/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG TRANSPORT #include "sysdeps.h" #include "transport.h" #include <ctype.h> #include <errno.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <algorithm> #include <list> #include <mutex> #include <android-base/logging.h> #include <android-base/parsenetaddress.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include "adb.h" #include "adb_auth.h" #include "adb_trace.h" #include "adb_utils.h" #include "diagnose_usb.h" static void transport_unref(atransport *t); static auto& transport_list = *new std::list<atransport*>(); static auto& pending_list = *new std::list<atransport*>(); static std::mutex& transport_lock = *new std::mutex(); const char* const kFeatureShell2 = "shell_v2"; const char* const kFeatureCmd = "cmd"; const char* const kFeatureStat2 = "stat_v2"; const char* const kFeatureLibusb = "libusb"; static std::string dump_packet(const char* name, const char* func, apacket* p) { unsigned command = p->msg.command; int len = p->msg.data_length; char cmd[9]; char arg0[12], arg1[12]; int n; for (n = 0; n < 4; n++) { int b = (command >> (n * 8)) & 255; if (b < 32 || b >= 127) break; cmd[n] = (char)b; } if (n == 4) { cmd[4] = 0; } else { /* There is some non-ASCII name in the command, so dump * the hexadecimal value instead */ snprintf(cmd, sizeof cmd, "%08x", command); } if (p->msg.arg0 < 256U) snprintf(arg0, sizeof arg0, "%d", p->msg.arg0); else snprintf(arg0, sizeof arg0, "0x%x", p->msg.arg0); if (p->msg.arg1 < 256U) snprintf(arg1, sizeof arg1, "%d", p->msg.arg1); else snprintf(arg1, sizeof arg1, "0x%x", p->msg.arg1); std::string result = android::base::StringPrintf("%s: %s: [%s] arg0=%s arg1=%s (len=%d) ", name, func, cmd, arg0, arg1, len); result += dump_hex(p->data, len); return result; } static int read_packet(int fd, const char* name, apacket** ppacket) { ATRACE_NAME("read_packet"); char buff[8]; if (!name) { snprintf(buff, sizeof buff, "fd=%d", fd); name = buff; } char* p = reinterpret_cast<char*>(ppacket); /* really read a packet address */ int len = sizeof(apacket*); while (len > 0) { int r = adb_read(fd, p, len); if (r > 0) { len -= r; p += r; } else { D("%s: read_packet (fd=%d), error ret=%d: %s", name, fd, r, strerror(errno)); return -1; } } VLOG(TRANSPORT) << dump_packet(name, "from remote", *ppacket); return 0; } static int write_packet(int fd, const char* name, apacket** ppacket) { ATRACE_NAME("write_packet"); char buff[8]; if (!name) { snprintf(buff, sizeof buff, "fd=%d", fd); name = buff; } VLOG(TRANSPORT) << dump_packet(name, "to remote", *ppacket); char* p = reinterpret_cast<char*>(ppacket); /* we really write the packet address */ int len = sizeof(apacket*); while (len > 0) { int r = adb_write(fd, p, len); if (r > 0) { len -= r; p += r; } else { D("%s: write_packet (fd=%d) error ret=%d: %s", name, fd, r, strerror(errno)); return -1; } } return 0; } static void transport_socket_events(int fd, unsigned events, void* _t) { atransport* t = reinterpret_cast<atransport*>(_t); D("transport_socket_events(fd=%d, events=%04x,...)", fd, events); if (events & FDE_READ) { apacket* p = 0; if (read_packet(fd, t->serial, &p)) { D("%s: failed to read packet from transport socket on fd %d", t->serial, fd); } else { handle_packet(p, (atransport*)_t); } } } void send_packet(apacket* p, atransport* t) { p->msg.magic = p->msg.command ^ 0xffffffff; p->msg.data_check = calculate_apacket_checksum(p); print_packet("send", p); if (t == NULL) { fatal("Transport is null"); } if (write_packet(t->transport_socket, t->serial, &p)) { fatal_errno("cannot enqueue packet on transport socket"); } } // The transport is opened by transport_register_func before // the read_transport and write_transport threads are started. // // The read_transport thread issues a SYNC(1, token) message to let // the write_transport thread know to start things up. In the event // of transport IO failure, the read_transport thread will post a // SYNC(0,0) message to ensure shutdown. // // The transport will not actually be closed until both threads exit, but the threads // will kick the transport on their way out to disconnect the underlying device. // // read_transport thread reads data from a transport (representing a usb/tcp connection), // and makes the main thread call handle_packet(). static void read_transport_thread(void* _t) { atransport* t = reinterpret_cast<atransport*>(_t); apacket* p; adb_thread_setname( android::base::StringPrintf("<-%s", (t->serial != nullptr ? t->serial : "transport"))); D("%s: starting read_transport thread on fd %d, SYNC online (%d)", t->serial, t->fd, t->sync_token + 1); p = get_apacket(); p->msg.command = A_SYNC; p->msg.arg0 = 1; p->msg.arg1 = ++(t->sync_token); p->msg.magic = A_SYNC ^ 0xffffffff; if (write_packet(t->fd, t->serial, &p)) { put_apacket(p); D("%s: failed to write SYNC packet", t->serial); goto oops; } D("%s: data pump started", t->serial); for (;;) { ATRACE_NAME("read_transport loop"); p = get_apacket(); { ATRACE_NAME("read_transport read_remote"); if (t->read_from_remote(p, t) != 0) { D("%s: remote read failed for transport", t->serial); put_apacket(p); break; } } D("%s: received remote packet, sending to transport", t->serial); if (write_packet(t->fd, t->serial, &p)) { put_apacket(p); D("%s: failed to write apacket to transport", t->serial); goto oops; } } D("%s: SYNC offline for transport", t->serial); p = get_apacket(); p->msg.command = A_SYNC; p->msg.arg0 = 0; p->msg.arg1 = 0; p->msg.magic = A_SYNC ^ 0xffffffff; if (write_packet(t->fd, t->serial, &p)) { put_apacket(p); D("%s: failed to write SYNC apacket to transport", t->serial); } oops: D("%s: read_transport thread is exiting", t->serial); kick_transport(t); transport_unref(t); } // write_transport thread gets packets sent by the main thread (through send_packet()), // and writes to a transport (representing a usb/tcp connection). static void write_transport_thread(void* _t) { atransport* t = reinterpret_cast<atransport*>(_t); apacket* p; int active = 0; adb_thread_setname( android::base::StringPrintf("->%s", (t->serial != nullptr ? t->serial : "transport"))); D("%s: starting write_transport thread, reading from fd %d", t->serial, t->fd); for (;;) { ATRACE_NAME("write_transport loop"); if (read_packet(t->fd, t->serial, &p)) { D("%s: failed to read apacket from transport on fd %d", t->serial, t->fd); break; } if (p->msg.command == A_SYNC) { if (p->msg.arg0 == 0) { D("%s: transport SYNC offline", t->serial); put_apacket(p); break; } else { if (p->msg.arg1 == t->sync_token) { D("%s: transport SYNC online", t->serial); active = 1; } else { D("%s: transport ignoring SYNC %d != %d", t->serial, p->msg.arg1, t->sync_token); } } } else { if (active) { D("%s: transport got packet, sending to remote", t->serial); ATRACE_NAME("write_transport write_remote"); t->write_to_remote(p, t); } else { D("%s: transport ignoring packet while offline", t->serial); } } put_apacket(p); } D("%s: write_transport thread is exiting, fd %d", t->serial, t->fd); kick_transport(t); transport_unref(t); } void kick_transport(atransport* t) { std::lock_guard<std::mutex> lock(transport_lock); // As kick_transport() can be called from threads without guarantee that t is valid, // check if the transport is in transport_list first. if (std::find(transport_list.begin(), transport_list.end(), t) != transport_list.end()) { t->Kick(); } } static int transport_registration_send = -1; static int transport_registration_recv = -1; static fdevent transport_registration_fde; #if ADB_HOST /* this adds support required by the 'track-devices' service. * this is used to send the content of "list_transport" to any * number of client connections that want it through a single * live TCP connection */ struct device_tracker { asocket socket; int update_needed; device_tracker* next; }; /* linked list of all device trackers */ static device_tracker* device_tracker_list; static void device_tracker_remove(device_tracker* tracker) { device_tracker** pnode = &device_tracker_list; device_tracker* node = *pnode; std::lock_guard<std::mutex> lock(transport_lock); while (node) { if (node == tracker) { *pnode = node->next; break; } pnode = &node->next; node = *pnode; } } static void device_tracker_close(asocket* socket) { device_tracker* tracker = (device_tracker*)socket; asocket* peer = socket->peer; D("device tracker %p removed", tracker); if (peer) { peer->peer = NULL; peer->close(peer); } device_tracker_remove(tracker); free(tracker); } static int device_tracker_enqueue(asocket* socket, apacket* p) { /* you can't read from a device tracker, close immediately */ put_apacket(p); device_tracker_close(socket); return -1; } static int device_tracker_send(device_tracker* tracker, const std::string& string) { apacket* p = get_apacket(); asocket* peer = tracker->socket.peer; snprintf(reinterpret_cast<char*>(p->data), 5, "%04x", static_cast<int>(string.size())); memcpy(&p->data[4], string.data(), string.size()); p->len = 4 + string.size(); return peer->enqueue(peer, p); } static void device_tracker_ready(asocket* socket) { device_tracker* tracker = reinterpret_cast<device_tracker*>(socket); // We want to send the device list when the tracker connects // for the first time, even if no update occurred. if (tracker->update_needed > 0) { tracker->update_needed = 0; std::string transports = list_transports(false); device_tracker_send(tracker, transports); } } asocket* create_device_tracker(void) { device_tracker* tracker = reinterpret_cast<device_tracker*>(calloc(1, sizeof(*tracker))); if (tracker == nullptr) fatal("cannot allocate device tracker"); D("device tracker %p created", tracker); tracker->socket.enqueue = device_tracker_enqueue; tracker->socket.ready = device_tracker_ready; tracker->socket.close = device_tracker_close; tracker->update_needed = 1; tracker->next = device_tracker_list; device_tracker_list = tracker; return &tracker->socket; } // Call this function each time the transport list has changed. void update_transports() { std::string transports = list_transports(false); device_tracker* tracker = device_tracker_list; while (tracker != nullptr) { device_tracker* next = tracker->next; // This may destroy the tracker if the connection is closed. device_tracker_send(tracker, transports); tracker = next; } } #else void update_transports() { // Nothing to do on the device side. } #endif // ADB_HOST struct tmsg { atransport* transport; int action; }; static int transport_read_action(int fd, struct tmsg* m) { char* p = (char*)m; int len = sizeof(*m); int r; while (len > 0) { r = adb_read(fd, p, len); if (r > 0) { len -= r; p += r; } else { D("transport_read_action: on fd %d: %s", fd, strerror(errno)); return -1; } } return 0; } static int transport_write_action(int fd, struct tmsg* m) { char* p = (char*)m; int len = sizeof(*m); int r; while (len > 0) { r = adb_write(fd, p, len); if (r > 0) { len -= r; p += r; } else { D("transport_write_action: on fd %d: %s", fd, strerror(errno)); return -1; } } return 0; } static void transport_registration_func(int _fd, unsigned ev, void* data) { tmsg m; int s[2]; atransport* t; if (!(ev & FDE_READ)) { return; } if (transport_read_action(_fd, &m)) { fatal_errno("cannot read transport registration socket"); } t = m.transport; if (m.action == 0) { D("transport: %s removing and free'ing %d", t->serial, t->transport_socket); /* IMPORTANT: the remove closes one half of the ** socket pair. The close closes the other half. */ fdevent_remove(&(t->transport_fde)); adb_close(t->fd); { std::lock_guard<std::mutex> lock(transport_lock); transport_list.remove(t); } if (t->product) free(t->product); if (t->serial) free(t->serial); if (t->model) free(t->model); if (t->device) free(t->device); if (t->devpath) free(t->devpath); delete t; update_transports(); return; } /* don't create transport threads for inaccessible devices */ if (t->connection_state != kCsNoPerm) { /* initial references are the two threads */ t->ref_count = 2; if (adb_socketpair(s)) { fatal_errno("cannot open transport socketpair"); } D("transport: %s socketpair: (%d,%d) starting", t->serial, s[0], s[1]); t->transport_socket = s[0]; t->fd = s[1]; fdevent_install(&(t->transport_fde), t->transport_socket, transport_socket_events, t); fdevent_set(&(t->transport_fde), FDE_READ); if (!adb_thread_create(write_transport_thread, t)) { fatal_errno("cannot create write_transport thread"); } if (!adb_thread_create(read_transport_thread, t)) { fatal_errno("cannot create read_transport thread"); } } { std::lock_guard<std::mutex> lock(transport_lock); pending_list.remove(t); transport_list.push_front(t); } update_transports(); } void init_transport_registration(void) { int s[2]; if (adb_socketpair(s)) { fatal_errno("cannot open transport registration socketpair"); } D("socketpair: (%d,%d)", s[0], s[1]); transport_registration_send = s[0]; transport_registration_recv = s[1]; fdevent_install(&transport_registration_fde, transport_registration_recv, transport_registration_func, 0); fdevent_set(&transport_registration_fde, FDE_READ); } /* the fdevent select pump is single threaded */ static void register_transport(atransport* transport) { tmsg m; m.transport = transport; m.action = 1; D("transport: %s registered", transport->serial); if (transport_write_action(transport_registration_send, &m)) { fatal_errno("cannot write transport registration socket\n"); } } static void remove_transport(atransport* transport) { tmsg m; m.transport = transport; m.action = 0; D("transport: %s removed", transport->serial); if (transport_write_action(transport_registration_send, &m)) { fatal_errno("cannot write transport registration socket\n"); } } static void transport_unref(atransport* t) { CHECK(t != nullptr); std::lock_guard<std::mutex> lock(transport_lock); CHECK_GT(t->ref_count, 0u); t->ref_count--; if (t->ref_count == 0) { D("transport: %s unref (kicking and closing)", t->serial); t->close(t); remove_transport(t); } else { D("transport: %s unref (count=%zu)", t->serial, t->ref_count); } } static int qual_match(const char* to_test, const char* prefix, const char* qual, bool sanitize_qual) { if (!to_test || !*to_test) /* Return true if both the qual and to_test are null strings. */ return !qual || !*qual; if (!qual) return 0; if (prefix) { while (*prefix) { if (*prefix++ != *to_test++) return 0; } } while (*qual) { char ch = *qual++; if (sanitize_qual && !isalnum(ch)) ch = '_'; if (ch != *to_test++) return 0; } /* Everything matched so far. Return true if *to_test is a NUL. */ return !*to_test; } atransport* acquire_one_transport(TransportType type, const char* serial, bool* is_ambiguous, std::string* error_out) { atransport* result = nullptr; if (serial) { *error_out = android::base::StringPrintf("device '%s' not found", serial); } else if (type == kTransportLocal) { *error_out = "no emulators found"; } else if (type == kTransportAny) { *error_out = "no devices/emulators found"; } else { *error_out = "no devices found"; } std::unique_lock<std::mutex> lock(transport_lock); for (const auto& t : transport_list) { if (t->connection_state == kCsNoPerm) { #if ADB_HOST *error_out = UsbNoPermissionsLongHelpText(); #endif continue; } // Check for matching serial number. if (serial) { if (t->MatchesTarget(serial)) { if (result) { *error_out = "more than one device"; if (is_ambiguous) *is_ambiguous = true; result = nullptr; break; } result = t; } } else { if (type == kTransportUsb && t->type == kTransportUsb) { if (result) { *error_out = "more than one device"; if (is_ambiguous) *is_ambiguous = true; result = nullptr; break; } result = t; } else if (type == kTransportLocal && t->type == kTransportLocal) { if (result) { *error_out = "more than one emulator"; if (is_ambiguous) *is_ambiguous = true; result = nullptr; break; } result = t; } else if (type == kTransportAny) { if (result) { *error_out = "more than one device/emulator"; if (is_ambiguous) *is_ambiguous = true; result = nullptr; break; } result = t; } } } lock.unlock(); // Don't return unauthorized devices; the caller can't do anything with them. if (result && result->connection_state == kCsUnauthorized) { *error_out = "device unauthorized.\n"; char* ADB_VENDOR_KEYS = getenv("ADB_VENDOR_KEYS"); *error_out += "This adb server's $ADB_VENDOR_KEYS is "; *error_out += ADB_VENDOR_KEYS ? ADB_VENDOR_KEYS : "not set"; *error_out += "\n"; *error_out += "Try 'adb kill-server' if that seems wrong.\n"; *error_out += "Otherwise check for a confirmation dialog on your device."; result = nullptr; } // Don't return offline devices; the caller can't do anything with them. if (result && result->connection_state == kCsOffline) { *error_out = "device offline"; result = nullptr; } if (result) { *error_out = "success"; } return result; } void atransport::Kick() { if (!kicked_) { kicked_ = true; CHECK(kick_func_ != nullptr); kick_func_(this); } } const std::string atransport::connection_state_name() const { switch (connection_state) { case kCsOffline: return "offline"; case kCsBootloader: return "bootloader"; case kCsDevice: return "device"; case kCsHost: return "host"; case kCsRecovery: return "recovery"; case kCsNoPerm: return UsbNoPermissionsShortHelpText(); case kCsSideload: return "sideload"; case kCsUnauthorized: return "unauthorized"; default: return "unknown"; } } void atransport::update_version(int version, size_t payload) { protocol_version = std::min(version, A_VERSION); max_payload = std::min(payload, MAX_PAYLOAD); } int atransport::get_protocol_version() const { return protocol_version; } size_t atransport::get_max_payload() const { return max_payload; } namespace { constexpr char kFeatureStringDelimiter = ','; } // namespace const FeatureSet& supported_features() { // Local static allocation to avoid global non-POD variables. static const FeatureSet* features = new FeatureSet{ kFeatureShell2, kFeatureCmd, kFeatureStat2, // Increment ADB_SERVER_VERSION whenever the feature list changes to // make sure that the adb client and server features stay in sync // (http://b/24370690). }; return *features; } std::string FeatureSetToString(const FeatureSet& features) { return android::base::Join(features, kFeatureStringDelimiter); } FeatureSet StringToFeatureSet(const std::string& features_string) { if (features_string.empty()) { return FeatureSet(); } auto names = android::base::Split(features_string, {kFeatureStringDelimiter}); return FeatureSet(names.begin(), names.end()); } bool CanUseFeature(const FeatureSet& feature_set, const std::string& feature) { return feature_set.count(feature) > 0 && supported_features().count(feature) > 0; } bool atransport::has_feature(const std::string& feature) const { return features_.count(feature) > 0; } void atransport::SetFeatures(const std::string& features_string) { features_ = StringToFeatureSet(features_string); } void atransport::AddDisconnect(adisconnect* disconnect) { disconnects_.push_back(disconnect); } void atransport::RemoveDisconnect(adisconnect* disconnect) { disconnects_.remove(disconnect); } void atransport::RunDisconnects() { for (const auto& disconnect : disconnects_) { disconnect->func(disconnect->opaque, this); } disconnects_.clear(); } bool atransport::MatchesTarget(const std::string& target) const { if (serial) { if (target == serial) { return true; } else if (type == kTransportLocal) { // Local transports can match [tcp:|udp:]<hostname>[:port]. const char* local_target_ptr = target.c_str(); // For fastboot compatibility, ignore protocol prefixes. if (android::base::StartsWith(target, "tcp:") || android::base::StartsWith(target, "udp:")) { local_target_ptr += 4; } // Parse our |serial| and the given |target| to check if the hostnames and ports match. std::string serial_host, error; int serial_port = -1; if (android::base::ParseNetAddress(serial, &serial_host, &serial_port, nullptr, &error)) { // |target| may omit the port to default to ours. std::string target_host; int target_port = serial_port; if (android::base::ParseNetAddress(local_target_ptr, &target_host, &target_port, nullptr, &error) && serial_host == target_host && serial_port == target_port) { return true; } } } } return (devpath && target == devpath) || qual_match(target.c_str(), "product:", product, false) || qual_match(target.c_str(), "model:", model, true) || qual_match(target.c_str(), "device:", device, false); } #if ADB_HOST static void append_transport_info(std::string* result, const char* key, const char* value, bool sanitize) { if (value == nullptr || *value == '\0') { return; } *result += ' '; *result += key; for (const char* p = value; *p; ++p) { result->push_back((!sanitize || isalnum(*p)) ? *p : '_'); } } static void append_transport(const atransport* t, std::string* result, bool long_listing) { const char* serial = t->serial; if (!serial || !serial[0]) { serial = "(no serial number)"; } if (!long_listing) { *result += serial; *result += '\t'; *result += t->connection_state_name(); } else { android::base::StringAppendF(result, "%-22s %s", serial, t->connection_state_name().c_str()); append_transport_info(result, "", t->devpath, false); append_transport_info(result, "product:", t->product, false); append_transport_info(result, "model:", t->model, true); append_transport_info(result, "device:", t->device, false); } *result += '\n'; } std::string list_transports(bool long_listing) { std::string result; std::lock_guard<std::mutex> lock(transport_lock); for (const auto& t : transport_list) { append_transport(t, &result, long_listing); } return result; } void close_usb_devices(std::function<bool(const atransport*)> predicate) { std::lock_guard<std::mutex> lock(transport_lock); for (auto& t : transport_list) { if (predicate(t)) { t->Kick(); } } } /* hack for osx */ void close_usb_devices() { close_usb_devices([](const atransport*) { return true; }); } #endif // ADB_HOST int register_socket_transport(int s, const char* serial, int port, int local) { atransport* t = new atransport(); if (!serial) { char buf[32]; snprintf(buf, sizeof(buf), "T-%p", t); serial = buf; } D("transport: %s init'ing for socket %d, on port %d", serial, s, port); if (init_socket_transport(t, s, port, local) < 0) { delete t; return -1; } std::unique_lock<std::mutex> lock(transport_lock); for (const auto& transport : pending_list) { if (transport->serial && strcmp(serial, transport->serial) == 0) { VLOG(TRANSPORT) << "socket transport " << transport->serial << " is already in pending_list and fails to register"; delete t; return -1; } } for (const auto& transport : transport_list) { if (transport->serial && strcmp(serial, transport->serial) == 0) { VLOG(TRANSPORT) << "socket transport " << transport->serial << " is already in transport_list and fails to register"; delete t; return -1; } } pending_list.push_front(t); t->serial = strdup(serial); lock.unlock(); register_transport(t); return 0; } #if ADB_HOST atransport* find_transport(const char* serial) { atransport* result = nullptr; std::lock_guard<std::mutex> lock(transport_lock); for (auto& t : transport_list) { if (t->serial && strcmp(serial, t->serial) == 0) { result = t; break; } } return result; } void kick_all_tcp_devices() { std::lock_guard<std::mutex> lock(transport_lock); for (auto& t : transport_list) { if (t->IsTcpDevice()) { // Kicking breaks the read_transport thread of this transport out of any read, then // the read_transport thread will notify the main thread to make this transport // offline. Then the main thread will notify the write_transport thread to exit. // Finally, this transport will be closed and freed in the main thread. t->Kick(); } } } #endif void register_usb_transport(usb_handle* usb, const char* serial, const char* devpath, unsigned writeable) { atransport* t = new atransport(); D("transport: %p init'ing for usb_handle %p (sn='%s')", t, usb, serial ? serial : ""); init_usb_transport(t, usb, (writeable ? kCsOffline : kCsNoPerm)); if (serial) { t->serial = strdup(serial); } if (devpath) { t->devpath = strdup(devpath); } { std::lock_guard<std::mutex> lock(transport_lock); pending_list.push_front(t); } register_transport(t); } // This should only be used for transports with connection_state == kCsNoPerm. void unregister_usb_transport(usb_handle* usb) { std::lock_guard<std::mutex> lock(transport_lock); transport_list.remove_if( [usb](atransport* t) { return t->usb == usb && t->connection_state == kCsNoPerm; }); } int check_header(apacket* p, atransport* t) { if (p->msg.magic != (p->msg.command ^ 0xffffffff)) { VLOG(RWX) << "check_header(): invalid magic"; return -1; } if (p->msg.data_length > t->get_max_payload()) { VLOG(RWX) << "check_header(): " << p->msg.data_length << " atransport::max_payload = " << t->get_max_payload(); return -1; } return 0; } int check_data(apacket* p) { if (calculate_apacket_checksum(p) != p->msg.data_check) { return -1; } return 0; } #if ADB_HOST std::shared_ptr<RSA> atransport::NextKey() { if (keys_.empty()) keys_ = adb_auth_get_private_keys(); std::shared_ptr<RSA> result = keys_[0]; keys_.pop_front(); return result; } #endif