A2DP_FRAME_QUEUE_SZ); // Keep track of drop-outs btif_a2dp_source_cb.stats.tx_queue_dropouts++; btif_a2dp_source_cb.stats.tx_queue_last_dropouts_us = now_us; // Flush all queued buffers size_t drop_n = fixed_queue_length(btif_a2dp_source_cb.tx_audio_queue); btif_a2dp_source_cb.stats.tx_queue_max_dropped_messages = std::max( drop_n, btif_a2dp_source_cb.stats.tx_queue_max_dropped_messages); while (fixed_queue_length(btif_a2dp_source_cb.tx_audio_queue)) { btif_a2dp_source_cb.stats.tx_queue_total_dropped_messages++; osi_free(fixed_queue_try_dequeue(btif_a2dp_source_cb.tx_audio_queue)); } // Request RSSI for log purposes if we had to flush buffers bt_bdaddr_t peer_bda = btif_av_get_addr(); BTM_ReadRSSI(peer_bda.address, btm_read_rssi_cb); } /* Update the statistics */ btif_a2dp_source_cb.stats.tx_queue_total_frames += frames_n; btif_a2dp_source_cb.stats.tx_queue_max_frames_per_packet = std::max( frames_n, btif_a2dp_source_cb.stats.tx_queue_max_frames_per_packet); CHECK(btif_a2dp_source_cb.encoder_interface != NULL); fixed_queue_enqueue(btif_a2dp_source_cb.tx_audio_queue, p_buf); return true; } static void btif_a2dp_source_audio_tx_flush_event(UNUSED_ATTR BT_HDR* p_msg) { /* Flush all enqueued audio buffers (encoded) */ APPL_TRACE_DEBUG("%s", __func__); if (btif_a2dp_source_cb.encoder_interface != NULL) btif_a2dp_source_cb.encoder_interface->feeding_flush(); btif_a2dp_source_cb.stats.tx_queue_total_flushed_messages += fixed_queue_length(btif_a2dp_source_cb.tx_audio_queue); btif_a2dp_source_cb.stats.tx_queue_last_flushed_us = time_get_os_boottime_us(); fixed_queue_flush(btif_a2dp_source_cb.tx_audio_queue, osi_free); UIPC_Ioctl(UIPC_CH_ID_AV_AUDIO, UIPC_REQ_RX_FLUSH, NULL); } static bool btif_a2dp_source_audio_tx_flush_req(void) { BT_HDR* p_buf = (BT_HDR*)osi_malloc(sizeof(BT_HDR)); p_buf->event = BTIF_MEDIA_AUDIO_TX_FLUSH; /* * Explicitly check whether the btif_a2dp_source_cb.cmd_msg_queue is not * NULL to avoid a race condition during shutdown of the Bluetooth stack. * This race condition is triggered when A2DP audio is streaming on * shutdown: * "btif_a2dp_source_on_stopped() -> btif_a2dp_source_audio_tx_flush_req()" * is called to stop the particular audio stream, and this happens right * after the "BTIF_AV_CLEANUP_REQ_EVT -> btif_a2dp_source_shutdown()" * processing during the shutdown of the Bluetooth stack. */ if (btif_a2dp_source_cb.cmd_msg_queue != NULL) fixed_queue_enqueue(btif_a2dp_source_cb.cmd_msg_queue, p_buf); return true; } BT_HDR* btif_a2dp_source_audio_readbuf(void) { uint64_t now_us = time_get_os_boottime_us(); BT_HDR* p_buf = (BT_HDR*)fixed_queue_try_dequeue(btif_a2dp_source_cb.tx_audio_queue); btif_a2dp_source_cb.stats.tx_queue_total_readbuf_calls++; btif_a2dp_source_cb.stats.tx_queue_last_readbuf_us = now_us; if (p_buf != NULL) { // Update the statistics update_scheduling_stats(&btif_a2dp_source_cb.stats.tx_queue_dequeue_stats, now_us, btif_a2dp_source_cb.encoder_interval_ms * 1000); } return p_buf; } static void log_tstamps_us(const char* comment, uint64_t timestamp_us) { static uint64_t prev_us = 0; APPL_TRACE_DEBUG("[%s] ts %08llu, diff : %08llu, queue sz %d", comment, timestamp_us, timestamp_us - prev_us, fixed_queue_length(btif_a2dp_source_cb.tx_audio_queue)); prev_us = timestamp_us; } static void update_scheduling_stats(scheduling_stats_t* stats, uint64_t now_us, uint64_t expected_delta) { uint64_t last_us = stats->last_update_us; stats->total_updates++; stats->last_update_us = now_us; if (last_us == 0) return; // First update: expected delta doesn't apply uint64_t deadline_us = last_us + expected_delta; if (deadline_us < now_us) { // Overdue scheduling uint64_t delta_us = now_us - deadline_us; // Ignore extreme outliers if (delta_us < 10 * expected_delta) { stats->max_overdue_scheduling_delta_us = std::max(delta_us, stats->max_overdue_scheduling_delta_us); stats->total_overdue_scheduling_delta_us += delta_us; stats->overdue_scheduling_count++; stats->total_scheduling_time_us += now_us - last_us; } } else if (deadline_us > now_us) { // Premature scheduling uint64_t delta_us = deadline_us - now_us; // Ignore extreme outliers if (delta_us < 10 * expected_delta) { stats->max_premature_scheduling_delta_us = std::max(delta_us, stats->max_premature_scheduling_delta_us); stats->total_premature_scheduling_delta_us += delta_us; stats->premature_scheduling_count++; stats->total_scheduling_time_us += now_us - last_us; } } else { // On-time scheduling stats->exact_scheduling_count++; stats->total_scheduling_time_us += now_us - last_us; } } void btif_a2dp_source_debug_dump(int fd) { btif_a2dp_source_accumulate_stats(&btif_a2dp_source_cb.stats, &btif_a2dp_source_cb.accumulated_stats); uint64_t now_us = time_get_os_boottime_us(); btif_media_stats_t* accumulated_stats = &btif_a2dp_source_cb.accumulated_stats; scheduling_stats_t* enqueue_stats = &accumulated_stats->tx_queue_enqueue_stats; scheduling_stats_t* dequeue_stats = &accumulated_stats->tx_queue_dequeue_stats; size_t ave_size; uint64_t ave_time_us; dprintf(fd, "\nA2DP State:\n"); dprintf(fd, " TxQueue:\n"); dprintf(fd, " Counts (enqueue/dequeue/readbuf) : %zu / " "%zu / %zu\n", enqueue_stats->total_updates, dequeue_stats->total_updates, accumulated_stats->tx_queue_total_readbuf_calls); dprintf( fd, " Last update time ago in ms (enqueue/dequeue/readbuf) : %llu / %llu " "/ %llu\n", (enqueue_stats->last_update_us > 0) ? (unsigned long long)(now_us - enqueue_stats->last_update_us) / 1000 : 0, (dequeue_stats->last_update_us > 0) ? (unsigned long long)(now_us - dequeue_stats->last_update_us) / 1000 : 0, (accumulated_stats->tx_queue_last_readbuf_us > 0) ? (unsigned long long)(now_us - accumulated_stats->tx_queue_last_readbuf_us) / 1000 : 0); ave_size = 0; if (enqueue_stats->total_updates != 0) ave_size = accumulated_stats->tx_queue_total_frames / enqueue_stats->total_updates; dprintf(fd, " Frames per packet (total/max/ave) : %zu / " "%zu / %zu\n", accumulated_stats->tx_queue_total_frames, accumulated_stats->tx_queue_max_frames_per_packet, ave_size); dprintf(fd, " Counts (flushed/dropped/dropouts) : %zu / " "%zu / %zu\n", accumulated_stats->tx_queue_total_flushed_messages, accumulated_stats->tx_queue_total_dropped_messages, accumulated_stats->tx_queue_dropouts); dprintf(fd, " Counts (max dropped) : %zu\n", accumulated_stats->tx_queue_max_dropped_messages); dprintf( fd, " Last update time ago in ms (flushed/dropped) : %llu / " "%llu\n", (accumulated_stats->tx_queue_last_flushed_us > 0) ? (unsigned long long)(now_us - accumulated_stats->tx_queue_last_flushed_us) / 1000 : 0, (accumulated_stats->tx_queue_last_dropouts_us > 0) ? (unsigned long long)(now_us - accumulated_stats->tx_queue_last_dropouts_us) / 1000 : 0); dprintf(fd, " Counts (underflow) : %zu\n", accumulated_stats->media_read_total_underflow_count); dprintf(fd, " Bytes (underflow) : %zu\n", accumulated_stats->media_read_total_underflow_bytes); dprintf(fd, " Last update time ago in ms (underflow) : %llu\n", (accumulated_stats->media_read_last_underflow_us > 0) ? (unsigned long long)(now_us - accumulated_stats ->media_read_last_underflow_us) / 1000 : 0); // // TxQueue enqueue stats // dprintf( fd, " Enqueue deviation counts (overdue/premature) : %zu / %zu\n", enqueue_stats->overdue_scheduling_count, enqueue_stats->premature_scheduling_count); ave_time_us = 0; if (enqueue_stats->overdue_scheduling_count != 0) { ave_time_us = enqueue_stats->total_overdue_scheduling_delta_us / enqueue_stats->overdue_scheduling_count; } dprintf( fd, " Enqueue overdue scheduling time in ms (total/max/ave) : %llu / %llu " "/ %llu\n", (unsigned long long)enqueue_stats->total_overdue_scheduling_delta_us / 1000, (unsigned long long)enqueue_stats->max_overdue_scheduling_delta_us / 1000, (unsigned long long)ave_time_us / 1000); ave_time_us = 0; if (enqueue_stats->premature_scheduling_count != 0) { ave_time_us = enqueue_stats->total_premature_scheduling_delta_us / enqueue_stats->premature_scheduling_count; } dprintf( fd, " Enqueue premature scheduling time in ms (total/max/ave) : %llu / %llu " "/ %llu\n", (unsigned long long)enqueue_stats->total_premature_scheduling_delta_us / 1000, (unsigned long long)enqueue_stats->max_premature_scheduling_delta_us / 1000, (unsigned long long)ave_time_us / 1000); // // TxQueue dequeue stats // dprintf( fd, " Dequeue deviation counts (overdue/premature) : %zu / %zu\n", dequeue_stats->overdue_scheduling_count, dequeue_stats->premature_scheduling_count); ave_time_us = 0; if (dequeue_stats->overdue_scheduling_count != 0) { ave_time_us = dequeue_stats->total_overdue_scheduling_delta_us / dequeue_stats->overdue_scheduling_count; } dprintf( fd, " Dequeue overdue scheduling time in ms (total/max/ave) : %llu / %llu " "/ %llu\n", (unsigned long long)dequeue_stats->total_overdue_scheduling_delta_us / 1000, (unsigned long long)dequeue_stats->max_overdue_scheduling_delta_us / 1000, (unsigned long long)ave_time_us / 1000); ave_time_us = 0; if (dequeue_stats->premature_scheduling_count != 0) { ave_time_us = dequeue_stats->total_premature_scheduling_delta_us / dequeue_stats->premature_scheduling_count; } dprintf( fd, " Dequeue premature scheduling time in ms (total/max/ave) : %llu / %llu " "/ %llu\n", (unsigned long long)dequeue_stats->total_premature_scheduling_delta_us / 1000, (unsigned long long)dequeue_stats->max_premature_scheduling_delta_us / 1000, (unsigned long long)ave_time_us / 1000); // // Codec-specific stats // A2dpCodecs* a2dp_codecs = bta_av_get_a2dp_codecs(); if (a2dp_codecs != nullptr) { a2dp_codecs->debug_codec_dump(fd); } } void btif_a2dp_source_update_metrics(void) { btif_media_stats_t* stats = &btif_a2dp_source_cb.stats; scheduling_stats_t* enqueue_stats = &stats->tx_queue_enqueue_stats; A2dpSessionMetrics metrics; // session_start_us is 0 when btif_a2dp_source_start_audio_req() is not called // mark the metric duration as invalid (-1) in this case if (stats->session_start_us != 0) { int64_t session_end_us = stats->session_end_us == 0 ? time_get_os_boottime_us() : stats->session_end_us; metrics.audio_duration_ms = (session_end_us - stats->session_start_us) / 1000; } if (enqueue_stats->total_updates > 1) { metrics.media_timer_min_ms = btif_a2dp_source_cb.encoder_interval_ms - (enqueue_stats->max_premature_scheduling_delta_us / 1000); metrics.media_timer_max_ms = btif_a2dp_source_cb.encoder_interval_ms + (enqueue_stats->max_overdue_scheduling_delta_us / 1000); metrics.total_scheduling_count = enqueue_stats->overdue_scheduling_count + enqueue_stats->premature_scheduling_count + enqueue_stats->exact_scheduling_count; if (metrics.total_scheduling_count > 0) { metrics.media_timer_avg_ms = enqueue_stats->total_scheduling_time_us / (1000 * metrics.total_scheduling_count); } metrics.buffer_overruns_max_count = stats->tx_queue_max_dropped_messages; metrics.buffer_overruns_total = stats->tx_queue_total_dropped_messages; metrics.buffer_underruns_count = stats->media_read_total_underflow_count; metrics.buffer_underruns_average = 0; if (metrics.buffer_underruns_count > 0) { metrics.buffer_underruns_average = stats->media_read_total_underflow_bytes / metrics.buffer_underruns_count; } } BluetoothMetricsLogger::GetInstance()->LogA2dpSession(metrics); } static void btm_read_rssi_cb(void* data) { if (data == nullptr) { LOG_ERROR(LOG_TAG, "%s RSSI request timed out", __func__); return; } tBTM_RSSI_RESULTS* result = (tBTM_RSSI_RESULTS*)data; if (result->status != BTM_SUCCESS) { LOG_ERROR(LOG_TAG, "%s unable to read remote RSSI (status %d)", __func__, result->status); return; } char temp_buffer[20] = {0}; LOG_WARN(LOG_TAG, "%s device: %s, rssi: %d", __func__, bdaddr_to_string((bt_bdaddr_t*)result->rem_bda, temp_buffer, sizeof(temp_buffer)), result->rssi); }