/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Header page: // // For minimum allocation size (8 bytes), bitmap can store used allocations for // up to 4032*8*8=258048, which is 256KiB minus the header page #include <assert.h> #include <stdlib.h> #include <sys/cdefs.h> #include <sys/mman.h> #include <cmath> #include <cstddef> #include <cstdint> #include <memory> #include <mutex> #include "android-base/macros.h" #include "anon_vma_naming.h" #include "Allocator.h" #include "LinkedList.h" // runtime interfaces used: // abort // assert - fprintf + mmap // mmap // munmap // prctl constexpr size_t const_log2(size_t n, size_t p = 0) { return (n <= 1) ? p : const_log2(n / 2, p + 1); } constexpr unsigned int div_round_up(unsigned int x, unsigned int y) { return (x + y - 1) / y; } static constexpr size_t kPageSize = 4096; static constexpr size_t kChunkSize = 256 * 1024; static constexpr size_t kUsableChunkSize = kChunkSize - kPageSize; static constexpr size_t kMaxBucketAllocationSize = kChunkSize / 4; static constexpr size_t kMinBucketAllocationSize = 8; static constexpr unsigned int kNumBuckets = const_log2(kMaxBucketAllocationSize) - const_log2(kMinBucketAllocationSize) + 1; static constexpr unsigned int kUsablePagesPerChunk = kUsableChunkSize / kPageSize; std::atomic<int> heap_count; class Chunk; class HeapImpl { public: HeapImpl(); ~HeapImpl(); void* operator new(std::size_t count) noexcept; void operator delete(void* ptr); void* Alloc(size_t size); void Free(void* ptr); bool Empty(); void MoveToFullList(Chunk* chunk, int bucket_); void MoveToFreeList(Chunk* chunk, int bucket_); private: DISALLOW_COPY_AND_ASSIGN(HeapImpl); LinkedList<Chunk*> free_chunks_[kNumBuckets]; LinkedList<Chunk*> full_chunks_[kNumBuckets]; void MoveToList(Chunk* chunk, LinkedList<Chunk*>* head); void* MapAlloc(size_t size); void MapFree(void* ptr); void* AllocLocked(size_t size); void FreeLocked(void* ptr); struct MapAllocation { void *ptr; size_t size; MapAllocation* next; }; MapAllocation* map_allocation_list_; std::mutex m_; }; // Integer log 2, rounds down static inline unsigned int log2(size_t n) { return 8 * sizeof(unsigned long long) - __builtin_clzll(n) - 1; } static inline unsigned int size_to_bucket(size_t size) { if (size < kMinBucketAllocationSize) return kMinBucketAllocationSize; return log2(size - 1) + 1 - const_log2(kMinBucketAllocationSize); } static inline size_t bucket_to_size(unsigned int bucket) { return kMinBucketAllocationSize << bucket; } static void* MapAligned(size_t size, size_t align) { const int prot = PROT_READ | PROT_WRITE; const int flags = MAP_ANONYMOUS | MAP_PRIVATE; size = (size + kPageSize - 1) & ~(kPageSize - 1); // Over-allocate enough to align size_t map_size = size + align - kPageSize; if (map_size < size) { return nullptr; } void* ptr = mmap(NULL, map_size, prot, flags, -1, 0); if (ptr == MAP_FAILED) { return nullptr; } size_t aligned_size = map_size; void* aligned_ptr = ptr; std::align(align, size, aligned_ptr, aligned_size); // Trim beginning if (aligned_ptr != ptr) { ptrdiff_t extra = reinterpret_cast<uintptr_t>(aligned_ptr) - reinterpret_cast<uintptr_t>(ptr); munmap(ptr, extra); map_size -= extra; ptr = aligned_ptr; } // Trim end if (map_size != size) { assert(map_size > size); assert(ptr != NULL); munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(ptr) + size), map_size - size); } #define PR_SET_VMA 0x53564d41 #define PR_SET_VMA_ANON_NAME 0 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, reinterpret_cast<uintptr_t>(ptr), size, "leak_detector_malloc"); return ptr; } class Chunk { public: static void* operator new(std::size_t count) noexcept; static void operator delete(void* ptr); Chunk(HeapImpl* heap, int bucket); ~Chunk() {} void *Alloc(); void Free(void* ptr); void Purge(); bool Empty(); static Chunk* ptr_to_chunk(void* ptr) { return reinterpret_cast<Chunk*>(reinterpret_cast<uintptr_t>(ptr) & ~(kChunkSize - 1)); } static bool is_chunk(void* ptr) { return (reinterpret_cast<uintptr_t>(ptr) & (kChunkSize - 1)) != 0; } unsigned int free_count() { return free_count_; } HeapImpl* heap() { return heap_; } LinkedList<Chunk*> node_; // linked list sorted by minimum free count private: DISALLOW_COPY_AND_ASSIGN(Chunk); HeapImpl* heap_; unsigned int bucket_; unsigned int allocation_size_; // size of allocations in chunk, min 8 bytes unsigned int max_allocations_; // maximum number of allocations in the chunk unsigned int first_free_bitmap_; // index into bitmap for first non-full entry unsigned int free_count_; // number of available allocations unsigned int frees_since_purge_; // number of calls to Free since last Purge // bitmap of pages that have been dirtied uint32_t dirty_pages_[div_round_up(kUsablePagesPerChunk, 32)]; // bitmap of free allocations. uint32_t free_bitmap_[kUsableChunkSize / kMinBucketAllocationSize / 32]; char data_[0]; unsigned int ptr_to_n(void* ptr) { ptrdiff_t offset = reinterpret_cast<uintptr_t>(ptr) - reinterpret_cast<uintptr_t>(data_); return offset / allocation_size_; } void* n_to_ptr(unsigned int n) { return data_ + n * allocation_size_; } }; static_assert(sizeof(Chunk) <= kPageSize, "header must fit in page"); // Override new operator on chunk to use mmap to allocate kChunkSize void* Chunk::operator new(std::size_t count __attribute__((unused))) noexcept { assert(count == sizeof(Chunk)); void* mem = MapAligned(kChunkSize, kChunkSize); if (!mem) { abort(); //throw std::bad_alloc; } return mem; } // Override new operator on chunk to use mmap to allocate kChunkSize void Chunk::operator delete(void *ptr) { assert(reinterpret_cast<Chunk*>(ptr) == ptr_to_chunk(ptr)); munmap(ptr, kChunkSize); } Chunk::Chunk(HeapImpl* heap, int bucket) : node_(this), heap_(heap), bucket_(bucket), allocation_size_( bucket_to_size(bucket)), max_allocations_( kUsableChunkSize / allocation_size_), first_free_bitmap_(0), free_count_( max_allocations_), frees_since_purge_(0) { memset(dirty_pages_, 0, sizeof(dirty_pages_)); memset(free_bitmap_, 0xff, sizeof(free_bitmap_)); } bool Chunk::Empty() { return free_count_ == max_allocations_; } void* Chunk::Alloc() { assert(free_count_ > 0); unsigned int i = first_free_bitmap_; while (free_bitmap_[i] == 0) i++; assert(i < arraysize(free_bitmap_)); unsigned int bit = __builtin_ffs(free_bitmap_[i]) - 1; assert(free_bitmap_[i] & (1U << bit)); free_bitmap_[i] &= ~(1U << bit); unsigned int n = i * 32 + bit; assert(n < max_allocations_); unsigned int page = n * allocation_size_ / kPageSize; assert(page / 32 < arraysize(dirty_pages_)); dirty_pages_[page / 32] |= 1U << (page % 32); free_count_--; if (free_count_ == 0) { heap_->MoveToFullList(this, bucket_); } return n_to_ptr(n); } void Chunk::Free(void* ptr) { assert(is_chunk(ptr)); assert(ptr_to_chunk(ptr) == this); unsigned int n = ptr_to_n(ptr); unsigned int i = n / 32; unsigned int bit = n % 32; assert(i < arraysize(free_bitmap_)); assert(!(free_bitmap_[i] & (1U << bit))); free_bitmap_[i] |= 1U << bit; free_count_++; if (i < first_free_bitmap_) { first_free_bitmap_ = i; } if (free_count_ == 1) { heap_->MoveToFreeList(this, bucket_); } else { // TODO(ccross): move down free list if necessary } if (frees_since_purge_++ * allocation_size_ > 16 * kPageSize) { Purge(); } } void Chunk::Purge() { frees_since_purge_ = 0; //unsigned int allocsPerPage = kPageSize / allocation_size_; } // Override new operator on HeapImpl to use mmap to allocate a page void* HeapImpl::operator new(std::size_t count __attribute__((unused))) noexcept { assert(count == sizeof(HeapImpl)); void* mem = MapAligned(kPageSize, kPageSize); if (!mem) { abort(); //throw std::bad_alloc; } heap_count++; return mem; } void HeapImpl::operator delete(void *ptr) { munmap(ptr, kPageSize); } HeapImpl::HeapImpl() : free_chunks_(), full_chunks_(), map_allocation_list_(NULL) { } bool HeapImpl::Empty() { for (unsigned int i = 0; i < kNumBuckets; i++) { for (LinkedList<Chunk*> *it = free_chunks_[i].next(); it->data() != NULL; it = it->next()) { if (!it->data()->Empty()) { return false; } } for (LinkedList<Chunk*> *it = full_chunks_[i].next(); it->data() != NULL; it = it->next()) { if (!it->data()->Empty()) { return false; } } } return true; } HeapImpl::~HeapImpl() { for (unsigned int i = 0; i < kNumBuckets; i++) { while (!free_chunks_[i].empty()) { Chunk *chunk = free_chunks_[i].next()->data(); chunk->node_.remove(); delete chunk; } while (!full_chunks_[i].empty()) { Chunk *chunk = full_chunks_[i].next()->data(); chunk->node_.remove(); delete chunk; } } } void* HeapImpl::Alloc(size_t size) { std::lock_guard<std::mutex> lk(m_); return AllocLocked(size); } void* HeapImpl::AllocLocked(size_t size) { if (size > kMaxBucketAllocationSize) { return MapAlloc(size); } int bucket = size_to_bucket(size); if (free_chunks_[bucket].empty()) { Chunk *chunk = new Chunk(this, bucket); free_chunks_[bucket].insert(chunk->node_); } return free_chunks_[bucket].next()->data()->Alloc(); } void HeapImpl::Free(void *ptr) { std::lock_guard<std::mutex> lk(m_); FreeLocked(ptr); } void HeapImpl::FreeLocked(void *ptr) { if (!Chunk::is_chunk(ptr)) { HeapImpl::MapFree(ptr); } else { Chunk* chunk = Chunk::ptr_to_chunk(ptr); assert(chunk->heap() == this); chunk->Free(ptr); } } void* HeapImpl::MapAlloc(size_t size) { size = (size + kPageSize - 1) & ~(kPageSize - 1); MapAllocation* allocation = reinterpret_cast<MapAllocation*>(AllocLocked( sizeof(MapAllocation))); void* ptr = MapAligned(size, kChunkSize); if (!ptr) { FreeLocked(allocation); abort(); //throw std::bad_alloc; } allocation->ptr = ptr; allocation->size = size; allocation->next = map_allocation_list_; map_allocation_list_ = allocation; return ptr; } void HeapImpl::MapFree(void *ptr) { MapAllocation **allocation = &map_allocation_list_; while (*allocation && (*allocation)->ptr != ptr) allocation = &(*allocation)->next; assert(*allocation != nullptr); munmap((*allocation)->ptr, (*allocation)->size); FreeLocked(*allocation); *allocation = (*allocation)->next; } void HeapImpl::MoveToFreeList(Chunk *chunk, int bucket) { MoveToList(chunk, &free_chunks_[bucket]); } void HeapImpl::MoveToFullList(Chunk *chunk, int bucket) { MoveToList(chunk, &full_chunks_[bucket]); } void HeapImpl::MoveToList(Chunk *chunk, LinkedList<Chunk*>* head) { // Remove from old list chunk->node_.remove(); LinkedList<Chunk*> *node = head; // Insert into new list, sorted by lowest free count while (node->next() != head && node->data() != nullptr && node->data()->free_count() < chunk->free_count()) node = node->next(); node->insert(chunk->node_); } Heap::Heap() { // HeapImpl overloads the operator new in order to mmap itself instead of // allocating with new. // Can't use a shared_ptr to store the result because shared_ptr needs to // allocate, and Allocator<T> is still being constructed. impl_ = new HeapImpl(); owns_impl_ = true; } Heap::~Heap() { if (owns_impl_) { delete impl_; } } void* Heap::allocate(size_t size) { return impl_->Alloc(size); } void Heap::deallocate(void* ptr) { impl_->Free(ptr); } void Heap::deallocate(HeapImpl*impl, void* ptr) { impl->Free(ptr); } bool Heap::empty() { return impl_->Empty(); }