/****************************************************************************** * * Copyright (C) 2009-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #define LOG_TAG "bt_btif_sock_rfcomm" #include <base/logging.h> #include <errno.h> #include <features.h> #include <pthread.h> #include <string.h> #include <sys/ioctl.h> #include <sys/socket.h> #include <sys/types.h> #include <unistd.h> #include <mutex> #include <hardware/bluetooth.h> #include <hardware/bt_sock.h> #include "bt_common.h" #include "bt_target.h" #include "bta_api.h" #include "bta_jv_api.h" #include "bta_jv_co.h" #include "btif_common.h" #include "btif_sock_sdp.h" #include "btif_sock_thread.h" #include "btif_sock_util.h" #include "btif_uid.h" #include "btif_util.h" #include "btm_api.h" #include "btm_int.h" #include "btu.h" #include "hcimsgs.h" #include "osi/include/compat.h" #include "osi/include/list.h" #include "osi/include/log.h" #include "osi/include/osi.h" #include "port_api.h" #include "sdp_api.h" /* The JV interface can have only one user, hence we need to call a few * L2CAP functions from this file. */ #include "btif_sock_l2cap.h" // Maximum number of RFCOMM channels (1-30 inclusive). #define MAX_RFC_CHANNEL 30 // Maximum number of devices we can have an RFCOMM connection with. #define MAX_RFC_SESSION 7 typedef struct { int outgoing_congest : 1; int pending_sdp_request : 1; int doing_sdp_request : 1; int server : 1; int connected : 1; int closing : 1; } flags_t; typedef struct { flags_t f; uint32_t id; // Non-zero indicates a valid (in-use) slot. int security; int scn; // Server channel number int scn_notified; bt_bdaddr_t addr; int is_service_uuid_valid; uint8_t service_uuid[16]; char service_name[256]; int fd; int app_fd; // Temporary storage for the half of the socketpair that's sent // back to upper layers. int app_uid; // UID of the app for which this socket was created. int mtu; uint8_t* packet; int sdp_handle; int rfc_handle; int rfc_port_handle; int role; list_t* incoming_queue; } rfc_slot_t; static rfc_slot_t rfc_slots[MAX_RFC_CHANNEL]; static uint32_t rfc_slot_id; static volatile int pth = -1; // poll thread handle static std::recursive_mutex slot_lock; static uid_set_t* uid_set = NULL; static rfc_slot_t* find_free_slot(void); static void cleanup_rfc_slot(rfc_slot_t* rs); static void jv_dm_cback(tBTA_JV_EVT event, tBTA_JV* p_data, uint32_t id); static uint32_t rfcomm_cback(tBTA_JV_EVT event, tBTA_JV* p_data, uint32_t rfcomm_slot_id); static bool send_app_scn(rfc_slot_t* rs); static bool is_init_done(void) { return pth != -1; } bt_status_t btsock_rfc_init(int poll_thread_handle, uid_set_t* set) { pth = poll_thread_handle; uid_set = set; memset(rfc_slots, 0, sizeof(rfc_slots)); for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i) { rfc_slots[i].scn = -1; rfc_slots[i].sdp_handle = 0; rfc_slots[i].fd = INVALID_FD; rfc_slots[i].app_fd = INVALID_FD; rfc_slots[i].incoming_queue = list_new(osi_free); CHECK(rfc_slots[i].incoming_queue != NULL); } BTA_JvEnable(jv_dm_cback); return BT_STATUS_SUCCESS; } void btsock_rfc_cleanup(void) { pth = -1; uid_set = NULL; BTA_JvDisable(); std::unique_lock<std::recursive_mutex> lock(slot_lock); for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i) { if (rfc_slots[i].id) cleanup_rfc_slot(&rfc_slots[i]); list_free(rfc_slots[i].incoming_queue); rfc_slots[i].incoming_queue = NULL; } } static rfc_slot_t* find_free_slot(void) { for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i) if (rfc_slots[i].fd == INVALID_FD) return &rfc_slots[i]; return NULL; } static rfc_slot_t* find_rfc_slot_by_id(uint32_t id) { CHECK(id != 0); for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i) if (rfc_slots[i].id == id) return &rfc_slots[i]; LOG_ERROR(LOG_TAG, "%s unable to find RFCOMM slot id: %d", __func__, id); return NULL; } static rfc_slot_t* find_rfc_slot_by_pending_sdp(void) { uint32_t min_id = UINT32_MAX; int slot = -1; for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i) if (rfc_slots[i].id && rfc_slots[i].f.pending_sdp_request && rfc_slots[i].id < min_id) { min_id = rfc_slots[i].id; slot = i; } return (slot == -1) ? NULL : &rfc_slots[slot]; } static bool is_requesting_sdp(void) { for (size_t i = 0; i < ARRAY_SIZE(rfc_slots); ++i) if (rfc_slots[i].id && rfc_slots[i].f.doing_sdp_request) return true; return false; } static rfc_slot_t* alloc_rfc_slot(const bt_bdaddr_t* addr, const char* name, const uint8_t* uuid, int channel, int flags, bool server) { int security = 0; if (flags & BTSOCK_FLAG_ENCRYPT) security |= server ? BTM_SEC_IN_ENCRYPT : BTM_SEC_OUT_ENCRYPT; if (flags & BTSOCK_FLAG_AUTH) security |= server ? BTM_SEC_IN_AUTHENTICATE : BTM_SEC_OUT_AUTHENTICATE; if (flags & BTSOCK_FLAG_AUTH_MITM) security |= server ? BTM_SEC_IN_MITM : BTM_SEC_OUT_MITM; if (flags & BTSOCK_FLAG_AUTH_16_DIGIT) security |= BTM_SEC_IN_MIN_16_DIGIT_PIN; rfc_slot_t* slot = find_free_slot(); if (!slot) { LOG_ERROR(LOG_TAG, "%s unable to find free RFCOMM slot.", __func__); return NULL; } int fds[2] = {INVALID_FD, INVALID_FD}; if (socketpair(AF_LOCAL, SOCK_STREAM, 0, fds) == -1) { LOG_ERROR(LOG_TAG, "%s error creating socketpair: %s", __func__, strerror(errno)); return NULL; } // Increment slot id and make sure we don't use id=0. if (++rfc_slot_id == 0) rfc_slot_id = 1; slot->fd = fds[0]; slot->app_fd = fds[1]; slot->security = security; slot->scn = channel; slot->app_uid = -1; if (!is_uuid_empty(uuid)) { memcpy(slot->service_uuid, uuid, sizeof(slot->service_uuid)); slot->is_service_uuid_valid = true; } else { memset(slot->service_uuid, 0, sizeof(slot->service_uuid)); slot->is_service_uuid_valid = false; } if (name && *name) { strlcpy(slot->service_name, name, sizeof(slot->service_name)); } else { memset(slot->service_name, 0, sizeof(slot->service_name)); } if (addr) slot->addr = *addr; slot->id = rfc_slot_id; slot->f.server = server; return slot; } static rfc_slot_t* create_srv_accept_rfc_slot(rfc_slot_t* srv_rs, const bt_bdaddr_t* addr, int open_handle, int new_listen_handle) { rfc_slot_t* accept_rs = alloc_rfc_slot( addr, srv_rs->service_name, srv_rs->service_uuid, srv_rs->scn, 0, false); if (!accept_rs) { LOG_ERROR(LOG_TAG, "%s unable to allocate RFCOMM slot.", __func__); return NULL; } accept_rs->f.server = false; accept_rs->f.connected = true; accept_rs->security = srv_rs->security; accept_rs->mtu = srv_rs->mtu; accept_rs->role = srv_rs->role; accept_rs->rfc_handle = open_handle; accept_rs->rfc_port_handle = BTA_JvRfcommGetPortHdl(open_handle); accept_rs->app_uid = srv_rs->app_uid; srv_rs->rfc_handle = new_listen_handle; srv_rs->rfc_port_handle = BTA_JvRfcommGetPortHdl(new_listen_handle); CHECK(accept_rs->rfc_port_handle != srv_rs->rfc_port_handle); // now swap the slot id uint32_t new_listen_id = accept_rs->id; accept_rs->id = srv_rs->id; srv_rs->id = new_listen_id; return accept_rs; } bt_status_t btsock_rfc_listen(const char* service_name, const uint8_t* service_uuid, int channel, int* sock_fd, int flags, int app_uid) { CHECK(sock_fd != NULL); CHECK((service_uuid != NULL) || (channel >= 1 && channel <= MAX_RFC_CHANNEL) || ((flags & BTSOCK_FLAG_NO_SDP) != 0)); *sock_fd = INVALID_FD; // TODO(sharvil): not sure that this check makes sense; seems like a logic // error to call // functions on RFCOMM sockets before initializing the module. Probably should // be an assert. if (!is_init_done()) return BT_STATUS_NOT_READY; if ((flags & BTSOCK_FLAG_NO_SDP) == 0) { if (is_uuid_empty(service_uuid)) { APPL_TRACE_DEBUG( "BTA_JvGetChannelId: service_uuid not set AND " "BTSOCK_FLAG_NO_SDP is not set - changing to SPP"); service_uuid = UUID_SPP; // Use serial port profile to listen to specified channel } else { // Check the service_uuid. overwrite the channel # if reserved int reserved_channel = get_reserved_rfc_channel(service_uuid); if (reserved_channel > 0) { channel = reserved_channel; } } } std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = alloc_rfc_slot(NULL, service_name, service_uuid, channel, flags, true); if (!slot) { LOG_ERROR(LOG_TAG, "%s unable to allocate RFCOMM slot.", __func__); return BT_STATUS_FAIL; } APPL_TRACE_DEBUG("BTA_JvGetChannelId: service_name: %s - channel: %d", service_name, channel); BTA_JvGetChannelId(BTA_JV_CONN_TYPE_RFCOMM, slot->id, channel); *sock_fd = slot->app_fd; // Transfer ownership of fd to caller. /*TODO: * We are leaking one of the app_fd's - either the listen socket, or the connection socket. * WE need to close this in native, as the FD might belong to another process - This is the server socket FD - For accepted connections, we close the FD after passing it to JAVA. - Try to simply remove the = -1 to free the FD at rs cleanup.*/ // close(rs->app_fd); slot->app_fd = INVALID_FD; // Drop our reference to the fd. slot->app_uid = app_uid; btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_EXCEPTION, slot->id); return BT_STATUS_SUCCESS; } bt_status_t btsock_rfc_connect(const bt_bdaddr_t* bd_addr, const uint8_t* service_uuid, int channel, int* sock_fd, int flags, int app_uid) { CHECK(sock_fd != NULL); CHECK(service_uuid != NULL || (channel >= 1 && channel <= MAX_RFC_CHANNEL)); *sock_fd = INVALID_FD; // TODO(sharvil): not sure that this check makes sense; seems like a logic // error to call // functions on RFCOMM sockets before initializing the module. Probably should // be an assert. if (!is_init_done()) return BT_STATUS_NOT_READY; std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = alloc_rfc_slot(bd_addr, NULL, service_uuid, channel, flags, false); if (!slot) { LOG_ERROR(LOG_TAG, "%s unable to allocate RFCOMM slot.", __func__); return BT_STATUS_FAIL; } if (is_uuid_empty(service_uuid)) { tBTA_JV_STATUS ret = BTA_JvRfcommConnect(slot->security, slot->role, slot->scn, slot->addr.address, rfcomm_cback, slot->id); if (ret != BTA_JV_SUCCESS) { LOG_ERROR(LOG_TAG, "%s unable to initiate RFCOMM connection: %d", __func__, ret); cleanup_rfc_slot(slot); return BT_STATUS_FAIL; } if (!send_app_scn(slot)) { LOG_ERROR(LOG_TAG, "%s unable to send channel number.", __func__); cleanup_rfc_slot(slot); return BT_STATUS_FAIL; } } else { tSDP_UUID sdp_uuid; sdp_uuid.len = 16; memcpy(sdp_uuid.uu.uuid128, service_uuid, sizeof(sdp_uuid.uu.uuid128)); if (!is_requesting_sdp()) { BTA_JvStartDiscovery((uint8_t*)bd_addr->address, 1, &sdp_uuid, slot->id); slot->f.pending_sdp_request = false; slot->f.doing_sdp_request = true; } else { slot->f.pending_sdp_request = true; slot->f.doing_sdp_request = false; } } *sock_fd = slot->app_fd; // Transfer ownership of fd to caller. slot->app_fd = INVALID_FD; // Drop our reference to the fd. slot->app_uid = app_uid; btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_RD, slot->id); return BT_STATUS_SUCCESS; } static int create_server_sdp_record(rfc_slot_t* slot) { if (slot->scn == 0) { return false; } slot->sdp_handle = add_rfc_sdp_rec(slot->service_name, slot->service_uuid, slot->scn); return (slot->sdp_handle > 0); } static void free_rfc_slot_scn(rfc_slot_t* slot) { if (slot->scn <= 0) return; if (slot->f.server && !slot->f.closing && slot->rfc_handle) { BTA_JvRfcommStopServer(slot->rfc_handle, slot->id); slot->rfc_handle = 0; } if (slot->f.server) BTM_FreeSCN(slot->scn); slot->scn = 0; } static void cleanup_rfc_slot(rfc_slot_t* slot) { if (slot->fd != INVALID_FD) { shutdown(slot->fd, SHUT_RDWR); close(slot->fd); slot->fd = INVALID_FD; } if (slot->app_fd != INVALID_FD) { close(slot->app_fd); slot->app_fd = INVALID_FD; } if (slot->sdp_handle > 0) { del_rfc_sdp_rec(slot->sdp_handle); slot->sdp_handle = 0; } if (slot->rfc_handle && !slot->f.closing && !slot->f.server) { BTA_JvRfcommClose(slot->rfc_handle, slot->id); slot->rfc_handle = 0; } free_rfc_slot_scn(slot); list_clear(slot->incoming_queue); slot->rfc_port_handle = 0; memset(&slot->f, 0, sizeof(slot->f)); slot->id = 0; slot->scn_notified = false; } static bool send_app_scn(rfc_slot_t* slot) { if (slot->scn_notified == true) { // already send, just return success. return true; } slot->scn_notified = true; return sock_send_all(slot->fd, (const uint8_t*)&slot->scn, sizeof(slot->scn)) == sizeof(slot->scn); } static bool send_app_connect_signal(int fd, const bt_bdaddr_t* addr, int channel, int status, int send_fd) { sock_connect_signal_t cs; cs.size = sizeof(cs); cs.bd_addr = *addr; cs.channel = channel; cs.status = status; cs.max_rx_packet_size = 0; // not used for RFCOMM cs.max_tx_packet_size = 0; // not used for RFCOMM if (send_fd == INVALID_FD) return sock_send_all(fd, (const uint8_t*)&cs, sizeof(cs)) == sizeof(cs); return sock_send_fd(fd, (const uint8_t*)&cs, sizeof(cs), send_fd) == sizeof(cs); } static void on_cl_rfc_init(tBTA_JV_RFCOMM_CL_INIT* p_init, uint32_t id) { std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (!slot) return; if (p_init->status == BTA_JV_SUCCESS) { slot->rfc_handle = p_init->handle; } else { cleanup_rfc_slot(slot); } } static void on_srv_rfc_listen_started(tBTA_JV_RFCOMM_START* p_start, uint32_t id) { std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (!slot) return; if (p_start->status == BTA_JV_SUCCESS) { slot->rfc_handle = p_start->handle; } else { cleanup_rfc_slot(slot); } } static uint32_t on_srv_rfc_connect(tBTA_JV_RFCOMM_SRV_OPEN* p_open, uint32_t id) { std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* accept_rs; rfc_slot_t* srv_rs = find_rfc_slot_by_id(id); if (!srv_rs) return 0; accept_rs = create_srv_accept_rfc_slot(srv_rs, (const bt_bdaddr_t*)p_open->rem_bda, p_open->handle, p_open->new_listen_handle); if (!accept_rs) return 0; // Start monitoring the socket. btsock_thread_add_fd(pth, srv_rs->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_EXCEPTION, srv_rs->id); btsock_thread_add_fd(pth, accept_rs->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_RD, accept_rs->id); send_app_connect_signal(srv_rs->fd, &accept_rs->addr, srv_rs->scn, 0, accept_rs->app_fd); accept_rs->app_fd = INVALID_FD; // Ownership of the application fd has been transferred. return srv_rs->id; } static void on_cli_rfc_connect(tBTA_JV_RFCOMM_OPEN* p_open, uint32_t id) { std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (!slot) return; if (p_open->status != BTA_JV_SUCCESS) { cleanup_rfc_slot(slot); return; } slot->rfc_port_handle = BTA_JvRfcommGetPortHdl(p_open->handle); memcpy(slot->addr.address, p_open->rem_bda, 6); if (send_app_connect_signal(slot->fd, &slot->addr, slot->scn, 0, -1)) { slot->f.connected = true; } else { LOG_ERROR(LOG_TAG, "%s unable to send connect completion signal to caller.", __func__); } } static void on_rfc_close(UNUSED_ATTR tBTA_JV_RFCOMM_CLOSE* p_close, uint32_t id) { std::unique_lock<std::recursive_mutex> lock(slot_lock); // rfc_handle already closed when receiving rfcomm close event from stack. rfc_slot_t* slot = find_rfc_slot_by_id(id); if (slot) cleanup_rfc_slot(slot); } static void on_rfc_write_done(tBTA_JV_RFCOMM_WRITE* p, uint32_t id) { if (p->status != BTA_JV_SUCCESS) { LOG_ERROR(LOG_TAG, "%s error writing to RFCOMM socket with slot %u.", __func__, p->req_id); return; } int app_uid = -1; std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (slot) { app_uid = slot->app_uid; if (!slot->f.outgoing_congest) { btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_RD, slot->id); } } uid_set_add_tx(uid_set, app_uid, p->len); } static void on_rfc_outgoing_congest(tBTA_JV_RFCOMM_CONG* p, uint32_t id) { std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (slot) { slot->f.outgoing_congest = p->cong ? 1 : 0; if (!slot->f.outgoing_congest) btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_RD, slot->id); } } static uint32_t rfcomm_cback(tBTA_JV_EVT event, tBTA_JV* p_data, uint32_t rfcomm_slot_id) { uint32_t id = 0; switch (event) { case BTA_JV_RFCOMM_START_EVT: on_srv_rfc_listen_started(&p_data->rfc_start, rfcomm_slot_id); break; case BTA_JV_RFCOMM_CL_INIT_EVT: on_cl_rfc_init(&p_data->rfc_cl_init, rfcomm_slot_id); break; case BTA_JV_RFCOMM_OPEN_EVT: BTA_JvSetPmProfile(p_data->rfc_open.handle, BTA_JV_PM_ID_1, BTA_JV_CONN_OPEN); on_cli_rfc_connect(&p_data->rfc_open, rfcomm_slot_id); break; case BTA_JV_RFCOMM_SRV_OPEN_EVT: BTA_JvSetPmProfile(p_data->rfc_srv_open.handle, BTA_JV_PM_ALL, BTA_JV_CONN_OPEN); id = on_srv_rfc_connect(&p_data->rfc_srv_open, rfcomm_slot_id); break; case BTA_JV_RFCOMM_CLOSE_EVT: APPL_TRACE_DEBUG("BTA_JV_RFCOMM_CLOSE_EVT: rfcomm_slot_id:%d", rfcomm_slot_id); on_rfc_close(&p_data->rfc_close, rfcomm_slot_id); break; case BTA_JV_RFCOMM_WRITE_EVT: on_rfc_write_done(&p_data->rfc_write, rfcomm_slot_id); break; case BTA_JV_RFCOMM_CONG_EVT: on_rfc_outgoing_congest(&p_data->rfc_cong, rfcomm_slot_id); break; case BTA_JV_RFCOMM_DATA_IND_EVT: // Unused. break; default: LOG_ERROR(LOG_TAG, "%s unhandled event %d, slot id: %zi", __func__, event, rfcomm_slot_id); break; } return id; } static void jv_dm_cback(tBTA_JV_EVT event, tBTA_JV* p_data, uint32_t id) { switch (event) { case BTA_JV_GET_SCN_EVT: { std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* rs = find_rfc_slot_by_id(id); int new_scn = p_data->scn; if (rs && (new_scn != 0)) { rs->scn = new_scn; /* BTA_JvCreateRecordByUser will only create a record if a UUID is * specified, * else it just allocate a RFC channel and start the RFCOMM thread - * needed * for the java * layer to get a RFCOMM channel. * If uuid is null the create_sdp_record() will be called from Java when * it * has received the RFCOMM and L2CAP channel numbers through the * sockets.*/ // Send channel ID to java layer if (!send_app_scn(rs)) { // closed APPL_TRACE_DEBUG("send_app_scn() failed, close rs->id:%d", rs->id); cleanup_rfc_slot(rs); } else { if (rs->is_service_uuid_valid == true) { // We already have data for SDP record, create it (RFC-only // profiles) BTA_JvCreateRecordByUser(rs->id); } else { APPL_TRACE_DEBUG( "is_service_uuid_valid==false - don't set SDP-record, " "just start the RFCOMM server", rs->id); // now start the rfcomm server after sdp & channel # assigned BTA_JvRfcommStartServer(rs->security, rs->role, rs->scn, MAX_RFC_SESSION, rfcomm_cback, rs->id); } } } else if (rs) { APPL_TRACE_ERROR( "jv_dm_cback: Error: allocate channel %d, slot found:%p", rs->scn, rs); cleanup_rfc_slot(rs); } break; } case BTA_JV_GET_PSM_EVT: { APPL_TRACE_DEBUG("Received PSM: 0x%04x", p_data->psm); on_l2cap_psm_assigned(id, p_data->psm); break; } case BTA_JV_CREATE_RECORD_EVT: { std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (slot && create_server_sdp_record(slot)) { // Start the rfcomm server after sdp & channel # assigned. BTA_JvRfcommStartServer(slot->security, slot->role, slot->scn, MAX_RFC_SESSION, rfcomm_cback, slot->id); } else if (slot) { APPL_TRACE_ERROR("jv_dm_cback: cannot start server, slot found:%p", slot); cleanup_rfc_slot(slot); } break; } case BTA_JV_DISCOVERY_COMP_EVT: { std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (p_data->disc_comp.status == BTA_JV_SUCCESS && p_data->disc_comp.scn) { if (slot && slot->f.doing_sdp_request) { // Establish the connection if we successfully looked up a channel // number to connect to. if (BTA_JvRfcommConnect(slot->security, slot->role, p_data->disc_comp.scn, slot->addr.address, rfcomm_cback, slot->id) == BTA_JV_SUCCESS) { slot->scn = p_data->disc_comp.scn; slot->f.doing_sdp_request = false; if (!send_app_scn(slot)) cleanup_rfc_slot(slot); } else { cleanup_rfc_slot(slot); } } else if (slot) { // TODO(sharvil): this is really a logic error and we should probably // assert. LOG_ERROR(LOG_TAG, "%s SDP response returned but RFCOMM slot %d did not " "request SDP record.", __func__, id); } } else if (slot) { cleanup_rfc_slot(slot); } // Find the next slot that needs to perform an SDP request and service it. slot = find_rfc_slot_by_pending_sdp(); if (slot) { tSDP_UUID sdp_uuid; sdp_uuid.len = 16; memcpy(sdp_uuid.uu.uuid128, slot->service_uuid, sizeof(sdp_uuid.uu.uuid128)); BTA_JvStartDiscovery((uint8_t*)slot->addr.address, 1, &sdp_uuid, slot->id); slot->f.pending_sdp_request = false; slot->f.doing_sdp_request = true; } break; } default: APPL_TRACE_DEBUG("unhandled event:%d, slot id:%d", event, id); break; } } typedef enum { SENT_FAILED, SENT_NONE, SENT_PARTIAL, SENT_ALL, } sent_status_t; static sent_status_t send_data_to_app(int fd, BT_HDR* p_buf) { if (p_buf->len == 0) return SENT_ALL; ssize_t sent; OSI_NO_INTR( sent = send(fd, p_buf->data + p_buf->offset, p_buf->len, MSG_DONTWAIT)); if (sent == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) return SENT_NONE; LOG_ERROR(LOG_TAG, "%s error writing RFCOMM data back to app: %s", __func__, strerror(errno)); return SENT_FAILED; } if (sent == 0) return SENT_FAILED; if (sent == p_buf->len) return SENT_ALL; p_buf->offset += sent; p_buf->len -= sent; return SENT_PARTIAL; } static bool flush_incoming_que_on_wr_signal(rfc_slot_t* slot) { while (!list_is_empty(slot->incoming_queue)) { BT_HDR* p_buf = (BT_HDR*)list_front(slot->incoming_queue); switch (send_data_to_app(slot->fd, p_buf)) { case SENT_NONE: case SENT_PARTIAL: // monitor the fd to get callback when app is ready to receive data btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_WR, slot->id); return true; case SENT_ALL: list_remove(slot->incoming_queue, p_buf); break; case SENT_FAILED: list_remove(slot->incoming_queue, p_buf); return false; } } // app is ready to receive data, tell stack to start the data flow // fix me: need a jv flow control api to serialize the call in stack APPL_TRACE_DEBUG( "enable data flow, rfc_handle:0x%x, rfc_port_handle:0x%x, user_id:%d", slot->rfc_handle, slot->rfc_port_handle, slot->id); PORT_FlowControl_MaxCredit(slot->rfc_port_handle, true); return true; } void btsock_rfc_signaled(UNUSED_ATTR int fd, int flags, uint32_t user_id) { bool need_close = false; std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(user_id); if (!slot) return; // Data available from app, tell stack we have outgoing data. if (flags & SOCK_THREAD_FD_RD && !slot->f.server) { if (slot->f.connected) { // Make sure there's data pending in case the peer closed the socket. int size = 0; if (!(flags & SOCK_THREAD_FD_EXCEPTION) || (ioctl(slot->fd, FIONREAD, &size) == 0 && size)) { BTA_JvRfcommWrite(slot->rfc_handle, slot->id); } } else { LOG_ERROR(LOG_TAG, "%s socket signaled for read while disconnected, slot: %d, " "channel: %d", __func__, slot->id, slot->scn); need_close = true; } } if (flags & SOCK_THREAD_FD_WR) { // App is ready to receive more data, tell stack to enable data flow. if (!slot->f.connected || !flush_incoming_que_on_wr_signal(slot)) { LOG_ERROR(LOG_TAG, "%s socket signaled for write while disconnected (or write " "failure), slot: %d, channel: %d", __func__, slot->id, slot->scn); need_close = true; } } if (need_close || (flags & SOCK_THREAD_FD_EXCEPTION)) { // Clean up if there's no data pending. int size = 0; if (need_close || ioctl(slot->fd, FIONREAD, &size) != 0 || !size) cleanup_rfc_slot(slot); } } int bta_co_rfc_data_incoming(uint32_t id, BT_HDR* p_buf) { int app_uid = -1; uint64_t bytes_rx = 0; int ret = 0; std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (!slot) return 0; app_uid = slot->app_uid; bytes_rx = p_buf->len; if (list_is_empty(slot->incoming_queue)) { switch (send_data_to_app(slot->fd, p_buf)) { case SENT_NONE: case SENT_PARTIAL: list_append(slot->incoming_queue, p_buf); btsock_thread_add_fd(pth, slot->fd, BTSOCK_RFCOMM, SOCK_THREAD_FD_WR, slot->id); break; case SENT_ALL: osi_free(p_buf); ret = 1; // Enable data flow. break; case SENT_FAILED: osi_free(p_buf); cleanup_rfc_slot(slot); break; } } else { list_append(slot->incoming_queue, p_buf); } uid_set_add_rx(uid_set, app_uid, bytes_rx); return ret; // Return 0 to disable data flow. } int bta_co_rfc_data_outgoing_size(uint32_t id, int* size) { *size = 0; std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (!slot) return false; if (ioctl(slot->fd, FIONREAD, size) != 0) { LOG_ERROR(LOG_TAG, "%s unable to determine bytes remaining to be read on fd %d: %s", __func__, slot->fd, strerror(errno)); cleanup_rfc_slot(slot); return false; } return true; } int bta_co_rfc_data_outgoing(uint32_t id, uint8_t* buf, uint16_t size) { std::unique_lock<std::recursive_mutex> lock(slot_lock); rfc_slot_t* slot = find_rfc_slot_by_id(id); if (!slot) return false; ssize_t received; OSI_NO_INTR(received = recv(slot->fd, buf, size, 0)); if (received != size) { LOG_ERROR(LOG_TAG, "%s error receiving RFCOMM data from app: %s", __func__, strerror(errno)); cleanup_rfc_slot(slot); return false; } return true; }