/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define _GNU_SOURCE 1 #include <dirent.h> #include <dlfcn.h> #include <errno.h> #include <fcntl.h> #include <inttypes.h> #include <pthread.h> #include <signal.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ptrace.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <time.h> #include <unistd.h> #include <algorithm> #include <list> #include <memory> #include <ostream> #include <string> #include <vector> #include <backtrace/Backtrace.h> #include <backtrace/BacktraceMap.h> #include <android-base/macros.h> #include <android-base/stringprintf.h> #include <android-base/unique_fd.h> #include <cutils/atomic.h> #include <cutils/threads.h> #include <gtest/gtest.h> // For the THREAD_SIGNAL definition. #include "BacktraceCurrent.h" #include "backtrace_testlib.h" #include "thread_utils.h" // Number of microseconds per milliseconds. #define US_PER_MSEC 1000 // Number of nanoseconds in a second. #define NS_PER_SEC 1000000000ULL // Number of simultaneous dumping operations to perform. #define NUM_THREADS 40 // Number of simultaneous threads running in our forked process. #define NUM_PTRACE_THREADS 5 struct thread_t { pid_t tid; int32_t state; pthread_t threadId; void* data; }; struct dump_thread_t { thread_t thread; Backtrace* backtrace; int32_t* now; int32_t done; }; static uint64_t NanoTime() { struct timespec t = { 0, 0 }; clock_gettime(CLOCK_MONOTONIC, &t); return static_cast<uint64_t>(t.tv_sec * NS_PER_SEC + t.tv_nsec); } static std::string DumpFrames(Backtrace* backtrace) { if (backtrace->NumFrames() == 0) { return " No frames to dump.\n"; } std::string frame; for (size_t i = 0; i < backtrace->NumFrames(); i++) { frame += " " + backtrace->FormatFrameData(i) + '\n'; } return frame; } static void WaitForStop(pid_t pid) { uint64_t start = NanoTime(); siginfo_t si; while (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) < 0 && (errno == EINTR || errno == ESRCH)) { if ((NanoTime() - start) > NS_PER_SEC) { printf("The process did not get to a stopping point in 1 second.\n"); break; } usleep(US_PER_MSEC); } } static void CreateRemoteProcess(pid_t* pid) { if ((*pid = fork()) == 0) { while (true) ; _exit(0); } ASSERT_NE(-1, *pid); ASSERT_TRUE(ptrace(PTRACE_ATTACH, *pid, 0, 0) == 0); // Wait for the process to get to a stopping point. WaitForStop(*pid); } static void FinishRemoteProcess(pid_t pid) { ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); kill(pid, SIGKILL); ASSERT_EQ(waitpid(pid, nullptr, 0), pid); } static bool ReadyLevelBacktrace(Backtrace* backtrace) { // See if test_level_four is in the backtrace. bool found = false; for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) { if (it->func_name == "test_level_four") { found = true; break; } } return found; } static void VerifyLevelDump(Backtrace* backtrace) { ASSERT_GT(backtrace->NumFrames(), static_cast<size_t>(0)) << DumpFrames(backtrace); ASSERT_LT(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)) << DumpFrames(backtrace); // Look through the frames starting at the highest to find the // frame we want. size_t frame_num = 0; for (size_t i = backtrace->NumFrames()-1; i > 2; i--) { if (backtrace->GetFrame(i)->func_name == "test_level_one") { frame_num = i; break; } } ASSERT_LT(static_cast<size_t>(0), frame_num) << DumpFrames(backtrace); ASSERT_LE(static_cast<size_t>(3), frame_num) << DumpFrames(backtrace); ASSERT_EQ(backtrace->GetFrame(frame_num)->func_name, "test_level_one") << DumpFrames(backtrace); ASSERT_EQ(backtrace->GetFrame(frame_num-1)->func_name, "test_level_two") << DumpFrames(backtrace); ASSERT_EQ(backtrace->GetFrame(frame_num-2)->func_name, "test_level_three") << DumpFrames(backtrace); ASSERT_EQ(backtrace->GetFrame(frame_num-3)->func_name, "test_level_four") << DumpFrames(backtrace); } static void VerifyLevelBacktrace(void*) { std::unique_ptr<Backtrace> backtrace( Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); VerifyLevelDump(backtrace.get()); } static bool ReadyMaxBacktrace(Backtrace* backtrace) { return (backtrace->NumFrames() == MAX_BACKTRACE_FRAMES); } static void VerifyMaxDump(Backtrace* backtrace) { ASSERT_EQ(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)) << DumpFrames(backtrace); // Verify that the last frame is our recursive call. ASSERT_EQ(backtrace->GetFrame(MAX_BACKTRACE_FRAMES-1)->func_name, "test_recursive_call") << DumpFrames(backtrace); } static void VerifyMaxBacktrace(void*) { std::unique_ptr<Backtrace> backtrace( Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); VerifyMaxDump(backtrace.get()); } static void ThreadSetState(void* data) { thread_t* thread = reinterpret_cast<thread_t*>(data); android_atomic_acquire_store(1, &thread->state); volatile int i = 0; while (thread->state) { i++; } } static bool WaitForNonZero(int32_t* value, uint64_t seconds) { uint64_t start = NanoTime(); do { if (android_atomic_acquire_load(value)) { return true; } } while ((NanoTime() - start) < seconds * NS_PER_SEC); return false; } TEST(libbacktrace, local_no_unwind_frames) { // Verify that a local unwind does not include any frames within // libunwind or libbacktrace. std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), getpid())); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); ASSERT_TRUE(backtrace->NumFrames() != 0); for (const auto& frame : *backtrace ) { if (BacktraceMap::IsValid(frame.map)) { const std::string name = basename(frame.map.name.c_str()); ASSERT_TRUE(name != "libunwind.so" && name != "libbacktrace.so") << DumpFrames(backtrace.get()); } break; } } TEST(libbacktrace, local_trace) { ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelBacktrace, nullptr), 0); } static void VerifyIgnoreFrames(Backtrace* bt_all, Backtrace* bt_ign1, Backtrace* bt_ign2, const char* cur_proc) { EXPECT_EQ(bt_all->NumFrames(), bt_ign1->NumFrames() + 1) << "All backtrace:\n" << DumpFrames(bt_all) << "Ignore 1 backtrace:\n" << DumpFrames(bt_ign1); EXPECT_EQ(bt_all->NumFrames(), bt_ign2->NumFrames() + 2) << "All backtrace:\n" << DumpFrames(bt_all) << "Ignore 2 backtrace:\n" << DumpFrames(bt_ign2); // Check all of the frames are the same > the current frame. bool check = (cur_proc == nullptr); for (size_t i = 0; i < bt_ign2->NumFrames(); i++) { if (check) { EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_ign1->GetFrame(i+1)->pc); EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_ign1->GetFrame(i+1)->sp); EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_ign1->GetFrame(i+1)->stack_size); EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_all->GetFrame(i+2)->pc); EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_all->GetFrame(i+2)->sp); EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_all->GetFrame(i+2)->stack_size); } if (!check && bt_ign2->GetFrame(i)->func_name == cur_proc) { check = true; } } } static void VerifyLevelIgnoreFrames(void*) { std::unique_ptr<Backtrace> all( Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(all.get() != nullptr); ASSERT_TRUE(all->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, all->GetError()); std::unique_ptr<Backtrace> ign1( Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(ign1.get() != nullptr); ASSERT_TRUE(ign1->Unwind(1)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign1->GetError()); std::unique_ptr<Backtrace> ign2( Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(ign2.get() != nullptr); ASSERT_TRUE(ign2->Unwind(2)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign2->GetError()); VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), "VerifyLevelIgnoreFrames"); } TEST(libbacktrace, local_trace_ignore_frames) { ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelIgnoreFrames, nullptr), 0); } TEST(libbacktrace, local_max_trace) { ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxBacktrace, nullptr), 0); } static void VerifyProcTest(pid_t pid, pid_t tid, bool share_map, bool (*ReadyFunc)(Backtrace*), void (*VerifyFunc)(Backtrace*)) { pid_t ptrace_tid; if (tid < 0) { ptrace_tid = pid; } else { ptrace_tid = tid; } uint64_t start = NanoTime(); bool verified = false; std::string last_dump; do { usleep(US_PER_MSEC); if (ptrace(PTRACE_ATTACH, ptrace_tid, 0, 0) == 0) { // Wait for the process to get to a stopping point. WaitForStop(ptrace_tid); std::unique_ptr<BacktraceMap> map; if (share_map) { map.reset(BacktraceMap::Create(pid)); } std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, tid, map.get())); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); if (ReadyFunc(backtrace.get())) { VerifyFunc(backtrace.get()); verified = true; } else { last_dump = DumpFrames(backtrace.get()); } ASSERT_TRUE(ptrace(PTRACE_DETACH, ptrace_tid, 0, 0) == 0); } // If 5 seconds have passed, then we are done. } while (!verified && (NanoTime() - start) <= 5 * NS_PER_SEC); ASSERT_TRUE(verified) << "Last backtrace:\n" << last_dump; } TEST(libbacktrace, ptrace_trace) { pid_t pid; if ((pid = fork()) == 0) { ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); _exit(1); } VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyLevelDump); kill(pid, SIGKILL); int status; ASSERT_EQ(waitpid(pid, &status, 0), pid); } TEST(libbacktrace, ptrace_trace_shared_map) { pid_t pid; if ((pid = fork()) == 0) { ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); _exit(1); } VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, true, ReadyLevelBacktrace, VerifyLevelDump); kill(pid, SIGKILL); int status; ASSERT_EQ(waitpid(pid, &status, 0), pid); } TEST(libbacktrace, ptrace_max_trace) { pid_t pid; if ((pid = fork()) == 0) { ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, nullptr, nullptr), 0); _exit(1); } VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyMaxBacktrace, VerifyMaxDump); kill(pid, SIGKILL); int status; ASSERT_EQ(waitpid(pid, &status, 0), pid); } static void VerifyProcessIgnoreFrames(Backtrace* bt_all) { std::unique_ptr<Backtrace> ign1(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(ign1.get() != nullptr); ASSERT_TRUE(ign1->Unwind(1)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign1->GetError()); std::unique_ptr<Backtrace> ign2(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(ign2.get() != nullptr); ASSERT_TRUE(ign2->Unwind(2)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign2->GetError()); VerifyIgnoreFrames(bt_all, ign1.get(), ign2.get(), nullptr); } TEST(libbacktrace, ptrace_ignore_frames) { pid_t pid; if ((pid = fork()) == 0) { ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); _exit(1); } VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyProcessIgnoreFrames); kill(pid, SIGKILL); int status; ASSERT_EQ(waitpid(pid, &status, 0), pid); } // Create a process with multiple threads and dump all of the threads. static void* PtraceThreadLevelRun(void*) { EXPECT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); return nullptr; } static void GetThreads(pid_t pid, std::vector<pid_t>* threads) { // Get the list of tasks. char task_path[128]; snprintf(task_path, sizeof(task_path), "/proc/%d/task", pid); std::unique_ptr<DIR, decltype(&closedir)> tasks_dir(opendir(task_path), closedir); ASSERT_TRUE(tasks_dir != nullptr); struct dirent* entry; while ((entry = readdir(tasks_dir.get())) != nullptr) { char* end; pid_t tid = strtoul(entry->d_name, &end, 10); if (*end == '\0') { threads->push_back(tid); } } } TEST(libbacktrace, ptrace_threads) { pid_t pid; if ((pid = fork()) == 0) { for (size_t i = 0; i < NUM_PTRACE_THREADS; i++) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); pthread_t thread; ASSERT_TRUE(pthread_create(&thread, &attr, PtraceThreadLevelRun, nullptr) == 0); } ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); _exit(1); } // Check to see that all of the threads are running before unwinding. std::vector<pid_t> threads; uint64_t start = NanoTime(); do { usleep(US_PER_MSEC); threads.clear(); GetThreads(pid, &threads); } while ((threads.size() != NUM_PTRACE_THREADS + 1) && ((NanoTime() - start) <= 5 * NS_PER_SEC)); ASSERT_EQ(threads.size(), static_cast<size_t>(NUM_PTRACE_THREADS + 1)); ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); WaitForStop(pid); for (std::vector<int>::const_iterator it = threads.begin(); it != threads.end(); ++it) { // Skip the current forked process, we only care about the threads. if (pid == *it) { continue; } VerifyProcTest(pid, *it, false, ReadyLevelBacktrace, VerifyLevelDump); } FinishRemoteProcess(pid); } void VerifyLevelThread(void*) { std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid())); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); VerifyLevelDump(backtrace.get()); } TEST(libbacktrace, thread_current_level) { ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelThread, nullptr), 0); } static void VerifyMaxThread(void*) { std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid())); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); VerifyMaxDump(backtrace.get()); } TEST(libbacktrace, thread_current_max) { ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxThread, nullptr), 0); } static void* ThreadLevelRun(void* data) { thread_t* thread = reinterpret_cast<thread_t*>(data); thread->tid = gettid(); EXPECT_NE(test_level_one(1, 2, 3, 4, ThreadSetState, data), 0); return nullptr; } TEST(libbacktrace, thread_level_trace) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); thread_t thread_data = { 0, 0, 0, nullptr }; pthread_t thread; ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); // Wait up to 2 seconds for the tid to be set. ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); // Make sure that the thread signal used is not visible when compiled for // the target. #if !defined(__GLIBC__) ASSERT_LT(THREAD_SIGNAL, SIGRTMIN); #endif // Save the current signal action and make sure it is restored afterwards. struct sigaction cur_action; ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &cur_action) == 0); std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); VerifyLevelDump(backtrace.get()); // Tell the thread to exit its infinite loop. android_atomic_acquire_store(0, &thread_data.state); // Verify that the old action was restored. struct sigaction new_action; ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &new_action) == 0); EXPECT_EQ(cur_action.sa_sigaction, new_action.sa_sigaction); // The SA_RESTORER flag gets set behind our back, so a direct comparison // doesn't work unless we mask the value off. Mips doesn't have this // flag, so skip this on that platform. #if defined(SA_RESTORER) cur_action.sa_flags &= ~SA_RESTORER; new_action.sa_flags &= ~SA_RESTORER; #elif defined(__GLIBC__) // Our host compiler doesn't appear to define this flag for some reason. cur_action.sa_flags &= ~0x04000000; new_action.sa_flags &= ~0x04000000; #endif EXPECT_EQ(cur_action.sa_flags, new_action.sa_flags); } TEST(libbacktrace, thread_ignore_frames) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); thread_t thread_data = { 0, 0, 0, nullptr }; pthread_t thread; ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); // Wait up to 2 seconds for the tid to be set. ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); std::unique_ptr<Backtrace> all(Backtrace::Create(getpid(), thread_data.tid)); ASSERT_TRUE(all.get() != nullptr); ASSERT_TRUE(all->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, all->GetError()); std::unique_ptr<Backtrace> ign1(Backtrace::Create(getpid(), thread_data.tid)); ASSERT_TRUE(ign1.get() != nullptr); ASSERT_TRUE(ign1->Unwind(1)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign1->GetError()); std::unique_ptr<Backtrace> ign2(Backtrace::Create(getpid(), thread_data.tid)); ASSERT_TRUE(ign2.get() != nullptr); ASSERT_TRUE(ign2->Unwind(2)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign2->GetError()); VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), nullptr); // Tell the thread to exit its infinite loop. android_atomic_acquire_store(0, &thread_data.state); } static void* ThreadMaxRun(void* data) { thread_t* thread = reinterpret_cast<thread_t*>(data); thread->tid = gettid(); EXPECT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, ThreadSetState, data), 0); return nullptr; } TEST(libbacktrace, thread_max_trace) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); thread_t thread_data = { 0, 0, 0, nullptr }; pthread_t thread; ASSERT_TRUE(pthread_create(&thread, &attr, ThreadMaxRun, &thread_data) == 0); // Wait for the tid to be set. ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); VerifyMaxDump(backtrace.get()); // Tell the thread to exit its infinite loop. android_atomic_acquire_store(0, &thread_data.state); } static void* ThreadDump(void* data) { dump_thread_t* dump = reinterpret_cast<dump_thread_t*>(data); while (true) { if (android_atomic_acquire_load(dump->now)) { break; } } // The status of the actual unwind will be checked elsewhere. dump->backtrace = Backtrace::Create(getpid(), dump->thread.tid); dump->backtrace->Unwind(0); android_atomic_acquire_store(1, &dump->done); return nullptr; } TEST(libbacktrace, thread_multiple_dump) { // Dump NUM_THREADS simultaneously. std::vector<thread_t> runners(NUM_THREADS); std::vector<dump_thread_t> dumpers(NUM_THREADS); pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); for (size_t i = 0; i < NUM_THREADS; i++) { // Launch the runners, they will spin in hard loops doing nothing. runners[i].tid = 0; runners[i].state = 0; ASSERT_TRUE(pthread_create(&runners[i].threadId, &attr, ThreadMaxRun, &runners[i]) == 0); } // Wait for tids to be set. for (std::vector<thread_t>::iterator it = runners.begin(); it != runners.end(); ++it) { ASSERT_TRUE(WaitForNonZero(&it->state, 30)); } // Start all of the dumpers at once, they will spin until they are signalled // to begin their dump run. int32_t dump_now = 0; for (size_t i = 0; i < NUM_THREADS; i++) { dumpers[i].thread.tid = runners[i].tid; dumpers[i].thread.state = 0; dumpers[i].done = 0; dumpers[i].now = &dump_now; ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0); } // Start all of the dumpers going at once. android_atomic_acquire_store(1, &dump_now); for (size_t i = 0; i < NUM_THREADS; i++) { ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 30)); // Tell the runner thread to exit its infinite loop. android_atomic_acquire_store(0, &runners[i].state); ASSERT_TRUE(dumpers[i].backtrace != nullptr); VerifyMaxDump(dumpers[i].backtrace); delete dumpers[i].backtrace; dumpers[i].backtrace = nullptr; } } TEST(libbacktrace, thread_multiple_dump_same_thread) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); thread_t runner; runner.tid = 0; runner.state = 0; ASSERT_TRUE(pthread_create(&runner.threadId, &attr, ThreadMaxRun, &runner) == 0); // Wait for tids to be set. ASSERT_TRUE(WaitForNonZero(&runner.state, 30)); // Start all of the dumpers at once, they will spin until they are signalled // to begin their dump run. int32_t dump_now = 0; // Dump the same thread NUM_THREADS simultaneously. std::vector<dump_thread_t> dumpers(NUM_THREADS); for (size_t i = 0; i < NUM_THREADS; i++) { dumpers[i].thread.tid = runner.tid; dumpers[i].thread.state = 0; dumpers[i].done = 0; dumpers[i].now = &dump_now; ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0); } // Start all of the dumpers going at once. android_atomic_acquire_store(1, &dump_now); for (size_t i = 0; i < NUM_THREADS; i++) { ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 30)); ASSERT_TRUE(dumpers[i].backtrace != nullptr); VerifyMaxDump(dumpers[i].backtrace); delete dumpers[i].backtrace; dumpers[i].backtrace = nullptr; } // Tell the runner thread to exit its infinite loop. android_atomic_acquire_store(0, &runner.state); } // This test is for UnwindMaps that should share the same map cursor when // multiple maps are created for the current process at the same time. TEST(libbacktrace, simultaneous_maps) { BacktraceMap* map1 = BacktraceMap::Create(getpid()); BacktraceMap* map2 = BacktraceMap::Create(getpid()); BacktraceMap* map3 = BacktraceMap::Create(getpid()); Backtrace* back1 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map1); ASSERT_TRUE(back1 != nullptr); EXPECT_TRUE(back1->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, back1->GetError()); delete back1; delete map1; Backtrace* back2 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map2); ASSERT_TRUE(back2 != nullptr); EXPECT_TRUE(back2->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, back2->GetError()); delete back2; delete map2; Backtrace* back3 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map3); ASSERT_TRUE(back3 != nullptr); EXPECT_TRUE(back3->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, back3->GetError()); delete back3; delete map3; } TEST(libbacktrace, fillin_erases) { BacktraceMap* back_map = BacktraceMap::Create(getpid()); backtrace_map_t map; map.start = 1; map.end = 3; map.flags = 1; map.name = "Initialized"; back_map->FillIn(0, &map); delete back_map; ASSERT_FALSE(BacktraceMap::IsValid(map)); ASSERT_EQ(static_cast<uintptr_t>(0), map.start); ASSERT_EQ(static_cast<uintptr_t>(0), map.end); ASSERT_EQ(0, map.flags); ASSERT_EQ("", map.name); } TEST(libbacktrace, format_test) { std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(backtrace.get() != nullptr); backtrace_frame_data_t frame; frame.num = 1; frame.pc = 2; frame.sp = 0; frame.stack_size = 0; frame.func_offset = 0; // Check no map set. frame.num = 1; #if defined(__LP64__) EXPECT_EQ("#01 pc 0000000000000002 <unknown>", #else EXPECT_EQ("#01 pc 00000002 <unknown>", #endif backtrace->FormatFrameData(&frame)); // Check map name empty, but exists. frame.pc = 0xb0020; frame.map.start = 0xb0000; frame.map.end = 0xbffff; frame.map.load_base = 0; #if defined(__LP64__) EXPECT_EQ("#01 pc 0000000000000020 <anonymous:00000000000b0000>", #else EXPECT_EQ("#01 pc 00000020 <anonymous:000b0000>", #endif backtrace->FormatFrameData(&frame)); // Check map name begins with a [. frame.pc = 0xc0020; frame.map.start = 0xc0000; frame.map.end = 0xcffff; frame.map.load_base = 0; frame.map.name = "[anon:thread signal stack]"; #if defined(__LP64__) EXPECT_EQ("#01 pc 0000000000000020 [anon:thread signal stack:00000000000c0000]", #else EXPECT_EQ("#01 pc 00000020 [anon:thread signal stack:000c0000]", #endif backtrace->FormatFrameData(&frame)); // Check relative pc is set and map name is set. frame.pc = 0x12345679; frame.map.name = "MapFake"; frame.map.start = 1; frame.map.end = 1; #if defined(__LP64__) EXPECT_EQ("#01 pc 0000000012345678 MapFake", #else EXPECT_EQ("#01 pc 12345678 MapFake", #endif backtrace->FormatFrameData(&frame)); // Check func_name is set, but no func offset. frame.func_name = "ProcFake"; #if defined(__LP64__) EXPECT_EQ("#01 pc 0000000012345678 MapFake (ProcFake)", #else EXPECT_EQ("#01 pc 12345678 MapFake (ProcFake)", #endif backtrace->FormatFrameData(&frame)); // Check func_name is set, and func offset is non-zero. frame.func_offset = 645; #if defined(__LP64__) EXPECT_EQ("#01 pc 0000000012345678 MapFake (ProcFake+645)", #else EXPECT_EQ("#01 pc 12345678 MapFake (ProcFake+645)", #endif backtrace->FormatFrameData(&frame)); // Check func_name is set, func offset is non-zero, and load_base is non-zero. frame.func_offset = 645; frame.map.load_base = 100; #if defined(__LP64__) EXPECT_EQ("#01 pc 00000000123456dc MapFake (ProcFake+645)", #else EXPECT_EQ("#01 pc 123456dc MapFake (ProcFake+645)", #endif backtrace->FormatFrameData(&frame)); // Check a non-zero map offset. frame.map.offset = 0x1000; #if defined(__LP64__) EXPECT_EQ("#01 pc 00000000123456dc MapFake (offset 0x1000) (ProcFake+645)", #else EXPECT_EQ("#01 pc 123456dc MapFake (offset 0x1000) (ProcFake+645)", #endif backtrace->FormatFrameData(&frame)); } struct map_test_t { uintptr_t start; uintptr_t end; }; static bool map_sort(map_test_t i, map_test_t j) { return i.start < j.start; } static void VerifyMap(pid_t pid) { char buffer[4096]; snprintf(buffer, sizeof(buffer), "/proc/%d/maps", pid); FILE* map_file = fopen(buffer, "r"); ASSERT_TRUE(map_file != nullptr); std::vector<map_test_t> test_maps; while (fgets(buffer, sizeof(buffer), map_file)) { map_test_t map; ASSERT_EQ(2, sscanf(buffer, "%" SCNxPTR "-%" SCNxPTR " ", &map.start, &map.end)); test_maps.push_back(map); } fclose(map_file); std::sort(test_maps.begin(), test_maps.end(), map_sort); std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(pid)); // Basic test that verifies that the map is in the expected order. ScopedBacktraceMapIteratorLock lock(map.get()); std::vector<map_test_t>::const_iterator test_it = test_maps.begin(); for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) { ASSERT_TRUE(test_it != test_maps.end()); ASSERT_EQ(test_it->start, it->start); ASSERT_EQ(test_it->end, it->end); ++test_it; } ASSERT_TRUE(test_it == test_maps.end()); } TEST(libbacktrace, verify_map_remote) { pid_t pid; CreateRemoteProcess(&pid); // The maps should match exactly since the forked process has been paused. VerifyMap(pid); FinishRemoteProcess(pid); } static void InitMemory(uint8_t* memory, size_t bytes) { for (size_t i = 0; i < bytes; i++) { memory[i] = i; if (memory[i] == '\0') { // Don't use '\0' in our data so we can verify that an overread doesn't // occur by using a '\0' as the character after the read data. memory[i] = 23; } } } static void* ThreadReadTest(void* data) { thread_t* thread_data = reinterpret_cast<thread_t*>(data); thread_data->tid = gettid(); // Create two map pages. // Mark the second page as not-readable. size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE)); uint8_t* memory; if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) { return reinterpret_cast<void*>(-1); } if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) { return reinterpret_cast<void*>(-1); } // Set up a simple pattern in memory. InitMemory(memory, pagesize); thread_data->data = memory; // Tell the caller it's okay to start reading memory. android_atomic_acquire_store(1, &thread_data->state); // Loop waiting for the caller to finish reading the memory. while (thread_data->state) { } // Re-enable read-write on the page so that we don't crash if we try // and access data on this page when freeing the memory. if (mprotect(&memory[pagesize], pagesize, PROT_READ | PROT_WRITE) != 0) { return reinterpret_cast<void*>(-1); } free(memory); android_atomic_acquire_store(1, &thread_data->state); return nullptr; } static void RunReadTest(Backtrace* backtrace, uintptr_t read_addr) { size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE)); // Create a page of data to use to do quick compares. uint8_t* expected = new uint8_t[pagesize]; InitMemory(expected, pagesize); uint8_t* data = new uint8_t[2*pagesize]; // Verify that we can only read one page worth of data. size_t bytes_read = backtrace->Read(read_addr, data, 2 * pagesize); ASSERT_EQ(pagesize, bytes_read); ASSERT_TRUE(memcmp(data, expected, pagesize) == 0); // Verify unaligned reads. for (size_t i = 1; i < sizeof(word_t); i++) { bytes_read = backtrace->Read(read_addr + i, data, 2 * sizeof(word_t)); ASSERT_EQ(2 * sizeof(word_t), bytes_read); ASSERT_TRUE(memcmp(data, &expected[i], 2 * sizeof(word_t)) == 0) << "Offset at " << i << " failed"; } // Verify small unaligned reads. for (size_t i = 1; i < sizeof(word_t); i++) { for (size_t j = 1; j < sizeof(word_t); j++) { // Set one byte past what we expect to read, to guarantee we don't overread. data[j] = '\0'; bytes_read = backtrace->Read(read_addr + i, data, j); ASSERT_EQ(j, bytes_read); ASSERT_TRUE(memcmp(data, &expected[i], j) == 0) << "Offset at " << i << " length " << j << " miscompared"; ASSERT_EQ('\0', data[j]) << "Offset at " << i << " length " << j << " wrote too much data"; } } delete[] data; delete[] expected; } TEST(libbacktrace, thread_read) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); pthread_t thread; thread_t thread_data = { 0, 0, 0, nullptr }; ASSERT_TRUE(pthread_create(&thread, &attr, ThreadReadTest, &thread_data) == 0); ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10)); std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); ASSERT_TRUE(backtrace.get() != nullptr); RunReadTest(backtrace.get(), reinterpret_cast<uintptr_t>(thread_data.data)); android_atomic_acquire_store(0, &thread_data.state); ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10)); } volatile uintptr_t g_ready = 0; volatile uintptr_t g_addr = 0; static void ForkedReadTest() { // Create two map pages. size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE)); uint8_t* memory; if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) { perror("Failed to allocate memory\n"); exit(1); } // Mark the second page as not-readable. if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) { perror("Failed to mprotect memory\n"); exit(1); } // Set up a simple pattern in memory. InitMemory(memory, pagesize); g_addr = reinterpret_cast<uintptr_t>(memory); g_ready = 1; while (1) { usleep(US_PER_MSEC); } } TEST(libbacktrace, process_read) { g_ready = 0; pid_t pid; if ((pid = fork()) == 0) { ForkedReadTest(); exit(0); } ASSERT_NE(-1, pid); bool test_executed = false; uint64_t start = NanoTime(); while (1) { if (ptrace(PTRACE_ATTACH, pid, 0, 0) == 0) { WaitForStop(pid); std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); ASSERT_TRUE(backtrace.get() != nullptr); uintptr_t read_addr; size_t bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(&g_ready), reinterpret_cast<uint8_t*>(&read_addr), sizeof(uintptr_t)); ASSERT_EQ(sizeof(uintptr_t), bytes_read); if (read_addr) { // The forked process is ready to be read. bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(&g_addr), reinterpret_cast<uint8_t*>(&read_addr), sizeof(uintptr_t)); ASSERT_EQ(sizeof(uintptr_t), bytes_read); RunReadTest(backtrace.get(), read_addr); test_executed = true; break; } ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); } if ((NanoTime() - start) > 5 * NS_PER_SEC) { break; } usleep(US_PER_MSEC); } kill(pid, SIGKILL); ASSERT_EQ(waitpid(pid, nullptr, 0), pid); ASSERT_TRUE(test_executed); } static void VerifyFunctionsFound(const std::vector<std::string>& found_functions) { // We expect to find these functions in libbacktrace_test. If we don't // find them, that's a bug in the memory read handling code in libunwind. std::list<std::string> expected_functions; expected_functions.push_back("test_recursive_call"); expected_functions.push_back("test_level_one"); expected_functions.push_back("test_level_two"); expected_functions.push_back("test_level_three"); expected_functions.push_back("test_level_four"); for (const auto& found_function : found_functions) { for (const auto& expected_function : expected_functions) { if (found_function == expected_function) { expected_functions.remove(found_function); break; } } } ASSERT_TRUE(expected_functions.empty()) << "Not all functions found in shared library."; } static const char* CopySharedLibrary() { #if defined(__LP64__) const char* lib_name = "lib64"; #else const char* lib_name = "lib"; #endif #if defined(__BIONIC__) const char* tmp_so_name = "/data/local/tmp/libbacktrace_test.so"; std::string cp_cmd = android::base::StringPrintf("cp /system/%s/libbacktrace_test.so %s", lib_name, tmp_so_name); #else const char* tmp_so_name = "/tmp/libbacktrace_test.so"; if (getenv("ANDROID_HOST_OUT") == NULL) { fprintf(stderr, "ANDROID_HOST_OUT not set, make sure you run lunch."); return nullptr; } std::string cp_cmd = android::base::StringPrintf("cp %s/%s/libbacktrace_test.so %s", getenv("ANDROID_HOST_OUT"), lib_name, tmp_so_name); #endif // Copy the shared so to a tempory directory. system(cp_cmd.c_str()); return tmp_so_name; } TEST(libbacktrace, check_unreadable_elf_local) { const char* tmp_so_name = CopySharedLibrary(); ASSERT_TRUE(tmp_so_name != nullptr); struct stat buf; ASSERT_TRUE(stat(tmp_so_name, &buf) != -1); uintptr_t map_size = buf.st_size; int fd = open(tmp_so_name, O_RDONLY); ASSERT_TRUE(fd != -1); void* map = mmap(NULL, map_size, PROT_READ | PROT_EXEC, MAP_PRIVATE, fd, 0); ASSERT_TRUE(map != MAP_FAILED); close(fd); ASSERT_TRUE(unlink(tmp_so_name) != -1); std::vector<std::string> found_functions; std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(backtrace.get() != nullptr); // Needed before GetFunctionName will work. backtrace->Unwind(0); // Loop through the entire map, and get every function we can find. map_size += reinterpret_cast<uintptr_t>(map); std::string last_func; for (uintptr_t read_addr = reinterpret_cast<uintptr_t>(map); read_addr < map_size; read_addr += 4) { uintptr_t offset; std::string func_name = backtrace->GetFunctionName(read_addr, &offset); if (!func_name.empty() && last_func != func_name) { found_functions.push_back(func_name); } last_func = func_name; } ASSERT_TRUE(munmap(map, map_size - reinterpret_cast<uintptr_t>(map)) == 0); VerifyFunctionsFound(found_functions); } TEST(libbacktrace, check_unreadable_elf_remote) { const char* tmp_so_name = CopySharedLibrary(); ASSERT_TRUE(tmp_so_name != nullptr); g_ready = 0; struct stat buf; ASSERT_TRUE(stat(tmp_so_name, &buf) != -1); uintptr_t map_size = buf.st_size; pid_t pid; if ((pid = fork()) == 0) { int fd = open(tmp_so_name, O_RDONLY); if (fd == -1) { fprintf(stderr, "Failed to open file %s: %s\n", tmp_so_name, strerror(errno)); unlink(tmp_so_name); exit(0); } void* map = mmap(NULL, map_size, PROT_READ | PROT_EXEC, MAP_PRIVATE, fd, 0); if (map == MAP_FAILED) { fprintf(stderr, "Failed to map in memory: %s\n", strerror(errno)); unlink(tmp_so_name); exit(0); } close(fd); if (unlink(tmp_so_name) == -1) { fprintf(stderr, "Failed to unlink: %s\n", strerror(errno)); exit(0); } g_addr = reinterpret_cast<uintptr_t>(map); g_ready = 1; while (true) { usleep(US_PER_MSEC); } exit(0); } ASSERT_TRUE(pid > 0); std::vector<std::string> found_functions; uint64_t start = NanoTime(); while (true) { ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); // Wait for the process to get to a stopping point. WaitForStop(pid); std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(backtrace.get() != nullptr); uintptr_t read_addr; ASSERT_EQ(sizeof(uintptr_t), backtrace->Read(reinterpret_cast<uintptr_t>(&g_ready), reinterpret_cast<uint8_t*>(&read_addr), sizeof(uintptr_t))); if (read_addr) { ASSERT_EQ(sizeof(uintptr_t), backtrace->Read(reinterpret_cast<uintptr_t>(&g_addr), reinterpret_cast<uint8_t*>(&read_addr), sizeof(uintptr_t))); // Needed before GetFunctionName will work. backtrace->Unwind(0); // Loop through the entire map, and get every function we can find. map_size += read_addr; std::string last_func; for (; read_addr < map_size; read_addr += 4) { uintptr_t offset; std::string func_name = backtrace->GetFunctionName(read_addr, &offset); if (!func_name.empty() && last_func != func_name) { found_functions.push_back(func_name); } last_func = func_name; } break; } ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); if ((NanoTime() - start) > 5 * NS_PER_SEC) { break; } usleep(US_PER_MSEC); } kill(pid, SIGKILL); ASSERT_EQ(waitpid(pid, nullptr, 0), pid); VerifyFunctionsFound(found_functions); } static bool FindFuncFrameInBacktrace(Backtrace* backtrace, uintptr_t test_func, size_t* frame_num) { backtrace_map_t map; backtrace->FillInMap(test_func, &map); if (!BacktraceMap::IsValid(map)) { return false; } // Loop through the frames, and find the one that is in the map. *frame_num = 0; for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) { if (BacktraceMap::IsValid(it->map) && map.start == it->map.start && it->pc >= test_func) { *frame_num = it->num; return true; } } return false; } static void VerifyUnreadableElfFrame(Backtrace* backtrace, uintptr_t test_func, size_t frame_num) { ASSERT_LT(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)) << DumpFrames(backtrace); ASSERT_TRUE(frame_num != 0) << DumpFrames(backtrace); // Make sure that there is at least one more frame above the test func call. ASSERT_LT(frame_num, backtrace->NumFrames()) << DumpFrames(backtrace); uintptr_t diff = backtrace->GetFrame(frame_num)->pc - test_func; ASSERT_LT(diff, 200U) << DumpFrames(backtrace); } static void VerifyUnreadableElfBacktrace(uintptr_t test_func) { std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); size_t frame_num; ASSERT_TRUE(FindFuncFrameInBacktrace(backtrace.get(), test_func, &frame_num)); VerifyUnreadableElfFrame(backtrace.get(), test_func, frame_num); } typedef int (*test_func_t)(int, int, int, int, void (*)(uintptr_t), uintptr_t); TEST(libbacktrace, unwind_through_unreadable_elf_local) { const char* tmp_so_name = CopySharedLibrary(); ASSERT_TRUE(tmp_so_name != nullptr); void* lib_handle = dlopen(tmp_so_name, RTLD_NOW); ASSERT_TRUE(lib_handle != nullptr); ASSERT_TRUE(unlink(tmp_so_name) != -1); test_func_t test_func; test_func = reinterpret_cast<test_func_t>(dlsym(lib_handle, "test_level_one")); ASSERT_TRUE(test_func != nullptr); ASSERT_NE(test_func(1, 2, 3, 4, VerifyUnreadableElfBacktrace, reinterpret_cast<uintptr_t>(test_func)), 0); ASSERT_TRUE(dlclose(lib_handle) == 0); } TEST(libbacktrace, unwind_through_unreadable_elf_remote) { const char* tmp_so_name = CopySharedLibrary(); ASSERT_TRUE(tmp_so_name != nullptr); void* lib_handle = dlopen(tmp_so_name, RTLD_NOW); ASSERT_TRUE(lib_handle != nullptr); ASSERT_TRUE(unlink(tmp_so_name) != -1); test_func_t test_func; test_func = reinterpret_cast<test_func_t>(dlsym(lib_handle, "test_level_one")); ASSERT_TRUE(test_func != nullptr); pid_t pid; if ((pid = fork()) == 0) { test_func(1, 2, 3, 4, 0, 0); exit(0); } ASSERT_TRUE(pid > 0); ASSERT_TRUE(dlclose(lib_handle) == 0); uint64_t start = NanoTime(); bool done = false; while (!done) { ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); // Wait for the process to get to a stopping point. WaitForStop(pid); std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); size_t frame_num; if (FindFuncFrameInBacktrace(backtrace.get(), reinterpret_cast<uintptr_t>(test_func), &frame_num)) { VerifyUnreadableElfFrame(backtrace.get(), reinterpret_cast<uintptr_t>(test_func), frame_num); done = true; } ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); if ((NanoTime() - start) > 5 * NS_PER_SEC) { break; } usleep(US_PER_MSEC); } kill(pid, SIGKILL); ASSERT_EQ(waitpid(pid, nullptr, 0), pid); ASSERT_TRUE(done) << "Test function never found in unwind."; } TEST(libbacktrace, unwind_thread_doesnt_exist) { std::unique_ptr<Backtrace> backtrace( Backtrace::Create(BACKTRACE_CURRENT_PROCESS, 99999999)); ASSERT_TRUE(backtrace.get() != nullptr); ASSERT_FALSE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_ERROR_THREAD_DOESNT_EXIST, backtrace->GetError()); } TEST(libbacktrace, local_get_function_name_before_unwind) { std::unique_ptr<Backtrace> backtrace( Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(backtrace.get() != nullptr); // Verify that trying to get a function name before doing an unwind works. uintptr_t cur_func_offset = reinterpret_cast<uintptr_t>(&test_level_one) + 1; size_t offset; ASSERT_NE(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset)); } TEST(libbacktrace, remote_get_function_name_before_unwind) { pid_t pid; CreateRemoteProcess(&pid); // Now create an unwind object. std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); // Verify that trying to get a function name before doing an unwind works. uintptr_t cur_func_offset = reinterpret_cast<uintptr_t>(&test_level_one) + 1; size_t offset; ASSERT_NE(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset)); FinishRemoteProcess(pid); } static void SetUcontextSp(uintptr_t sp, ucontext_t* ucontext) { #if defined(__arm__) ucontext->uc_mcontext.arm_sp = sp; #elif defined(__aarch64__) ucontext->uc_mcontext.sp = sp; #elif defined(__i386__) ucontext->uc_mcontext.gregs[REG_ESP] = sp; #elif defined(__x86_64__) ucontext->uc_mcontext.gregs[REG_RSP] = sp; #else UNUSED(sp); UNUSED(ucontext); ASSERT_TRUE(false) << "Unsupported architecture"; #endif } static void SetUcontextPc(uintptr_t pc, ucontext_t* ucontext) { #if defined(__arm__) ucontext->uc_mcontext.arm_pc = pc; #elif defined(__aarch64__) ucontext->uc_mcontext.pc = pc; #elif defined(__i386__) ucontext->uc_mcontext.gregs[REG_EIP] = pc; #elif defined(__x86_64__) ucontext->uc_mcontext.gregs[REG_RIP] = pc; #else UNUSED(pc); UNUSED(ucontext); ASSERT_TRUE(false) << "Unsupported architecture"; #endif } static void SetUcontextLr(uintptr_t lr, ucontext_t* ucontext) { #if defined(__arm__) ucontext->uc_mcontext.arm_lr = lr; #elif defined(__aarch64__) ucontext->uc_mcontext.regs[30] = lr; #elif defined(__i386__) // The lr is on the stack. ASSERT_TRUE(lr != 0); ASSERT_TRUE(ucontext != nullptr); #elif defined(__x86_64__) // The lr is on the stack. ASSERT_TRUE(lr != 0); ASSERT_TRUE(ucontext != nullptr); #else UNUSED(lr); UNUSED(ucontext); ASSERT_TRUE(false) << "Unsupported architecture"; #endif } static constexpr size_t DEVICE_MAP_SIZE = 1024; static void SetupDeviceMap(void** device_map) { // Make sure that anything in a device map will result in fails // to read. android::base::unique_fd device_fd(open("/dev/zero", O_RDONLY | O_CLOEXEC)); *device_map = mmap(nullptr, 1024, PROT_READ, MAP_PRIVATE, device_fd, 0); ASSERT_TRUE(*device_map != MAP_FAILED); // Make sure the map is readable. ASSERT_EQ(0, reinterpret_cast<int*>(*device_map)[0]); } static void UnwindFromDevice(Backtrace* backtrace, void* device_map) { uintptr_t device_map_uint = reinterpret_cast<uintptr_t>(device_map); backtrace_map_t map; backtrace->FillInMap(device_map_uint, &map); // Verify the flag is set. ASSERT_EQ(PROT_DEVICE_MAP, map.flags & PROT_DEVICE_MAP); // Quick sanity checks. size_t offset; ASSERT_EQ(std::string(""), backtrace->GetFunctionName(device_map_uint, &offset)); ASSERT_EQ(std::string(""), backtrace->GetFunctionName(device_map_uint, &offset, &map)); ASSERT_EQ(std::string(""), backtrace->GetFunctionName(0, &offset)); uintptr_t cur_func_offset = reinterpret_cast<uintptr_t>(&test_level_one) + 1; // Now verify the device map flag actually causes the function name to be empty. backtrace->FillInMap(cur_func_offset, &map); ASSERT_TRUE((map.flags & PROT_DEVICE_MAP) == 0); ASSERT_NE(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset, &map)); map.flags |= PROT_DEVICE_MAP; ASSERT_EQ(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset, &map)); ucontext_t ucontext; // Create a context that has the pc in the device map, but the sp // in a non-device map. memset(&ucontext, 0, sizeof(ucontext)); SetUcontextSp(reinterpret_cast<uintptr_t>(&ucontext), &ucontext); SetUcontextPc(device_map_uint, &ucontext); SetUcontextLr(cur_func_offset, &ucontext); ASSERT_TRUE(backtrace->Unwind(0, &ucontext)); // The buffer should only be a single element. ASSERT_EQ(1U, backtrace->NumFrames()); const backtrace_frame_data_t* frame = backtrace->GetFrame(0); ASSERT_EQ(device_map_uint, frame->pc); ASSERT_EQ(reinterpret_cast<uintptr_t>(&ucontext), frame->sp); // Check what happens when skipping the first frame. ASSERT_TRUE(backtrace->Unwind(1, &ucontext)); ASSERT_EQ(0U, backtrace->NumFrames()); // Create a context that has the sp in the device map, but the pc // in a non-device map. memset(&ucontext, 0, sizeof(ucontext)); SetUcontextSp(device_map_uint, &ucontext); SetUcontextPc(cur_func_offset, &ucontext); SetUcontextLr(cur_func_offset, &ucontext); ASSERT_TRUE(backtrace->Unwind(0, &ucontext)); // The buffer should only be a single element. ASSERT_EQ(1U, backtrace->NumFrames()); frame = backtrace->GetFrame(0); ASSERT_EQ(cur_func_offset, frame->pc); ASSERT_EQ(device_map_uint, frame->sp); // Check what happens when skipping the first frame. ASSERT_TRUE(backtrace->Unwind(1, &ucontext)); ASSERT_EQ(0U, backtrace->NumFrames()); } TEST(libbacktrace, unwind_disallow_device_map_local) { void* device_map; SetupDeviceMap(&device_map); // Now create an unwind object. std::unique_ptr<Backtrace> backtrace( Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); ASSERT_TRUE(backtrace); UnwindFromDevice(backtrace.get(), device_map); munmap(device_map, DEVICE_MAP_SIZE); } TEST(libbacktrace, unwind_disallow_device_map_remote) { void* device_map; SetupDeviceMap(&device_map); // Fork a process to do a remote backtrace. pid_t pid; CreateRemoteProcess(&pid); // Now create an unwind object. std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); // TODO: Currently unwind from context doesn't work on remote // unwind. Keep this test because the new unwinder should support // this eventually, or we can delete this test. // properly with unwind from context. // UnwindFromDevice(backtrace.get(), device_map); FinishRemoteProcess(pid); munmap(device_map, DEVICE_MAP_SIZE); } class ScopedSignalHandler { public: ScopedSignalHandler(int signal_number, void (*handler)(int)) : signal_number_(signal_number) { memset(&action_, 0, sizeof(action_)); action_.sa_handler = handler; sigaction(signal_number_, &action_, &old_action_); } ScopedSignalHandler(int signal_number, void (*action)(int, siginfo_t*, void*)) : signal_number_(signal_number) { memset(&action_, 0, sizeof(action_)); action_.sa_flags = SA_SIGINFO; action_.sa_sigaction = action; sigaction(signal_number_, &action_, &old_action_); } ~ScopedSignalHandler() { sigaction(signal_number_, &old_action_, nullptr); } private: struct sigaction action_; struct sigaction old_action_; const int signal_number_; }; static void SetValueAndLoop(void* data) { volatile int* value = reinterpret_cast<volatile int*>(data); *value = 1; for (volatile int i = 0;; i++) ; } static void UnwindThroughSignal(bool use_action) { volatile int value = 0; pid_t pid; if ((pid = fork()) == 0) { if (use_action) { ScopedSignalHandler ssh(SIGUSR1, test_signal_action); test_level_one(1, 2, 3, 4, SetValueAndLoop, const_cast<int*>(&value)); } else { ScopedSignalHandler ssh(SIGUSR1, test_signal_handler); test_level_one(1, 2, 3, 4, SetValueAndLoop, const_cast<int*>(&value)); } } ASSERT_NE(-1, pid); int read_value = 0; uint64_t start = NanoTime(); while (read_value == 0) { usleep(1000); // Loop until the remote function gets into the final function. ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); WaitForStop(pid); std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); size_t bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(const_cast<int*>(&value)), reinterpret_cast<uint8_t*>(&read_value), sizeof(read_value)); ASSERT_EQ(sizeof(read_value), bytes_read); ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); ASSERT_TRUE(NanoTime() - start < 5 * NS_PER_SEC) << "Remote process did not execute far enough in 5 seconds."; } // Now need to send a signal to the remote process. kill(pid, SIGUSR1); // Wait for the process to get to the signal handler loop. Backtrace::const_iterator frame_iter; start = NanoTime(); std::unique_ptr<Backtrace> backtrace; while (true) { usleep(1000); ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); WaitForStop(pid); backtrace.reset(Backtrace::Create(pid, pid)); ASSERT_TRUE(backtrace->Unwind(0)); bool found = false; for (frame_iter = backtrace->begin(); frame_iter != backtrace->end(); ++frame_iter) { if (frame_iter->func_name == "test_loop_forever") { ++frame_iter; found = true; break; } } if (found) { break; } ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); ASSERT_TRUE(NanoTime() - start < 5 * NS_PER_SEC) << "Remote process did not get in signal handler in 5 seconds." << std::endl << DumpFrames(backtrace.get()); } std::vector<std::string> names; // Loop through the frames, and save the function names. size_t frame = 0; for (; frame_iter != backtrace->end(); ++frame_iter) { if (frame_iter->func_name == "test_level_four") { frame = names.size() + 1; } names.push_back(frame_iter->func_name); } ASSERT_NE(0U, frame) << "Unable to find test_level_four in backtrace" << std::endl << DumpFrames(backtrace.get()); // The expected order of the frames: // test_loop_forever // test_signal_handler|test_signal_action // <OPTIONAL_FRAME> May or may not exist. // SetValueAndLoop (but the function name might be empty) // test_level_four // test_level_three // test_level_two // test_level_one ASSERT_LE(frame + 2, names.size()) << DumpFrames(backtrace.get()); ASSERT_LE(2U, frame) << DumpFrames(backtrace.get()); if (use_action) { ASSERT_EQ("test_signal_action", names[0]) << DumpFrames(backtrace.get()); } else { ASSERT_EQ("test_signal_handler", names[0]) << DumpFrames(backtrace.get()); } ASSERT_EQ("test_level_three", names[frame]) << DumpFrames(backtrace.get()); ASSERT_EQ("test_level_two", names[frame + 1]) << DumpFrames(backtrace.get()); ASSERT_EQ("test_level_one", names[frame + 2]) << DumpFrames(backtrace.get()); FinishRemoteProcess(pid); } TEST(libbacktrace, unwind_remote_through_signal_using_handler) { UnwindThroughSignal(false); } TEST(libbacktrace, unwind_remote_through_signal_using_action) { UnwindThroughSignal(true); } #if defined(ENABLE_PSS_TESTS) #include "GetPss.h" #define MAX_LEAK_BYTES (32*1024UL) static void CheckForLeak(pid_t pid, pid_t tid) { // Do a few runs to get the PSS stable. for (size_t i = 0; i < 100; i++) { Backtrace* backtrace = Backtrace::Create(pid, tid); ASSERT_TRUE(backtrace != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); delete backtrace; } size_t stable_pss = GetPssBytes(); ASSERT_TRUE(stable_pss != 0); // Loop enough that even a small leak should be detectable. for (size_t i = 0; i < 4096; i++) { Backtrace* backtrace = Backtrace::Create(pid, tid); ASSERT_TRUE(backtrace != nullptr); ASSERT_TRUE(backtrace->Unwind(0)); ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); delete backtrace; } size_t new_pss = GetPssBytes(); ASSERT_TRUE(new_pss != 0); if (new_pss > stable_pss) { ASSERT_LE(new_pss - stable_pss, MAX_LEAK_BYTES); } } TEST(libbacktrace, check_for_leak_local) { CheckForLeak(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD); } TEST(libbacktrace, check_for_leak_local_thread) { thread_t thread_data = { 0, 0, 0, nullptr }; pthread_t thread; ASSERT_TRUE(pthread_create(&thread, nullptr, ThreadLevelRun, &thread_data) == 0); // Wait up to 2 seconds for the tid to be set. ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); CheckForLeak(BACKTRACE_CURRENT_PROCESS, thread_data.tid); // Tell the thread to exit its infinite loop. android_atomic_acquire_store(0, &thread_data.state); ASSERT_TRUE(pthread_join(thread, nullptr) == 0); } TEST(libbacktrace, check_for_leak_remote) { pid_t pid; CreateRemoteProcess(&pid); CheckForLeak(pid, BACKTRACE_CURRENT_THREAD); FinishRemoteProcess(pid); } #endif